

J.AGENTX: A TOOL FOR DYNAMIC DEPLOYMENT
OF OPEN MANAGEMENT SERVICES

Luís Silva, Fernando Boavida

CISUC  Dep. Eng. Informática
University of Coimbra, Pólo II

P-3030 Coimbra, Portugal
psimoes@dei.uc.pt

Abstract. This paper presents J.AgentX, a Java-based toolkit for dynamic extension of SNMP
agents. This toolkit provides an easy way to dynamically supply SNMP-based interfaces to new
management services, reducing the costs associated with the deployment of these new services.
J.AgentX is fully compliant with the recent AgentX standard (thus assuring interoperability) but
goes one step further by including several features for faster service development, like a
powerful high-level interface, simultaneous support for different communication mechanisms, a
small footprint and portability.

These features were successfully employed to provide SNMP-compliant network management
services based on flexible and innovative delegation topologies. Two of those experiences will
also be presented in this paper. In the first one J.AgentX provides an SNMP interface to
management services based on mobile code. In the second experience J.AgentX is used to
develop transparent proxies for legacy monolithic services.

KEYWORDS: Network Management, SNMP, Agent Extensibility

1. INTRODUCTION
The Simple Network Management Protocol (SNMP [1]) is often described as legacy
and unattractive technology, unable to cope with the current management
requirements. However, despite its well-known limitations and the relative success
of competing technologies, like CORBA [2] and Web-based Management [3],
SNMP is still the most widespread framework for network and systems
management. For this reason, even new management services need to keep SNMP-
support for integration with management platforms like HP Openview [4] and Tivoli
[5].

The traditional SNMP architecture, however, fails to deliver many of the
requirements of modern management services, like flexibility, dynamics,
decentralization, and high-level functionality. This problem often results in a
compromise: management services are built upon “better” technologies and made
available through proprietary interfaces that lack integration; after that, an ad-hoc
SNMP interface layer with poor functionality is added, in order to provide some

2

Submitted to SoftCOM’2000

degree of interoperability with legacy applications. This kind of compromise, if
carefully handled, may result in powerful and technologically advanced management
services that maintain support for legacy systems. However, the price tag for
keeping legacy support is high: there is the cost of adding legacy interfaces and
there is the functionality cut associated with their use. Those interfaces, if not well
designed, result in inaccessible and unusable services.

In the process of designing good legacy interfaces there is one important
technology: extensible SNMP agents. With dynamic extension of SNMP agents it is
possible to separate the SNMP interface from the provided management services.
An “empty agent” receives SNMP requests from the management applications and
forwards them to registered “subagents”. Each subagent is responsible for a specific
set of SNMP objects and knows how to translate incoming requests into
management operations. Ideally, each hosted application or network service would
dynamically provide its subagent, in order to become SNMP-manageable. In this
way the SNMP agent is no longer monolithic, since it is possible to add support for
arbitrary MIB (Management Information Base) modules not known at the
beginning.

This technology brings other potential advantages, including easier development of
SNMP management services  it is easier to develop a subagent than to create a
full SNMP agent  and increased portability  most subagents are system-
independent, unlike monolithic agents.

Traditionally, agent extension has been focused on the main problem (to overcome
the limitations of monolithic systems) and the other potential advantages have been
less explored. In our work we started from a different approach: we considered that
the agent extension problem is already satisfactorily addressed by the current
standards and we invested more on other topics, like easiness of development,
simplicity, portability, flexibility and new areas of application.

This resulted in the development of J.AGENTX [6], a toolkit that constitutes the
first Java-based implementation of the AgentX standard [7]. Unlike other tools, this
lightweight toolkit is fully dedicated to agent extension and provides a high-level
programming interface for faster development of new services. In order to exploit
the technology in new application areas, several enhancements were also made at
the communication level, with simultaneous support for different communication
mechanisms.

This paper presents the J.AGENTX toolkit and proposes the application of dynamic
SNMP agent extension to further decentralize the management process. Two
specific experiences were made in this area: one with mobile code and another using
proxy agents.

The rest of this paper is organized as follows: Section 2 is dedicated to agent
extension technology, and Section 3 presents the J.AgentX package. Section 4

3

Submitted to SoftCOM’2000

proposes the potential application of the J.AgentX framework into decentralized
management. Section 5 concludes the paper.

