
Mobile Agent Infrastructures:
a Solution for Management or a problem to Manage?

Paulo Simões, Luís Moura e Silva, Fernando Boavida

CISUC – Dep. Engenharia Informática,

Universidade de Coimbra, Pólo II, P-3030 Coimbra, Portugal

Abstract

Mobile Agent Technology (MAT) is a fresh paradigm for
distributed programming, with potential for application in a
broad range of fields [1]. A Mobile Agent (MA) corresponds
to a small program that is able to migrate to some remote
machine, where it is able to execute some function or collect
some relevant data and then migrate to other machines in
order to accomplish another task. The basic idea of this
paradigm is to distribute the processing throughout the
network: that is, send the code to the data instead of bringing
the data to the code. MA systems differ from other mobile
code and agent-based technologies because increased code
and state mobility allow for even more flexible and dynamic
solutions.

Distributed network management is one of the most
frequently mentioned application fields for MAT [2-4]. One
of the main reasons for this enthusiasm over MAT is the
perception that the classical management architectures do not
cope well with the increasing complexity of nowadays
systems. In order to be managed, they require the level of
flexibility and dynamic adaptation that MAT will presumably
provide.

However, one must not forget that the deployment of MAT
will also increase even more the complexity of the system to
be managed. This is a case where the management solution, if
not carefully handled, ends up as another management
problem. This issue is often overlooked in the design of MA
systems, with dramatic consequences on the costs of

installation and administration of the distributed infrastructure
that is required by mobile agents.

Although every mobile agent system provides some sort of
mechanisms to control the agent’s lifecycle and to monitor
the state of the supporting platform, we feel there is a general
lack of manageability in current systems. This weakness is
twofold: offered functionality is not just unsatisfactory but
also unreachable from external applications.

In the last couple of years we have developed the JAMES
platform for mobile agents [5], which was later used by our
industrial partners to produce and deploy several MA-based
applications for telecommunications and network
management. These circumstances provided us with a good
perspective on infrastructure manageability and lead to the
development of several services for better administration of
the JAMES platform.

This paper presents those services and discusses their
impact on the reduction of the associated management costs.

The rest of the paper is organized as follows: Section I
discusses the manageability problems of current MA
implementations. Section II provides an overview of the
JAMES management mechanisms, and Sections III, IV and V
describe individually each of those mechanisms. Section VI
discusses related work, and Section VII concludes the paper.

I. TYPICAL MANAGEMENT SCENARIO
Figure 1 depicts the most frequent scenario in the

management of mobile agent systems, with two distinct
management points.

Mobile Agent

User and/or
Administrator

...

Agent lyfecicle control
Plataform configuration &

monitoring

Appl. Y

Application X

Agency B Agency n

Host A Host B Host n

Agency A

...

Local instalation & low/level
maintenance of agencies

Platform GUI

Fig. 1 Typical Management on Current Mobile Agent Systems

The first point is related with the local installation of the
platform in every node of the infrastructure. In order to
support mobile agents, a computer must have some kind of
supporting environment, usually provided by a java program
that we will generically designate as the agency. This agency
needs to be installed, upgraded, controlled and – whenever
failure occurs – recovered. This kind of low-level
maintenance is not automated by the majority of mobile agent
systems, and therefore requires costly local human
intervention. This is unacceptable whenever there are a large
number of agencies to maintain or the network nodes are
geographically dispersed.

The second management point in typical mobile agent
systems is a platform-attached graphical interface that is used
to launch and to control mobile agents, to receive their
results, and to configure and monitor the whole MA
infrastructure. The interface is designed both for the manager
and the final user, which are often expected to be the same
person.

There are several problems with this user interface. First, it
mixes infrastructure management with MA usage, which are
two separate issues. Secondly, it assumes that managers and
users are always humans, excluding the possibility of having
outside applications managing and using MA-based services.
Thirdly, they do not comply with open management
standards, leaving the MA infrastructure as a strange body
outside the scope of integrated managed systems. Last but not

least, they often provide just a limited set of the desired
functionality and flexibility.

II. THE JAMES MANAGEMENT ARCHITECTURE
In order to tackle with these problems, three different meta-

management services were introduced in the JAMES platform
(Figure 2).

