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Abstract. Collaborative virtual environments (CVE) require the use of 
specially designed mechanisms that allow for a consistent sharing of state 
among involved users. These mechanisms must, somehow, compensate for 
network latency and losses in such a way that all players have a single, coherent 
perception of the system state. Common middleware platforms have difficulty 
in guaranteeing this consistency, and this is the prime reason why the main 
research topic for CVEs is the efficient, scalable and reliable transmission of 
state information. This paper presents a state transmission framework 
developed for a middleware platform that was constructed by the authors in an 
earlier project [1]. This middleware platform, Augmented Reliable Multicast 
CORBA Event Service (ARMS), which already supported several QoS 
adaptation mechanisms and reliable transmission in multicast environments, 
was extended with CVE-oriented state transmission mechanisms. After an 
identification of key requirements of collaborative virtual environments, the 
relevant features of the proposed state transmission framework are presented. 
This framework has been integrated in the ARMS platform and was subject to a 
series of performance tests whose results are included and discussed in this 
paper. The paper ends with a summary of contributions and an identification of 
guidelines for further work 

1. Introduction 

One fundamental problem of collaborative virtual environments is the maintenance of 
a consistent shared state over interactive distributed media. The current state-of-the-
art approach to achieve consistency in CVEs is to use dead reckoning [2, 3]. 
Nevertheless, in [3] it is demonstrated that traditional dead reckoning mechanisms 
may fail in ways that cause significant harm to the overall state of CVEs. Network 
latency and losses contribute to the difference between the predicted and the real 
system state, and this difference may significantly exceed the threshold that triggers 
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state transmission, resulting in state inconsistencies. One of the main research topics 
for CVEs, from a quality of service (QoS) point of view, is how to efficiently transmit 
update messages so as to provide scalability, minimized delay, consistency and 
reliability [4]. 

Mauve proposes the concept of local lag [5] to prevent inconsistencies, and the 
timewarp algorithm [3] to keep state consistency, possibly in combination with dead 
reckoning. The local lag is a simple mechanism: “instead of immediately executing 
an operation issued by a local user, the operation is delayed for a certain time before it 
is executed” [5]. The fixed amount of local lag constitutes a drawback of this method. 
In the timewarp method [6] each participant saves the state at certain moments in 
time. When an inconsistency occurs, the state is rolled back to the state that 
immediately preceded the operation that caused the inconsistency. After that, the 
medium is played (fast) forward until the current medium time is reached. This 
algorithm has a higher complexity than the dead reckoning algorithm, requiring a 
“strong” application to handle it [6], which renders it unfeasible in large CVEs. 

The Georganas group introduces the original concept of “interaction streams” [4], 
“each consisting of a burst of update messages with a final and a critical update 
message”. The concept is supported on a proprietary multicast transport protocol, the 
Synchronous Collaboration Transport Protocol (SCTP), which is ACK based and 
adapted to the transmission of key update messages. In this model, the mechanisms to 
achieve state consistency do not use synchronous information like, for instance, clock 
or time-stamping information, which main constrain its applicability to large CVEs.  

There are other approaches to shared state consistency, based on synchronisation 
mechanisms. One of the more significant mechanisms is the bucket synchronization 
mechanism [7], which is used in the MiMaze multi-player game [7]. In this case, time 
is divided into fixed length sampling periods and a bucket is associated with each 
sampling period. All application data units (ADU) received by an application are 
stored in the bucket corresponding to the current interval. When the application has to 
deliver an updated global state, it computes all ADUs available in the current bucket 
[7]. This algorithm needs global clock mechanisms like NTP [8] and the 
synchronization delay is computed on ADU’s reception. If the network delay is 
greater than a given threshold the ADU is dropped. MiMaze uses an unreliable 
communication system, based on RTP [9] over UDP/IP multicast [10]. 

This paper presents a set of state transmission mechanisms to be used in the ARMS 
middleware platform [1]. The objectives of the proposed mechanisms, hereafter 
referred to as state transmission framework (STF), are to extend the applicability of 
the platform to collaborative virtual environments maintaining, at the same time, the 
platform’s QoS features. Section 2 identifies the main requirements of collaborative 
virtual environments. Section 3 presents, to a considerable extent, the proposed state 
transmission framework. Section 4 describes the performance tests made to STF and 
analyses their results. The conclusions and guidelines for further work are presented 
in Section 5. 