4

Submitted to SoftCOM’2000

2. DYNAMIC SNMP AGENT EXTENSION
Dynamic extension of SNMP agents is generally based on two entities: the master
agent and the subagents. The master agent acts as the SNMP front-end, receiving
SNMP requests from outside, forwarding them to the adequate subagents, and
replying to those requests on behalf of subagents. Each subagent is specialized in
providing a specific management functionality, “implementing” the MIB objects that
represent that functionality. It registers those MIB objects in the master agent and
receives forwarded requests related to those objects. After that, it processes those
requests and replies to the master agent that will than reply to the outside
application. This process is transparent to outside applications, since all they see is a
single entity providing SNMP services  the master agent. Interaction between the
master agent and subagents is based on a predefined “agent extension” protocol.
Figure 1 shows this architecture.

Master Agent

Legacy SNMP
Management Station

SNMP
Protocol

SubAgent

MIB

SubAgent

MIB

Agent Extension
Protocol

SNMP aware / MIB unaware
front-end

MIB aware / SNMP unaware
management services

SNMP service as perceived
by external applications

Figure 1  Typical Architecture of Extensible SNMP Agents

2.1 Protocols for Agent Extension
There are several proprietary solutions for agent extension, supposedly as an
improvement of the available open protocols. These solutions claim several
advantages, namely increased performance, greater flexibility and optimisation for
specific hardware or operating systems. However, the minor technical gains
provided from these proprietary solutions seldom justify the sacrifice of portability
in the development of subagents.

Hardware and operating system independence, as well as interoperability between
master agents and subagents from different vendors, is only achieved by using open
protocols for agent extension. There are now three such protocols: SMUX [8], DPI
[9] and AgentX [7].

5

Submitted to SoftCOM’2000

SMUX (SNMP Multiplexer Protocol) is almost as old as SNMP itself. In SMUX
communication with subagents (or peers, according to the SMUX terminology) is
based on SNMP messages, resulting in several coordination and synchronization
shortcomings. However, despite these limitations, SMUX is still the base of several
commercial products.

DPI (SNMP Distributed Protocol Interface) took one step further, defining a
specific protocol for interaction between the master agent and the subagents. In this
protocol subagents no longer have to “speak” SNMP, resulting in simpler and
smaller subagents.

AgentX (Agent eXtensibility Protocol) was proposed in 1998 as an evolution of DPI
that enhances several technical aspects and handles different versions of the SNMP
protocol. It recently reached the status of IETF standard specification and is
expected to gradually replace all the other open and proprietary solutions.

2.2 AgentX Architecture and Implementations
The AgentX architecture is not much different from the general architecture
described in Section 2. There is a master agent interfacing with SNMP applications
but with little or no access to the management information, and there are the
subagents, implementing the management services and the associated management
information but with no direct contact with SNMP applications. The AgentX
protocol provides mechanisms for subagent registration, for infrastructure
administration, and for SNMP operations (including atomic sets involving several
subagents). Communication is connection-oriented and TCP is the preferred
protocol, although other options are possible.

The protocol also defines a specific AgentX MIB [10] for the management of the
infrastructure itself. This is an elegant solution for remote management of the
AgentX entities (e.g. monitoring subagents, verifying internal errors, close
subagents) using SNMP.

There are now five known implementations of AgentX: three public-domain
packages from the academic world and two commercial products.

The first public-domain implementation of AgentX was integrated in the CMU
SNMP package [11] released in the end of 1998. It is a partial implementation that
supports SNMPv1 and SNMPv2c and can accept AgentX connections via TCP or
Unix-domain sockets. It includes a master agent  an evolution of the CMU SNMP
Agent  and libraries to develop subagents.

The UCD-SNMP v4.1 package [12] implements AgentX in a rough way. It contains
an SNMP Extensible Agent that supports SNMPv1, SNMPv2c and SNMPv3 but
doesn't reference any support for the development of subagents.

J.AGENTX [6] is, to the best of our knowledge, the first Java-based
implementation of the protocol. It includes a master agent, several libraries for the
development of subagents, and an implementation of the AgentX MIB [10], for

6

Submitted to SoftCOM’2000

remote management of the infrastructure. J.AGENTX will be described in some
detail in Section 3.