The first is a simple low-level service that runs at the host’s
operating system level and controls the execution of the local
agency, providing software upgrade, monitoring and restart
services from remote locations.

The second service is the Remote API, which consists on a
single unified interface for interaction between the mobile
agent system and external applications that use or manage the
JAMES platform. The Remote API replaces the traditional
platform GUI with a more automated interface, suitable for
applications rather than humans.

In order to comply with integrated management systems, an
SNMP [6] management service was also developed. This
service corresponds to an SNMP extensible agent and a
specifically defined MIB – the JAMES-MIB – that represents
the meta-management functionality of the JAMES platform
according to the SNMP information model.

Each of these services will be individually described in the
next Sections.

Users

...

Dedicated JAMES
Management

Agents of
Application Y

Agents of
Application X

JAMES Agency B JAMES Agency n

Application X
(static modules)

JAMES Agency A

JREXEC JREXEC JREXEC

Management Application
(aware of the Remote API)

Appl.
Y

Legacy SNMP-based
Management System

Integrated Systems
Management

Applications using
MA technology

Service for infraestructure
management and control of

agent lifecycle

SNMP Service for
Management of the

JAMES Platform

...

R
em

ot
e

lo
w

-le
ve

l
m

ai
nt

en
an

ce
 o

f a
ge

nc
ie

s

Systems Manager Systems Manager

Host A Host nHost B

Fig. 2 JAMES Services for Meta-Management

III. REMOTE ADMINISTRATION OF THE AGENCIES
One of the most attractive advantages of designing

applications using MAT is precisely the ability to
dynamically control and upgrade remote applications. Since
those applications consist of mobile agents, this is simply a
matter of replacing the older agents by corrected or upgraded
agents. However, there is still one remaining application that
requires local maintenance: the agency itself. Since this
agency is a relatively complex computer program, the need to
manually recover from abnormal faults or to perform a
software upgrade is still more frequent than desirable.

To minimize this problem, the JAMES agency was split in
two different modules: a very small and very stable module
that requires almost no maintenance at all, and a larger
application (the real agency) whose execution is controlled
by the smaller module.

This module, designate as JREXEC is a daemon
permanently running at the host’s operation system level.
This daemon performs several functions:

• start the execution of the agency;
• check the agency status;
• refresh the local agency;
• stop the agency;
• and upgrade the agency, receiving its new code from a

remote location.
As illustrated in Figure 3, the JREXEC service is available

both to external management applications and to the other
nodes of the JAMES infrastructure (in the context of internal
management).

External Management Application

JREXEC

Agency B

Host B

JREXEC

Host A

Agency control &
upgrade

Agency A

Fig. 3 The JREXEC Service

With few exceptions, current MA platforms do not provide

similar services and require either local installation and
maintenance (with the already mentioned increase in running
costs) or the usage of general remote desktop applications
like Microsoft’s Systems Management Server or Intel’s
Landesk. These tools, however, are too much system
dependent and do not integrate well with internal platform
management mechanisms. It should be noted that JREXEC
itself is not absolutely portable: in order to comply with the
hosting operating system (e.g. installation as Windows NT
Service or Unix Daemon) minor adjustments have to be made

from system to system. However, the JREXEC interface
remains constant from system to system.

IV. THE REMOTE API
As already mentioned, the interfaces provided with the

majority of MA implementations are designed with humans in
mind – it is assumed that humans are directly using or
managing the MA infrastructure. This results in several when
one tries to integrate MAT into larger application frameworks
or into integrated management systems.

In the JAMES Platform a different approach was used, with
the provision of a single unified programming interface for
interaction between the mobile agent system and external
applications. This interface covers all aspects, from the basic
configuration and management of the platform to the creation
and control of mobile agents. This solution provides a
superior degree of automation and integration for MAT, and
also simplifies the whole designed of the platform, since all
user interfaces were removed (and replaced by external
applications that provide the same kind of functionality for
human users).