2. CVE’s requirements 

CVE applications have specific requirements in terms of scalability, interaction and 
consistency. The QoS characteristics that are relevant to these requirements are 
reliability, losses, delay and delay jitter. Additionally, application factors like data 
heterogeneity, frequency of events, synchronisation delay, number of participants and 
playout time (display frequency) [11] may play an important role in the behaviour of 
CVEs. 
The following sub-sections briefly discuss some of these requirements and associated 
QoS characteristics. In turn, these have led to the development of several mechanisms 
that have been included in the ARMS middleware platform [1], which build on a set 
of extensions to the CORBA Event Service, providing native multicast 
communication, various reliability levels, congestion control and jitter suppression, 
with the aim to achieve QoS adaptability. These new mechanisms extend the ARMS 
platform with CVE-oriented QoS capabilities, and will be presented in Section 3.  

2.1 Data heterogeneity 

Typically there are many different types of data exchanged in CVE’s [2]: real-time 
audio and video data, scene description data, typical 2D data, control data and state or 
update data. In addition to dealing with various types of data, continuous distributed 
interactive media can change their state in response to user operations as well to the 
passage of time [5]. A broad variety of applications use this kind of media, such as 
multi-user virtual reality (VR), distributed simulations, networked games and 
computer-supported co-operative work (CSCW) applications. 

2.2 State synchronisation 

All participants in a session must be synchronised in the same media state, i.e., the 
distributed shared state must be consistent. Different media have different state 
classifications and different state synchronisation needs. The state could be a simple 
change in a component. In the other extreme, it could be a bulk of data for latecomers 
or for re-synchronization. Some states may be essential and others may be redundant. 
State synchronisation must take the media type into consideration. Essentially, this is 
an issue for the applications’ environment model, which must use the best solutions to 
deal with specific media. 

2.3 Delay and jitter  

Regular collaborative update messages have stringent delay requirements in order to 
maintain the shared state of components. Some studies [12] suggest that CVEs must 
have an end-to-end delay less than 100 msec. Others [13] consider 200 msec as an 
acceptable delay. In addition to delay, delay jitter also affects update messages. As 
shown in [13], a session with 10 msec delay and considerable jitter results in a 



perceived quality that can be as bad as one with 200msec delay and no associated 
jitter. 

2.4 Reliability 

CVEs for distributed interactive media require that all participants must receive state 
changes. Due to their specificity there are some states that are time critical and 
described by small amounts of information, while others are generally non-time-
critical and require large amounts of information for their description. Therefore, 
there is the need for different levels of reliability when exchanging these types of 
updates: minimal reliability (possibly with loss detection) for the former, and full 
reliability for the latter.  
In a CVE, the last state of a shared object is the most crucial data [4]. These messages 
must be sent with a high reliability level, whilst regular messages can be sent with a 
different, lower reliability level as, for instance, best effort. 
Basically, there are two forms of achieving reliability: by using a reliable transport 
protocol or by using network-aware applications. In the context  of interactive media 
applications, loss detection and reliability become more complex since there is no 
longer a single linear namespace for objects and since some objects are persistent 
[14]. So, a single transport protocol is unlikely to be sufficient, as observed in [14]. 
Additionally, many authors [15, 16, 17, 18] have concluded that application level 
framing is a requirement too, in this application context.  
Both approaches to achieve reliability should be usable with a framework like a 
framing protocol. This framework could be a middleware platform with a proper 
interface to the application level, which captures the common aspects of a media 
class, and provides access to reliable transport protocols. 

2.5 Other requirements 

In [14], it is observed that many applications need structured application data unit 
(ADU) names, a simple mechanism for packet loss detection, a means of 
distinguishing different types of data, a means of identifying participants, and a time 
stamping mechanism. 
All of these requirements add great complexity to the application level. Placing some 
of these capabilities in the middleware gives applications the ability to concentrate on 
specific functionalities, to enforce different adaptation policies and to interact with 
other components in the system in order to ensure fairness and other global properties.  