There are still few non-academic AgentX-compliant products. Compaq references
support for AgentX in its Tru64 UNIX version 5.0 [13]. This support comprises the
master agent, the subagent API library and the AgentX MIB. The Envoy SNMP
Agent [14], from WindRiver, also claims AgentX compatibility for its proprietary
protocol, named Envoy +X.

3. THE J.AGENTX PACKAGE

CMU-SNMP and UCD-SNMP are two traditional C-based, UNIX-oriented,
general-purpose SNMP implementations with a wide spectrum of goals (agent
development, application development, service development) that, over the years,
accumulated several features. In this context, support for AgentX stands as just
another feature.

The J.AGENTX package was designed from the scratch with a much stronger focus
on AgentX and service development, resulting in simpler, smaller, and more elegant
solutions. As already mentioned, the list of issues we took into account includes:

§ Simplicity  the package should as simple to use as possible, excluding
features with no relevance in the expected context of use.

§ Portability  the package, as well as developed services, should be truly
portable. For this reason J.AGENTX is 100% Java-based and system
independent.

§ Interoperability  the package should provide full interoperability with other
AgentX implementations.

§ Flexibility  the package should be able to adjust to different environments
and different application fields. This means, for instance, the possibility of
mapping AgentX into new communication protocols and the possibility of
maintaining simultaneous support for several protocols.

§ Easy service development  technical details of SNMP and AgentX should
be truly hidden bellow high-level programming APIs, focusing the users
attention on the services he/she is developing.

The result was a very compact package with two independent but complementary
components (see Figure 2):

§ a small, lightweight master agent;
§ and an AgentX-API for development of AgentX subagents.

3.1 The J.AGENTX Master Agent

The master agent is a fully functional application that supports dynamic addition of
sets of SNMP managed objects using the AgentX protocol. It is a small Java
application that requires no further programming to be used.

7

Submitted to SoftCOM’2000

Master Agent

SNMP-based Management Station

SNMP
Protocol

AgentX Messages

SNMP Engine

Persistency Module

Parse/Forward
SNMP Requests

AgentX Engine

Get AgentX
Responses

Transport Layer Modules (TCP, UDP, other)

AgentX interface

Implementation of
Management Service

MIB

AgentX interface

Implementation of
Management Service

MIB

Directly Supported
MIB modules (System,
SNMP, AgentX)

MIBMIB

J.AgentX Master Agent

J.AgentX API

Service Implementation

Figure 2  Architecture of J.AgentX

According to early AgentX specifications, a master agent should be MIB unaware.
However, there is management information directly related to this application. For
this reason, the master agent directly implements, as an option, two groups of the
standard MIB-II (System and SNMP) and the AgentX MIB. This solution does not
compromise compactness, portability or interoperability, and is far more simple than
keeping these MIB modules in external subagents.

Another important addition to the master agent was the simultaneous support for
several communication channels1, including UDP, TCP and application-specific
solutions. With this addition it is possible to deploy AgentX-based services in
environments with special communication requirements, like mobile code, without
losing interoperability. With the modular design of the master agent the addition of
new communication layers is straightforward.

3.2 The AgentX API
The AgentX API is a set of Java classes for easy development of AgentX subagents.
It provides the programmer with an easy-to-use, high-level interface to the

1 It should be stressed that, for non-technical reasons, the public-domain release only supports UDP and, in
the near future, TCP.

8

Submitted to SoftCOM’2000

extensibility protocol. A detailed description of this interface, which is outside the
scope of this paper, may be found in [6], as well as some demonstrative examples.

4. APPLICATIONS OF J.AGENTX

Traditionally, agent extension mechanisms are used to develop flexible SNMP
agents supporting dynamic addition of management services. This kind of
application, that fragments management functionality through several specialized
subagents, is indeed the primary application field for this technology.

However, as already mentioned, agent extension can also play a valuable role in
more flexible and distributed management topologies. In this section we will present
two simple experiences where we used J.AGENTX in non-conventional ways. In
the first one management functionality was placed in mobile agents, resulting in
services that dynamically change their location according to the circumstances.
J.AGENTX was then used to provide an SNMP interface to those mobile services.
In the second one we used J.AGENTX to develop proxies for integration of native
management services.