The Remote API is built using Java RMI, and consists of
two modules (Figure 4). The first is part of the agency and
acts as a mediator between the communication layer and the
platform’s core functionality. The second module is
integrated within the external application, providing a high-
level remote interface to access the platform. The
communication layer between these two modules remains
hidden from the application developer. The current
implementation of the application-related module is based on
Java RMI, but other technologies, like CORBA, could easily
be included.

Remote API (platform side)

Usage Functionality

Remote API (appl. side)

JAMES Platform

User

MA-based Application

Java RMI

Mgmt. Functionality

Remote API (appl. side)

Manager

Mgmt. Application

Java RMI

Fig. 4 Remote API

The programming interface reflects the administrative

model of the JAMES Platform, supporting flexible
coexistence between different users and different applications
with different security permissions.

Other platforms share some of the concepts behind the
Remote API [7-8], but their implementation does not provide
the same level of functional decoupling.

The Remote API approach is also similar to the MASIF
specification [9], which defines a set of CORBA interfaces
for interoperability between mobile agent systems. Using
MASIF interfaces external applications are able to launch,
locate and control the lifecycle of agents or even to add new
agencies to the infrastructure. The Remote API could have
been designed as an extension of the MASIF specification,
since its functionality is basically a superset of MASIF.
However, despite the positive reception of this
standardization initiative, only two products currently comply
with MASIF [10-11]. For this reason, the extra effort
necessary to convert the Remote API model to the more
generic MASIF model was considered to be not worthwhile.

V. THE JAMES-MIB FOR META-MANAGEMENT
The Remote API should be considered as the primary

interface point to manage the JAMES infrastructure.
However, it requires specifically designed management
applications. In order to achieve integration with generic
management systems another kind of interface – based on
open standards like SNMP [6] – is required.

The JAMES Platform already entails a complete framework
for integration with SNMP [12], and therefore adding an
SNMP service for the management of JAMES infrastructure
was a simple task.

First, a new MIB, designated as JAMES-MIB, was defined
in order to represent the management functionality to be made
available. This MIB converts a subset of the Remote API
management functionality to the SNMP information model,
including tables to represent the status of agencies, mobile
agents, applications and users (Figure 5). Complete
translation of the Remote API was not considered given the
SNMP limitations in the representation of complex
management functionality.

Since the JAMES platform already includes an optional
extensible SNMP service [13] compliant with the AgentX
standard [14], implementing the JAMES-MIB was a
straightforward task. An SNMP/AgentX management
subagent was created to virtually implement this MIB. It
receives SNMP/AgentX requests; translates them into
JAMES internal management actions and then answers back
to the SNMP managers. Figure 6 represents the JAMES-MIB
subagent and the SNMP/AgentX master service.

In order to demonstrate the JAMES-MIB functionality a
specific SNMP-based application was built, but the service is
most useful in the context of integration with legacy
management platforms like HP Openview [15].

As far as we know there is only another experience
addressing SNMP-based administration of mobile agent
systems. In this experience [16] the functionality of MASIF
was translated into an SNMP-MIB implemented by an
external adaptor. With this adaptor MASIF-compliant
platforms can be accessed from SNMP-based applications.

User Data

User Name
Login
Description
LicenseKey

Application Data

...

Agency Control

Agency Name
Location (IP addr.)
TCPPort
UDPPort
State
LastStateChangeDate
RegistryDate
Owner
Permission

Agent Data
Agent Name
Size
Type
CurrentAgency
agentState
ApplicationName
CorrectionVersion
LastCorrectionDate
DefaultLifeTime
LicenseKey
RegistryDate

Agency Monitoring

TimeOfMonitoringData
MemoryCacheElements
DiskCacheSizea
MaxDiskCacheSize
MemoryCacheSize
MaxMemoryCacheSize

License Data

...

JAMES-MIB [1.3.6.1.4.1.1331.10]

Fig. 5 JAMES-MIB Main Tables

VI. CONCLUSIONS
Manageability is a key factor in the success of mobile agent

systems. Without proper support for infrastructure
management the costs of deploying and exploring MA-based
applications easily override the advantages that would justify
the introduction of novel technology. For this reason one
would expect that mobile agent implementations would be
designed with this requirement in mind. However, this is
seldom the case.

