
State Transmission Mechanisms for a Collaborative
Virtual Environment Middleware Platform

João Orvalho1, Pedro Ferreira2 and Fernando Boavida3

Communications and Telematic Group
CISUC – Centre for Informatics and Systems of the University of Coimbra

 Polo II, 3030 COIMBRA – PORTUGAL
Tel.: +351-239-790000, Fax: +351-239-701266
E-mail: {orvalho, pmferr, boavida@dei.uc.pt}

Abstract. Collaborative virtual environments (CVE) require the use of
specially designed mechanisms that allow for a consistent sharing of state
among involved users. These mechanisms must, somehow, compensate for
network latency and losses in such a way that all players have a single, coherent
perception of the system state. Common middleware platforms have difficulty
in guaranteeing this consistency, and this is the prime reason why the main
research topic for CVEs is the efficient, scalable and reliable transmission of
state information. This paper presents a state transmission framework
developed for a middleware platform that was constructed by the authors in an
earlier project [1]. This middleware platform, Augmented Reliable Multicast
CORBA Event Service (ARMS), which already supported several QoS
adaptation mechanisms and reliable transmission in multicast environments,
was extended with CVE-oriented state transmission mechanisms. After an
identification of key requirements of collaborative virtual environments, the
relevant features of the proposed state transmission framework are presented.
This framework has been integrated in the ARMS platform and was subject to a
series of performance tests whose results are included and discussed in this
paper. The paper ends with a summary of contributions and an identification of
guidelines for further work

1. Introduction

One fundamental problem of collaborative virtual environments is the maintenance of
a consistent shared state over interactive distributed media. The current state-of-the-
art approach to achieve consistency in CVEs is to use dead reckoning [2, 3].
Nevertheless, in [3] it is demonstrated that traditional dead reckoning mechanisms
may fail in ways that cause significant harm to the overall state of CVEs. Network
latency and losses contribute to the difference between the predicted and the real
system state, and this difference may significantly exceed the threshold that triggers

1 College of Education, Polytechnic Institute of Coimbra
2 Polytechnic Institute of Tomar
3 Informatics Engineering Department of the University of Coimbra

state transmission, resulting in state inconsistencies. One of the main research topics
for CVEs, from a quality of service (QoS) point of view, is how to efficiently transmit
update messages so as to provide scalability, minimized delay, consistency and
reliability [4].

Mauve proposes the concept of local lag [5] to prevent inconsistencies, and the
timewarp algorithm [3] to keep state consistency, possibly in combination with dead
reckoning. The local lag is a simple mechanism: “instead of immediately executing
an operation issued by a local user, the operation is delayed for a certain time before it
is executed” [5]. The fixed amount of local lag constitutes a drawback of this method.
In the timewarp method [6] each participant saves the state at certain moments in
time. When an inconsistency occurs, the state is rolled back to the state that
immediately preceded the operation that caused the inconsistency. After that, the
medium is played (fast) forward until the current medium time is reached. This
algorithm has a higher complexity than the dead reckoning algorithm, requiring a
“strong” application to handle it [6], which renders it unfeasible in large CVEs.

The Georganas group introduces the original concept of “interaction streams” [4],
“each consisting of a burst of update messages with a final and a critical update
message”. The concept is supported on a proprietary multicast transport protocol, the
Synchronous Collaboration Transport Protocol (SCTP), which is ACK based and
adapted to the transmission of key update messages. In this model, the mechanisms to
achieve state consistency do not use synchronous information like, for instance, clock
or time-stamping information, which main constrain its applicability to large CVEs.

There are other approaches to shared state consistency, based on synchronisation
mechanisms. One of the more significant mechanisms is the bucket synchronization
mechanism [7], which is used in the MiMaze multi-player game [7]. In this case, time
is divided into fixed length sampling periods and a bucket is associated with each
sampling period. All application data units (ADU) received by an application are
stored in the bucket corresponding to the current interval. When the application has to
deliver an updated global state, it computes all ADUs available in the current bucket
[7]. This algorithm needs global clock mechanisms like NTP [8] and the
synchronization delay is computed on ADU’s reception. If the network delay is
greater than a given threshold the ADU is dropped. MiMaze uses an unreliable
communication system, based on RTP [9] over UDP/IP multicast [10].