3. ARMS state transmission mechanisms 

The state transmission mechanisms presented in this paper were developed in the 
context of the Augmented Reliable Multicast CORBA Event Service (ARMS) 
middleware platform [1], that provides an end-to-end communication framework with 
QoS-matching capabilities. ARMS offers a set of QoS-related mechanisms for 



reliability guarantee in multicast environments, congestion control and jitter control. 
The QoS management process is supported on object-based monitoring and 
adaptation functions. The platform has specific objects for loss and jitter monitoring.  
The general architecture of the ARMS platform (Figure 1) includes an ARMS QoS 
API that provides access to the QoS features of the reliable multicasting services, and 
to the standard CORBA Event Service. Additionally, the architecture includes the 
STF API, which will be described in the remaining part of this section. 
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Figure 1 – ARMS architecture 

3.1 State transmission framework 

The STF API is a Java-based middleware especially designed for the transmission of 
state changes in virtual reality environments, which takes into account the 
requirements of state transmission in these types of applications. STF is an object-
oriented framework integrated in the ARMS middleware platform (Figure 1) that 
supports state transmission and reception, a late join protocol – a process by which a 
client can join a ongoing interaction session and reconstruct the current global state, 
virtual world partitioning, and time synchronization. This paper discusses mainly the 
transmission and reception of states. The STF API comprehends a set of interfaces 
that expose methods that allow for the control various capabilities. Figure 2 illustrates 
the general architecture of STF, in UML. 
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Figure 2 – Diagram of STF UML classes 

3.2 State categories 

In STF, each state may be classified into various categories, according to the way it 
must be transmitted to and from the network and the way it must be treated with 
respect to the late join protocol. In terms of redundancy, a state may be classified as 
follows. 

• Redundant state – A redundant state may fail to reach the destination, 
because it may be overwritten in the buffers by more recent states of the 
same stream.  A stream made of redundant states always has the more recent 
states transmitted, in detriment of other, older states.  

• Essential state – An essential state always reaches the destination. A stream 
made of essential states always has all its messages transmitted. 

In terms of volatility, a state may be classified as follows. 
• Volatile state – A volatile state may fail to reach the destination, even if it is 

not overwritten by any state in the buffers. A stream made of volatile states 
may have none of its states transmitted. 

• Non-volatile state – A state that has not the volatile characteristic. 
With respect to the late join protocol, a state may be classified as follows. 



• Independent state – An independent state object completely describes the 
state of the object it refers to; thus, in a late join process it is sufficient to 
recover the last transmitted independent state. 

• Cumulative state – A cumulative state object does not completely describe 
the state of the object it refers to, but only a state change. With this kind of 
states, it is necessary to recover a complete set of transmitted state objects to 
execute a late join process. 

Excluding the late join classification as independent or cumulative, state categories 
lead to four possible combinations. Of these only three are meaningful: 

• Essential and non-volatile – All states reach the destination 
• Redundant and non-volatile – The latest state reaches the destination 
• Redundant and volatile – The states are not guaranteed to reach the 

destination 
The fourth possible combination, essential and volatile, must not be used, as it is 
obviously impossible to guarantee that a volatile state always reaches its destination, 
as required by essential states. 

3.3 State interaction streams 

What exactly is an object state is highly dependent on the specific virtual reality 
application that is using STF. As such, STF makes as few assumptions as possible 
about the state object. In fact, STF considers as state object any object that can be 
serialised and implements the STFState interface. This interface contains methods that 
permit STF to find out the special characteristics of each state object. 
Similarly to the work presented in [4], the STF API divides the transmitted states into 
interaction streams, identified by a unique key that corresponds to a particular virtual 
world entity. Each interaction stream is made of state messages that include the state 
objects corresponding to that entity ordered by timestamp. Figure 3 illustrates this 
concept.  
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Figure 3 – State interaction streams 

Using STF, applications can mix any types of states in the same stream, so we may 
have, for example, redundant states and some essential states in the middle, volatile 
and non-volatile states, etc. The streams are automatically generated by the API and 



are used to handle redundant and volatile states, so that STF may know which states 
to discard, if needed. A stream is made of STFStateMessage objects. Each of these 
objects is a message to be transmitted by the API, and includes the following 
information: the key object that identifies the virtual world entity to which the state 
refers that, by consequence, identifies the interaction stream to which this message 
belongs; the state object to be transmitted – an object of a class that must implement 
the STFState interface; message timestamp information – generated automatically by 
the STF API when the message is received from the application; and priority 
information of the message, which is a very important QoS property introduce in 
ARMS by STF, used when two or more messages from different streams are to be 
transmitted to the network. The priority information can take up one of five values: 
 

• PRIORITY_LOWEST – The lowest priority possible 
• PRIORITY_LOW – Low priority 
• PRIORITY_MEDIUM – Medium priority 
• PRIORITY_HIGH – High priority 
• PRIORITY_HIGHEST – Highest priority possible 

3.4 Transmission of state messages 

When the application wants to transmit a state object, it must construct an 
STFStateMessage object, containing the key – an object of a class that implements the 
STFKey interface, the state – an object of a class that implements the STFState 
interface, and the message priority information. The application then sends the 
message to be processed to the STFChannelManager using the sendMessage method 
of the STFMessager interface. 