4.1 Mobile SNMP-capable Services
Mobile agent technology (MAT) is one of the most recent and exciting approaches
to distributed computing. A Mobile Agent (MA) can be described as a small
software program that is able to migrate between hosting computers during its
execution whilst maintaining its state across the network. With this model, task
processing can be dynamically distributed by the network and placed in the most
appropriate locations, reducing the network traffic and increasing the scalability and
flexibility of applications.

MAT is very useful for remote deployment of dynamic management services
(constituted by one or several mobile agents). Using the features provided by MAT
 like location transparent inter-agent coordination, mobility, disconnected
operation, robustness, remote upgrading  it is possible to develop more powerful
and flexible intermediate management services than with other distributed
computing paradigms. However, these new services still need to interface with
legacy applications.

The JAMES project [15] applies MAT in the development of applications for
telecommunications and network management. A key component of this project is
the development of a MA platform for the support of distributed management
services. In this context, J.AGENTX plays an important role in the extensive
JAMES framework for interoperability between MAT and the SNMP architecture
[16].

In this framework a J.AGENTX master agent was placed in the MA platform to
provide an SNMP front-end for legacy applications trying to access the platform or
the hosted distributed services (performed by mobile agents). For increased
flexibility (namely on-demand installation) the master agent itself consists of a

9

Submitted to SoftCOM’2000

mobile agent that can be instantiated according to the needs. For obvious reasons,
however, this mobile agent will be stationary in a know location, instead of
migrating across the network.

This front-end is then used by the mobile agents that implement the management
services (see Figure 3). These mobile agents (or sets of coordinated mobile agents)
act as AgentX subagents but their mobility is not sacrificed, since the AgentX
messages are exchanged using the location-transparent inter-agent communication
mechanisms provided by the platform, instead of plain TCP. With this architecture it
is thus possible to create legacy interfaces for distributed management services that
make full advantage of the MAT potential.

Master AgentMaster Agent

SNMP-based Management Station

SNMP
Protocol

Master Agent
(stationary)

JAMES Platform on Host A

Mobile Agents acting as
AgentX subagents

MIB

MIB

Mobile Agents

JAMES Adm.
Subagent

MIB

MIB

JAMES Platform on Host B

Distributed Management
Service

Mobile Management
Service

AgentX over location-
transparent inter-agent
communication

Figure 3  J.AGENTX in the Context of JAMES

A side benefit of this solution is the ability to provide an SNMP interface for the
management of the JAMES platform itself. For this purpose another subagent was
created to translate SNMP operations (over objects from a predefined MIB for
administration of JAMES) into the internal platform management API.

This experience shows how two simple adjustments on the traditional applications
of AgentX (the placement of the master agent on a mobile agent and the usage of
location transparent communication mechanisms) are enough to provide legacy
interfaces for mobile management services. A more detailed description of the
JAMES integration framework for SNMP, that is outside the scope of this paper, is

10

Submitted to SoftCOM’2000

presented in [16-17]. An independent but similar approach to this subject, that also
uses agent extension mechanisms to integrate MAT in the SNMP architecture, is
described in [18].

4.2 Integration Proxies
A proxy agent is an SNMP agent that intermediates the communication between
SNMP applications and non-SNMP management services. Proxies are usually hard-
coded SNMP agents specifically designed to represent one legacy device.

This proxy concept, however, is not necessarily restricted to the representation of
non-SNMP devices. Intermediate management services (i.e. a proxy agent) provide
interesting decentralization solutions, even when SNMP-based low-level
instrumentation is already available. In this context proxy agents may aggregate and
pre-process low-level data from one or several managed entities in order to offer
higher-level functionality to the central management stations, optimising
performance, network traffic and scalability. This unorthodox application of the
proxy concept is a possible solution to distribute management intelligence across the
network  and closer to management data  while keeping legacy, centralized
SNMP management applications.

Independently from the nature of underlying managed entities (SNMP-capable or
not), with J.AGENTX it becomes possible to develop proxies as subagents,
reducing development costs  it is no longer necessary to include an SNMP engine
in the proxy  increasing portability and improving service integration.