This paper presents a set of state transmission mechanisms to be used in the ARMS
middleware platform [1]. The objectives of the proposed mechanisms, hereafter
referred to as state transmission framework (STF), are to extend the applicability of
the platform to collaborative virtual environments maintaining, at the same time, the
platform’s QoS features. Section 2 identifies the main requirements of collaborative
virtual environments. Section 3 presents, to a considerable extent, the proposed state
transmission framework. Section 4 describes the performance tests made to STF and
analyses their results. The conclusions and guidelines for further work are presented
in Section 5.

2. CVE’s requirements

CVE applications have specific requirements in terms of scalability, interaction and
consistency. The QoS characteristics that are relevant to these requirements are
reliability, losses, delay and delay jitter. Additionally, application factors like data
heterogeneity, frequency of events, synchronisation delay, number of participants and
playout time (display frequency) [11] may play an important role in the behaviour of
CVEs.
The following sub-sections briefly discuss some of these requirements and associated
QoS characteristics. In turn, these have led to the development of several mechanisms
that have been included in the ARMS middleware platform [1], which build on a set
of extensions to the CORBA Event Service, providing native multicast
communication, various reliability levels, congestion control and jitter suppression,
with the aim to achieve QoS adaptability. These new mechanisms extend the ARMS
platform with CVE-oriented QoS capabilities, and will be presented in Section 3.

2.1 Data heterogeneity

Typically there are many different types of data exchanged in CVE’s [2]: real-time
audio and video data, scene description data, typical 2D data, control data and state or
update data. In addition to dealing with various types of data, continuous distributed
interactive media can change their state in response to user operations as well to the
passage of time [5]. A broad variety of applications use this kind of media, such as
multi-user virtual reality (VR), distributed simulations, networked games and
computer-supported co-operative work (CSCW) applications.

2.2 State synchronisation

All participants in a session must be synchronised in the same media state, i.e., the
distributed shared state must be consistent. Different media have different state
classifications and different state synchronisation needs. The state could be a simple
change in a component. In the other extreme, it could be a bulk of data for latecomers
or for re-synchronization. Some states may be essential and others may be redundant.
State synchronisation must take the media type into consideration. Essentially, this is
an issue for the applications’ environment model, which must use the best solutions to
deal with specific media.

2.3 Delay and jitter

Regular collaborative update messages have stringent delay requirements in order to
maintain the shared state of components. Some studies [12] suggest that CVEs must
have an end-to-end delay less than 100 msec. Others [13] consider 200 msec as an
acceptable delay. In addition to delay, delay jitter also affects update messages. As
shown in [13], a session with 10 msec delay and considerable jitter results in a

perceived quality that can be as bad as one with 200msec delay and no associated
jitter.

2.4 Reliability

CVEs for distributed interactive media require that all participants must receive state
changes. Due to their specificity there are some states that are time critical and
described by small amounts of information, while others are generally non-time-
critical and require large amounts of information for their description. Therefore,
there is the need for different levels of reliability when exchanging these types of
updates: minimal reliability (possibly with loss detection) for the former, and full
reliability for the latter.
In a CVE, the last state of a shared object is the most crucial data [4]. These messages
must be sent with a high reliability level, whilst regular messages can be sent with a
different, lower reliability level as, for instance, best effort.
Basically, there are two forms of achieving reliability: by using a reliable transport
protocol or by using network-aware applications. In the context of interactive media
applications, loss detection and reliability become more complex since there is no
longer a single linear namespace for objects and since some objects are persistent
[14]. So, a single transport protocol is unlikely to be sufficient, as observed in [14].
Additionally, many authors [15, 16, 17, 18] have concluded that application level
framing is a requirement too, in this application context.
Both approaches to achieve reliability should be usable with a framework like a
framing protocol. This framework could be a middleware platform with a proper
interface to the application level, which captures the common aspects of a media
class, and provides access to reliable transport protocols.

2.5 Other requirements

In [14], it is observed that many applications need structured application data unit
(ADU) names, a simple mechanism for packet loss detection, a means of
distinguishing different types of data, a means of identifying participants, and a time
stamping mechanism.
All of these requirements add great complexity to the application level. Placing some
of these capabilities in the middleware gives applications the ability to concentrate on
specific functionalities, to enforce different adaptation policies and to interact with
other components in the system in order to ensure fairness and other global properties.