3.5 Reception of state messages 

The state messages – instances of STFStateMessage – are received by the application 
through the methods of the STFApplication interface. The method normally used for 
message reception is the receive method, with the STFStateMessage object as a 
parameter. 

3.6 Reception lag and time warp avoidance 

A time warp happens when a message that should have been received before some 
other message is received after it. This may cause an inconsistency in the virtual 
world and must be prevented. To prevent this from happening, STF orders all 
messages by timestamp and delivers them all in that order. However, when multiple 
conference nodes are transmitting messages about the same object, the underlying 
communication levels do not usually guarantee the total order of these messages. To 
circumvent this problem, STF makes it possible to enable a reception lag time. When 
enabled, reception lag causes a message to remain in the buffers for a specified 



minimal period of time since it has been passed to STF by the emitter application. In 
this way the buffers are used to order incoming out of order messages such that they 
do not cause a time warp. 
The reception lag may degrade application performance, and even endanger virtual 
world consistency if not used wisely. So, this feature must be used with extra care. 
Reception lag is depicted in Figure 4. 

3.7 Time warp detection 

With or without reception lag, time warps are possible when transmitting data about 
the same entity in two or more conference nodes. When a time warp happens, STF 
detects this and delivers the time-warped message to the application using a special 
method of the STFApplication interface – timeWarpReceive. The application then has 
the chance to consider the message, ignore it or do whichever action it deems 
adequate to the situation. 
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Figure 4 – Reception lag components 

4. Tests made to STF 

In order to analyse the performance of the state transmission framework, a series of 
tests designed to evaluate the behaviour of this API were made, covering common 
situations in virtual reality applications. Due to the extension of the API, which 
comprises time synchronization, late join protocols, various transmission and 
reception options, and partitioning of virtual world entities it was, in practice, 
impossible to test all possible configurations. Thus, only tests related to common state 
transmission configurations were made, with the aim of discovering the limits of the 
API and assessing its behaviour under various circumstances.  



4.1 The testbed 

The tests were made using three Pentium III 733Mhz-500Mhz computers (A-TEJO, 
B-CONCHA and C-SADO), with 128 MB RAM and Windows 2000 Professional, 
directly connected to a network switch by 100Mbit Ethernet full duplex links. All 
three computers had the Java Software Development Kit version 1.3, from Sun 
Microsystems [19], installed. The state transmission framework ran as part of the 
CONCHA conference controller system version 2.0 [20], which used Java 1.3, JSDT 
2.0 [21] and ARMS 1.0 [20]. All three computers were synchronized using NTP 
through the installation of the NTPTime client for WindowsNT, adapted to work 
under Windows2000 [22]. All three computers used the same NTP server for time 
synchronization. 

4.2 Tests description 

The objective of the tests was to measure the total message delay and also the 
message transmission throughput under different conditions, so as to conclude about 
STF’s efficiency.  
Two sets of tests were performed. The first set addressed the effect of increasing 
message transmission rate (increased throughput) on the total transmission delay and 
the redundant message discarding. These tests were used to conclude about the 
practical limits of STF under stress conditions. 
The second set of tests addressed the effect of increasing message sizes (through the 
increase in state sizes) on the total transmission delay and the redundant message 
discarding, using a fixed message transmission rate. Both sets of tests used three 
different streams of states, with the purpose of simulating a simple but representative 
situation of mixed streams with different state characteristics: 
 

• Stream 1: redundant, volatile and independent states; 
• Stream 2: redundant, non-volatile and independent states; 
• Stream 3: essential, non-volatile and independent states. 

 
All state messages from all streams had the same priority – Highest.  
 