In this paper we presented a set of mechanisms that were
added to the JAMES platform to enhance its manageability.
The first is a very simple yet effective mechanism that deals
with the low-level administration of remote agencies,
drastically reducing the need for local intervention. The
second corresponds to a unified interface for external
applications. This interface replaces the usual human-oriented
GUIs with a more application-oriented service, providing
better integration between mobile agents and other distributed
computing technologies. The third consists of an SNMP
service available to legacy management applications. With
this service the JAMES infrastructure becomes a generic
SNMP-compliant another managed object.

VII. ACKNOWLEDGEMENTS
The JAMES project was partially supported by Agência de

Inovação (ADI) and was accepted in the European Eureka
Program (Σ!1921).

Special thanks to Eduardo Lourenço, Pedro Pereira and
Rodrigo Reis, for the development of the SNMP services, to
Luis Santos, for the development of JREXEC module, to

Paulo Martins, Victor Batista and Guilherme Soares, for the
development of the Remote API, and to the rest of the Project
Team.

SNMP/AgentX
Extensible Service

JAMES Platform

Manager

SNMP-based
Legacy Management

Application

SNMP

Remote API

Remote API (appl. side)

Manager

Remote API Aware
Mgmt. Application

Java RMI

Mgmt. Functionality

JAMES-MIB
Management

Subagent
JAMES

MIB

Fig. 6 Architecture of the JAMES-MIB Service

VIII. REFERENCES
[1] V. Pham, A. Karmouch, “Mobile Software Agents: An

Overview”, IEEE Communications Magazine, July 1998
[2] A, Bieszczad, B. Pagurek, T. White, “Mobile Agents for

Network Management”, IEEE Communications
Surveys, 4th quarter 1998, Vol. 1, No. 1, pp. 2-8

[3] D. Gavalas, D. Greenwood, M. Ghanbari, M.
O'Mahony, “Advanced network monitoring applications
based on mobile/intelligent agent technology”, Journal
of Computer Communications, Vol. 23, Issue 8, pp.
720-730, Elsevier, Abril de 2000

[4] M. Zapf, K. Herrmann und K. Geihs, “Decentralized
SNMP Management with Mobile Agents”, Proceedings
of the IM'99, Boston/USA, 1999

[5] L. Silva, P. Simões, G. Soares, P. Martins, V. Batista, C.
Renato, L. Almeida, N. Stohr, “JAMES: A Platform of
Mobile Agents for the Management of
Telecommunication Networks”, Proceedings of
IATA’99, Stockholm, 1999

[6] M. Rose, "The Simple Book - An Introduction to
Management of TCP/IP-based Internets, 2nd Edition",
Prentice-Hall International Inc., 1994

[7] Objectspace Voyager,
http://www.objectspace.com/voyager/

[8] Jumping Beans,
http://www.JumpingBeans.com/

[9] “Mobile Agent System Interoperability Facilities
Specification”, OMG TC Document orbos/97-10-05,
1998

[10] IKV++ Grasshopper, http://www.ikv.de/

[11] A. Puliafito, O. Tomarchio, L. Vita, “MAP: Design and
Implementation of a Mobile Agents Platform”, Journal
of System Architecture, 46(2):145-162, 2000

[12] P. Simões, L. Silva, F. Boavida, “Integrating SNMP into
a Mobile Agent Infrastructure”, Proceedings of
DSOM’99 – Tenth IFIP/IEEE International Workshop
on Distributed Systems: Operations and Management,
Zurique, 1999

[13] P. Simões, E. Lourenço, P. Pereira, L. Silva, F. Boavida,
“J.AgentX: a Tool for Dynamic Deployment of Open
Management Services”, in Proceedings of
SoftCom’2000, Split, October, 2000

[14] M. Daniele, B Wijnen, D. Francisco, “Agent
Extensibility (AgentX) Protocol Version 1”, RFC 2257,
1998

[15] Hewlett-Packard Openview Homepage,
http://www.openview.hp.com

[16] R. Lopes, J. Oliveira, “Descrição e Implementação de
Uma MIB para Sistemas MASIF”, Actas da 3ª
Conferência sobre Redes de Computadores:
Tecnologias e Aplicações (CRC’2000), Viseu, 2000