3. ARMS state transmission mechanisms

The state transmission mechanisms presented in this paper were developed in the
context of the Augmented Reliable Multicast CORBA Event Service (ARMS)
middleware platform [1], that provides an end-to-end communication framework with
QoS-matching capabilities. ARMS offers a set of QoS-related mechanisms for

reliability guarantee in multicast environments, congestion control and jitter control.
The QoS management process is supported on object-based monitoring and
adaptation functions. The platform has specific objects for loss and jitter monitoring.
The general architecture of the ARMS platform (Figure 1) includes an ARMS QoS
API that provides access to the QoS features of the reliable multicasting services, and
to the standard CORBA Event Service. Additionally, the architecture includes the
STF API, which will be described in the remaining part of this section.

ARMS API

Reliable Multicast Protocol

Multicast
Interfaces

CVE

Q o S
Monitor

Q o S
Adaptation

Q
o

S
 M

a
n

a
g

e
r

STF

A
R

M
S

Standard
CORBA

Event
Service

Interfaces

ORB

Figure 1 – ARMS architecture

3.1 State transmission framework

The STF API is a Java-based middleware especially designed for the transmission of
state changes in virtual reality environments, which takes into account the
requirements of state transmission in these types of applications. STF is an object-
oriented framework integrated in the ARMS middleware platform (Figure 1) that
supports state transmission and reception, a late join protocol – a process by which a
client can join a ongoing interaction session and reconstruct the current global state,
virtual world partitioning, and time synchronization. This paper discusses mainly the
transmission and reception of states. The STF API comprehends a set of interfaces
that expose methods that allow for the control various capabilities. Figure 2 illustrates
the general architecture of STF, in UML.

«interface»
STFKey

«interface»
STFState

«interface»
STFMessager

«interface»
STFLateJoin

«interface»
STFPartitioner

«interface»
STFApplication

STFStateMessage STFChannelManager

STFTimeMessage STFTimeHeartBeatMessage

STFTimeVoteDecidedMessage

STFTimeVoteMessageSTFTimeVoteRequestMessage

STFLateJoinMessage

STFLateJoinBeginMessage

STFLateJoinCheckpointMessage

STFLateJoinEndMessage STFLateJoinPartMessage

STFLateJoinRequestMessage

STFLateJoinStreamMessage

STFHashedFIFO

STFLocalCache

STFProperties

STFTime

Figure 2 – Diagram of STF UML classes

3.2 State categories

In STF, each state may be classified into various categories, according to the way it
must be transmitted to and from the network and the way it must be treated with
respect to the late join protocol. In terms of redundancy, a state may be classified as
follows.

• Redundant state – A redundant state may fail to reach the destination,
because it may be overwritten in the buffers by more recent states of the
same stream. A stream made of redundant states always has the more recent
states transmitted, in detriment of other, older states.

• Essential state – An essential state always reaches the destination. A stream
made of essential states always has all its messages transmitted.

In terms of volatility, a state may be classified as follows.
• Volatile state – A volatile state may fail to reach the destination, even if it is

not overwritten by any state in the buffers. A stream made of volatile states
may have none of its states transmitted.

• Non-volatile state – A state that has not the volatile characteristic.
With respect to the late join protocol, a state may be classified as follows.

• Independent state – An independent state object completely describes the
state of the object it refers to; thus, in a late join process it is sufficient to
recover the last transmitted independent state.

• Cumulative state – A cumulative state object does not completely describe
the state of the object it refers to, but only a state change. With this kind of
states, it is necessary to recover a complete set of transmitted state objects to
execute a late join process.

Excluding the late join classification as independent or cumulative, state categories
lead to four possible combinations. Of these only three are meaningful:

• Essential and non-volatile – All states reach the destination
• Redundant and non-volatile – The latest state reaches the destination
• Redundant and volatile – The states are not guaranteed to reach the

destination
The fourth possible combination, essential and volatile, must not be used, as it is
obviously impossible to guarantee that a volatile state always reaches its destination,
as required by essential states.

3.3 State interaction streams

What exactly is an object state is highly dependent on the specific virtual reality
application that is using STF. As such, STF makes as few assumptions as possible
about the state object. In fact, STF considers as state object any object that can be
serialised and implements the STFState interface. This interface contains methods that
permit STF to find out the special characteristics of each state object.
Similarly to the work presented in [4], the STF API divides the transmitted states into
interaction streams, identified by a unique key that corresponds to a particular virtual
world entity. Each interaction stream is made of state messages that include the state
objects corresponding to that entity ordered by timestamp. Figure 3 illustrates this
concept.