The first set of tests – the message rate tests – used a state size of 22 bytes and a key 
size of 6 bytes, totalling 28 bytes. This is enough to transmit three-dimensional 
position and rotation information, which is sufficient for many applications, though 
not all. The test started by transmitting five messages per second (msg/s) in each 
stream. This was increased by 5 msg/s in each consecutive run. The test was set to 
stop at 400 msg/s for each stream, which amounted to a total of 1200 msg/s. 
Additionally, the test was programmed to stop as soon as the total message 
transmission delay – comprising the message transmission by the sending application 
to STF and the message delivery to the receiving application by STF – would reach 
one second, a value that was considered unacceptable. In the second set of tests, state 
messages of 22 bytes were first used, the state size being incremented by 100 bytes in 
each consecutive run. In both sets of tests, each individual test ran for 20 seconds. 



4.3 The test application 

A test application running as part of the CONCHA system version 2.0 [20,23] was 
created with the specific purpose of performing the STF API tests. The application 
enables the user to specify all properties of the STF session, such as underlying 
communication properties, transmission and reception lag control, late join protocol 
control, time synchronization settings and time warp detection. Figure 5 presents a 
screenshot of this application, where the setting of stream state transmission 
properties is visible. 
 

 
Figure 5 – Screenshot of the test application 

This application allows for a completely automated testing process, through an option 
in the application’s menu (“Start automatic testing”) that executes the tests earlier 
discussed in this paper. It also allows for more specific testing of a large variety of 
situations under which STF may be used. With this application, it is possible to test 
most of STF’s capacities without having to build a complete multiuser CVE. 
However, the authors plan to build such an environment in the near future in order to 
test and evaluate other STF’s features that this application does not test properly, such 
as some of the features of the late join protocol.  

4.4 Tests’ results and analysis  

Figure 6 identifies the four message probing points used to gather delay and 
throughput data. Point (A) corresponds to the sending application interface with STF. 
Messages passing through this point are shown in Figure 9 as processed messages. 
Point (B) is the sending STF interface with the communications layer. Messages 
passing through this point are shown in Figure 9 as transmitted messages.  
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The obtained results have shown that these are the same as the messages that pass 
through the third message probing point (C), which correspond to the messages 
received by STF from the underlying communications layer at the receiving node. 
Thus, these messages are not represented in Figure 9, since the data are the same as 
the transmitted messages data. The fourth and final message probing point 
corresponds to the receiving application interface with STF (D). The corresponding 
messages are shown in the graphs as received messages.  
The STF latency is the time that messages take since they travel from the probing 
point (A) to the probing point (D). Latency was measured as a function of message 
throughput (Figure 7) and as a function of message size (Figure 8).  
Figure 7 shows that the average total message delay, that is, the average latency is less 
than 20 ms for the vast majority of tests and is always less than 25 ms. It is 
noteworthy to say that this latency includes all STF and ARMS overheads 
(marshalling/demarshalling, encoding/decoding of the reliable multicast protocol 
packet, etc). Additionally, there was no problem in reaching the target value of 400 
msg/s per flow. 
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Figure 7 – Latency as a function of state rate 

Figure 8 shows that, similarly to the latency versus state rate case, the average latency 
is generally less than 20 ms even when the states’ size is considerably high, well 
above the 1400-byte limit that implies ARMS fragmentation/reassembling overhead. 
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Figure 9 shows that when the network traffic increases there is, in fact, an efficient 
utilization of network resources by STF, discarding redundant and volatile messages 
as needed, but keeping the essential ones. This maintains network traffic at acceptable 
levels even when STF reaches full state transmission capacity, without losing the 
consistency of the shared global virtual world state. 
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5. Conclusions and guidelines for further work 

Middleware platforms must have specific characteristics in order to adequately 
support collaborative virtual environments. In addition to good reliability, delay and 
jitter characteristics, it is essential that state synchronisation is efficiently guaranteed 
and maintained.  
In this paper, a proposal of a set of mechanisms that provide such synchronisation was 
made. These mechanisms, collectively referred to as a state transmission framework, 
were implemented and subject to functionality and performance testing in the context 
of a QoS-aware middleware platform named ARMS, developed by the authors in a 
previous project. 
After a presentation of the main features of the framework, some of the tests’ results 
were presented and discussed. In addition to validating concepts so important as the 
state redundancy and state volatility concepts, the tests have clearly shown that the 
implemented prototype has good performance in terms of throughput, latency and 
efficiency in the use of both processing and network resources. 
Subsequent phases of this work will address further testing, namely scalability testing. 
Additionally, future work will try to optimise the integration with the ARMS 
platform, with emphasis on the exploration of some of its QoS capabilities such as 
multiple reliability levels. 
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