Key

State

Timestamp

Priority

S
T

F
S

ta
te

M
e

ss
a

g
e

Figure 3 – State interaction streams

Using STF, applications can mix any types of states in the same stream, so we may
have, for example, redundant states and some essential states in the middle, volatile
and non-volatile states, etc. The streams are automatically generated by the API and

are used to handle redundant and volatile states, so that STF may know which states
to discard, if needed. A stream is made of STFStateMessage objects. Each of these
objects is a message to be transmitted by the API, and includes the following
information: the key object that identifies the virtual world entity to which the state
refers that, by consequence, identifies the interaction stream to which this message
belongs; the state object to be transmitted – an object of a class that must implement
the STFState interface; message timestamp information – generated automatically by
the STF API when the message is received from the application; and priority
information of the message, which is a very important QoS property introduce in
ARMS by STF, used when two or more messages from different streams are to be
transmitted to the network. The priority information can take up one of five values:

• PRIORITY_LOWEST – The lowest priority possible
• PRIORITY_LOW – Low priority
• PRIORITY_MEDIUM – Medium priority
• PRIORITY_HIGH – High priority
• PRIORITY_HIGHEST – Highest priority possible

3.4 Transmission of state messages

When the application wants to transmit a state object, it must construct an
STFStateMessage object, containing the key – an object of a class that implements the
STFKey interface, the state – an object of a class that implements the STFState
interface, and the message priority information. The application then sends the
message to be processed to the STFChannelManager using the sendMessage method
of the STFMessager interface.

3.5 Reception of state messages

The state messages – instances of STFStateMessage – are received by the application
through the methods of the STFApplication interface. The method normally used for
message reception is the receive method, with the STFStateMessage object as a
parameter.

3.6 Reception lag and time warp avoidance

A time warp happens when a message that should have been received before some
other message is received after it. This may cause an inconsistency in the virtual
world and must be prevented. To prevent this from happening, STF orders all
messages by timestamp and delivers them all in that order. However, when multiple
conference nodes are transmitting messages about the same object, the underlying
communication levels do not usually guarantee the total order of these messages. To
circumvent this problem, STF makes it possible to enable a reception lag time. When
enabled, reception lag causes a message to remain in the buffers for a specified

minimal period of time since it has been passed to STF by the emitter application. In
this way the buffers are used to order incoming out of order messages such that they
do not cause a time warp.
The reception lag may degrade application performance, and even endanger virtual
world consistency if not used wisely. So, this feature must be used with extra care.
Reception lag is depicted in Figure 4.

3.7 Time warp detection

With or without reception lag, time warps are possible when transmitting data about
the same entity in two or more conference nodes. When a time warp happens, STF
detects this and delivers the time-warped message to the application using a special
method of the STFApplication interface – timeWarpReceive. The application then has
the chance to consider the message, ignore it or do whichever action it deems
adequate to the situation.

ReceiverTransmitter

Message
transmitted

b y
application

to STF

Message
received

by
application
from STF

Message
transmitted
to network

by STF

Message
received

from
network by

STF

Network delay

Reception lag

Figure 4 – Reception lag components

4. Tests made to STF

In order to analyse the performance of the state transmission framework, a series of
tests designed to evaluate the behaviour of this API were made, covering common
situations in virtual reality applications. Due to the extension of the API, which
comprises time synchronization, late join protocols, various transmission and
reception options, and partitioning of virtual world entities it was, in practice,
impossible to test all possible configurations. Thus, only tests related to common state
transmission configurations were made, with the aim of discovering the limits of the
API and assessing its behaviour under various circumstances.

4.1 The testbed

The tests were made using three Pentium III 733Mhz-500Mhz computers (A-TEJO,
B-CONCHA and C-SADO), with 128 MB RAM and Windows 2000 Professional,
directly connected to a network switch by 100Mbit Ethernet full duplex links. All
three computers had the Java Software Development Kit version 1.3, from Sun
Microsystems [19], installed. The state transmission framework ran as part of the
CONCHA conference controller system version 2.0 [20], which used Java 1.3, JSDT
2.0 [21] and ARMS 1.0 [20]. All three computers were synchronized using NTP
through the installation of the NTPTime client for WindowsNT, adapted to work
under Windows2000 [22]. All three computers used the same NTP server for time
synchronization.

4.2 Tests description

The objective of the tests was to measure the total message delay and also the
message transmission throughput under different conditions, so as to conclude about
STF’s efficiency.
Two sets of tests were performed. The first set addressed the effect of increasing
message transmission rate (increased throughput) on the total transmission delay and
the redundant message discarding. These tests were used to conclude about the
practical limits of STF under stress conditions.
The second set of tests addressed the effect of increasing message sizes (through the
increase in state sizes) on the total transmission delay and the redundant message
discarding, using a fixed message transmission rate. Both sets of tests used three
different streams of states, with the purpose of simulating a simple but representative
situation of mixed streams with different state characteristics:

• Stream 1: redundant, volatile and independent states;
• Stream 2: redundant, non-volatile and independent states;
• Stream 3: essential, non-volatile and independent states.

All state messages from all streams had the same priority – Highest.

The first set of tests – the message rate tests – used a state size of 22 bytes and a key
size of 6 bytes, totalling 28 bytes. This is enough to transmit three-dimensional
position and rotation information, which is sufficient for many applications, though
not all. The test started by transmitting five messages per second (msg/s) in each
stream. This was increased by 5 msg/s in each consecutive run. The test was set to
stop at 400 msg/s for each stream, which amounted to a total of 1200 msg/s.
Additionally, the test was programmed to stop as soon as the total message
transmission delay – comprising the message transmission by the sending application
to STF and the message delivery to the receiving application by STF – would reach
one second, a value that was considered unacceptable. In the second set of tests, state
messages of 22 bytes were first used, the state size being incremented by 100 bytes in
each consecutive run. In both sets of tests, each individual test ran for 20 seconds.

4.3 The test application

A test application running as part of the CONCHA system version 2.0 [20,23] was
created with the specific purpose of performing the STF API tests. The application
enables the user to specify all properties of the STF session, such as underlying
communication properties, transmission and reception lag control, late join protocol
control, time synchronization settings and time warp detection. Figure 5 presents a
screenshot of this application, where the setting of stream state transmission
properties is visible.

Figure 5 – Screenshot of the test application

This application allows for a completely automated testing process, through an option
in the application’s menu (“Start automatic testing”) that executes the tests earlier
discussed in this paper. It also allows for more specific testing of a large variety of
situations under which STF may be used. With this application, it is possible to test
most of STF’s capacities without having to build a complete multiuser CVE.
However, the authors plan to build such an environment in the near future in order to
test and evaluate other STF’s features that this application does not test properly, such
as some of the features of the late join protocol.

4.4 Tests’ results and analysis

Figure 6 identifies the four message probing points used to gather delay and
throughput data. Point (A) corresponds to the sending application interface with STF.
Messages passing through this point are shown in Figure 9 as processed messages.
Point (B) is the sending STF interface with the communications layer. Messages
passing through this point are shown in Figure 9 as transmitted messages.

ReceiverTransmitter

Application

STF

Application

STF

A R M SARMS

A

B C

D

IP Network
Figure 6 – Probing points

The obtained results have shown that these are the same as the messages that pass
through the third message probing point (C), which correspond to the messages
received by STF from the underlying communications layer at the receiving node.
Thus, these messages are not represented in Figure 9, since the data are the same as
the transmitted messages data. The fourth and final message probing point
corresponds to the receiving application interface with STF (D). The corresponding
messages are shown in the graphs as received messages.
The STF latency is the time that messages take since they travel from the probing
point (A) to the probing point (D). Latency was measured as a function of message
throughput (Figure 7) and as a function of message size (Figure 8).
Figure 7 shows that the average total message delay, that is, the average latency is less
than 20 ms for the vast majority of tests and is always less than 25 ms. It is
noteworthy to say that this latency includes all STF and ARMS overheads
(marshalling/demarshalling, encoding/decoding of the reliable multicast protocol
packet, etc). Additionally, there was no problem in reaching the target value of 400
msg/s per flow.

0

5

10

15

20

25

30

35

40

5 15 25 35 45 55 65 75 85 95 10
5

11
5

12
5

13
5

14
5

15
5

16
5

17
5

18
5

19
5

20
5

21
5

22
5

23
5

24
5

25
5

26
5

27
5

28
5

29
5

30
5

31
5

32
5

33
5

34
5

35
5

36
5

37
5

38
5

39
5

Messages / second

A
ve

ra
g

e
to

ta
l m

es
sa

g
e

d
el

ay
 (

m
ill

is
ec

o
n

d
s

)

Total delay

Figure 7 – Latency as a function of state rate

Figure 8 shows that, similarly to the latency versus state rate case, the average latency
is generally less than 20 ms even when the states’ size is considerably high, well
above the 1400-byte limit that implies ARMS fragmentation/reassembling overhead.

0

5

10

15

20

25

30

35

40

22

72
2

14
22

21
22

28
22

35
22

42
22

49
22

56
22

63
22

70
22

77
22

84
22

91
22

98
22

10
52

2

11
22

2

11
92

2

12
62

2

13
32

2

14
02

2

14
72

2

15
42

2

16
12

2

16
82

2

17
52

2

18
22

2

18
92

2

19
62

2

20
32

2

21
02

2

21
72

2

22
42

2

23
12

2

23
82

2

24
52

2

25
22

2

State size (bytes)

A
ve

ra
ge

 to
ta

l m
es

sa
ge

 d
el

ay
 (

m
ill

is
ec

on
ds

)

Tota l de lay

Figure 8 – Latency as a function of state size

Figure 9 shows that when the network traffic increases there is, in fact, an efficient
utilization of network resources by STF, discarding redundant and volatile messages
as needed, but keeping the essential ones. This maintains network traffic at acceptable
levels even when STF reaches full state transmission capacity, without losing the
consistency of the shared global virtual world state.

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

5 20 35 50 65 80 95 11
0

12
5

14
0

15
5

17
0

18
5

20
0

21
5

23
0

24
5

26
0

27
5

29
0

30
5

32
0

33
5

35
0

36
5

38
0

39
5

Messages / second

M
es

sa
g

es
 in

 2
0

se
co

n
d

s

Processed
Received

Transmitted

Figure 9 – Processed, transmitted and received messages as a function of state rate

5. Conclusions and guidelines for further work

Middleware platforms must have specific characteristics in order to adequately
support collaborative virtual environments. In addition to good reliability, delay and
jitter characteristics, it is essential that state synchronisation is efficiently guaranteed
and maintained.
In this paper, a proposal of a set of mechanisms that provide such synchronisation was
made. These mechanisms, collectively referred to as a state transmission framework,
were implemented and subject to functionality and performance testing in the context
of a QoS-aware middleware platform named ARMS, developed by the authors in a
previous project.
After a presentation of the main features of the framework, some of the tests’ results
were presented and discussed. In addition to validating concepts so important as the
state redundancy and state volatility concepts, the tests have clearly shown that the
implemented prototype has good performance in terms of throughput, latency and
efficiency in the use of both processing and network resources.
Subsequent phases of this work will address further testing, namely scalability testing.
Additionally, future work will try to optimise the integration with the ARMS
platform, with emphasis on the exploration of some of its QoS capabilities such as
multiple reliability levels.

Acknowledgement

This work was partially financed by the Portuguese Foundation for Science and
Technology, FCT.

References

[1] João Orvalho, Fernando Boavida, “Augmented Reliable Multicast CORBA Event
Service (ARMS): a QoS-Adaptive Middleware”, in Lectu re Notes in Computer
Science, Vol. 1905: Hans Scholten, Marten J. van Sinderen (editors), Interactive
Distributed Multimedia Systems and Telecommunication Services, Springer-Verlag,
Berlin Heidelberg, 2000, pp. 144-157. (Proceedings of IDMS 2000 – 7th International
Workshop on Interactive Distributed Multimedia Systems and Telecommunication
Services, CTIT / University of Twente, Enschede, The Netherlands, October 17-20,
2000).

[2] S. Singhal, M. Zyda. “Networked Virtual Environments Design and Implementation”,
ACM press, New York, 1999.

[3] Martin Mauve. “How to Keep a Dead Man from Shooting”, in Lecture Notes in
Computer Science, Vol. 1905: Hans Scholten, Marten J. van Sinderen (editors),
Interactive Distributed Multimedia Systems and Telecommunication Services,
Springer-Verlag, Berlin Heidelberg, 2000, pp. 144-157. (Proceedings of IDMS 2000 –
7th International Workshop on Interactive Distributed Multimedia Systems and
Telecommunication Services, CTIT / University of Twente, Enschede, The
Netherlands, October 17-20, 2000).

[4] Shervin Shirmohammadi and Nicolas D. Georganas. “An End-to-End Communication
Architecture for Collaborative Virtual Environments”, Computer Networks Journal,
Vol.35, No.2-3, Febr. 2001, pp.351-367.

[5] Martin Mauve, “Consistency in Continuous Distributed Interactive media”, Technical
Report TR-9-99, Reihe Informatik, Department for Mathematics and Computer
Science, University of Mannheim, November 1999.

[6] Martin Mauve, “Distributed Interactive Media”, Ph.D. Thesis, University of
Mannheim, Germany, September 2000.

[7] L. Gautier and C. Diot, “Design and evaluation of MiMaze, a Multiplayer Game on the
Internet”, IEEE Multimedia System Conference, Austin, June 28 - July 1, 1998.

[8] David L. Millis, “Network Time Protocol (version 3) specification, implementation”,
Request For Comments 1305, IETF, March 1992.

[9] Schulzrinne, Casner, Frederic, Jacobson, “RTP: A transport Protocol for Real-Time
Applications”, revision of RFC 1889, Internet-Draft (draft-ietf-avt-rtp-new-04.ps),
June 25 1999.

[10] S. E. Deering, “Multicast Routing in Datagram Internetwork”, Ph.D. dissertation,
Standford University, December 1991.

[11] Dimitrios Makrakis, Abdelhakim Hafid, Farid Nait-Abdesselem, Anastasios Kasiolas,
Lijia Qin, “Quality of Service Management in Distributed Interactive Virtual
Environment”, Progress Report of DIVE project.
http://www.mcrlab.uottawa.ca/research/QoS_DIVE_Report.html

[12] M. M. Wloka, “Lag in Multiprocessor VR”, Presence: Teleoperators and Virtual
Environments (MIT Press), Vol 4, Nº 1, Spring 1995.

[13] K. S. Park And Robert V. Kenyon, “Effects of Network Characteristics on Human
Performance Collaboration Virtual Environment”, IEEE International Conference on

Virtual Reality (VR ’99), Houston, Texas, March 1999.
[14] Colin Perkins and Jon Crowcroft. “Notes on the use of RTP for shared workspace

applications”, ACM Computer Communication Review, Volume 30, Number 2, April
2000.

[15] J. Crowcroft, L. Vicisano, Z. Wang, A. Ghosh, M. Fuchs, C. Diot, and T. Turletti,
“RMFP: A reliable multicast framing protocol”, March 1998. Work in progress
(Internet draft).

[16] B. DeCleene, S. Bhattacharaya, T. Friedman, M. Keaton, J. Kurose, D. Rubenstein, and
D. Towsley, “Reliable multicast framework (RMF): A white paper”, March 1997.

[17] S. Floyd, V. Jacobson, S. McCanne, C.-G. Liu, and L. Zhang., “A reliable multicast
framework for light-weight sessions and applications level framing”, IEEE/ACM
Transactions on Networking, December 1997.

[18] M. Handley and J. Crowcroft, “Network text editor (NTE): A scalable shared text
editor for the Mbone”, In Proceedings ACM SIGCOMM’97, Cannes, France,
September 1997.

[19] JavaSoft, www.javasoft.com
[20] João Orvalho, Luís Figueiredo, Tiago Andrade, Fernando Boavida, “A platform for the

study of reliable multicasting extensions to CORBA Event Service”, in Lecture Notes
in Computer Science, Vol. 1718: Michel Diaz, Philippe Owezarski and Patrick Sénac
(editors), Interactive Distributed Multimedia Systems and Telecommunication
Services, Springer-Verlag, Berlin Heidelberg, 1999, pp. 107-120. (Proceedings of the
6th International Workshop on Interactive Distributed Multimedia Systems and
Telecommunication Services, IDMS’99, IEEE, LAAS-CNRS, ENSICA, Toulouse,
France, October 12-15, 1999).

[21] Java Sh ared Data Toolkit (JSDT), SUN Microsystems, JavaSoft Division,
http://java.sun.com/people/richb/jsdt.

[22] The NTPTime client for the network time protocol,
http://home.att.net/~Tom.Horsley/ntptime.html.

[23] João Orvalho, Tiago Andrade, Luís Figueiredo, Fernando Boavida, “CONCHA –
CONference system based on java and corba event service CHAnnels”, Proceedings of
SPIES's symposium on Voice, Video, and Data Communications conference on
Quality of Service Issues Related to Internet II, Boston, MA, USA, September 19-22,
1999.