Figure 4 presents a possible configuration for an extensible SNMP agent that
includes two subagents acting as proxies.

The first is a “classic” proxy that provides SNMP functionality on behalf of a non-
SNMP device. This corresponds to the classic usage of proxies.

The second proxy acts more like a middle layer service that autonomously handles
the low-level management of a set of SNMP devices, providing an high-level
management interface for upper management applications. This ad-hoc approach to
management decentralization conforms with the SNMP architecture and requires no
changes on the managed devices or on the management application.

The third subagent of Figure 4 is not related with proxy technology and shows how
proxies can coexist with other subagents in order to provide an integrated
management interface.

5. CONCLUSIONS AND FUTURE WORK
In this paper we describe J.AGENTX, the first Java-based implementation of the
AgentX protocol for dynamic extension of SNMP agents. Unlike previous
implementations, J.AGENTX is a small product that focuses on agent extension, not
just an add-on to a large, general-purpose SNMP package.

11

Submitted to SoftCOM’2000

SNMP-based
Management Application

J.AgentX Master Agent

J.AgentX API

Management
Service provided

by Subagent

J.AgentX API

Proxy providing
middle-level services

MIB

AgentX

SNMP

SNMP

MIB

Non-SNMP
device

J.AgentX API

Implementation of
Proxy Service for
non-SNMP Device

MIB

Proprietary

Monolithic
SNMP device

MIB

Monolithic
SNMP device

MIB

Figure 4 –Proxy Agents in the J.AgentX Architecture

Using agent extension technology it is possible to develop more flexible SNMP
services, with clear separation between protocol issues (handled by master agents)
and functionality implementation (provided by subagents). Portability and enhanced
integration are other well-known advantages of this technology.

Agent extension technology, however, can also be used to provide ad-hoc
decentralization within the SNMP architecture. In this paper we presented two such
examples.

In the first one extensible agents were used to interface with a mobile agent
infrastructure. Mobile agents are a powerful way to deploy new and advanced
middle-layer management services, and agent extension acts as a bridge between
these distributed services and the legacy SNMP-based management applications.

In the second example the concept of SNMP proxy was integrated in the
J.AGENTX framework and further extended to encompass intermediate managers
that autonomously handle the low-level management of SNMP-devices. This kind of
ad-hoc delegation provides enhanced performance, flexibility and scalability without
changes on the managed devices or on the management applications.

These two applications are not an intent to show that SNMP is appropriate for
management delegation. It should be clear that SNMP is definitely not a good

12

Submitted to SoftCOM’2000

solution for decentralized management. However, for a number of reasons, it is
often the only available solution.

ACKNOWLEDGEMENTS
Special thanks to Rodrigo Reis, for the development of the SNMP stack used by
J.AGENTX.

The application described in Subsection 4.1 was developed in the context of the
JAMES project, that is partially supported by Agência de Inovação and was
accepted in the European Eureka Program (Σ!1921).

REFERENCES
[1] M. Rose, "The Simple Book - An Introduction to Management of TCP/IP-based Internets,

2nd Edition", Prentice-Hall International Inc., 1994
[2] OMG, “The Common Object Request Broker Architecture and Specification, 1995
[3] Webm
[4] Hewllet-Packard Openview, http://www.openview.hp.com
[5] Tivoli, http://www.tivoli.com
[6] University of Coimbra, The J.AgentX Package, http://www.dei.uc.pt/agentx
[7] M. Daniele, B. Wijnen, D. Francisco, “Agent Extensibility (AgentX) Protocol Version 1”,

RFC 2257, 1998
[8] M. Rose, “SNMP MUX Protocol and MIB”, RFC 1227, 1991
[9] B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters, “Simple Network Management

Protocol Distributed Protocol Interface Version 2.0”, RFC 1592, 1994
[10] L. Heintz, S. Gudur, M. Ellison, “Definitions of Managed Objects for Extensible SNMP

Agents”, RFC 2742, 2000
[11] The Carnegie Mellon University AgentX Implementation,

http://www.net.cmu.edu/groups/netdev/agentx
[12] University of California - Davis, UCD-SNMP, http://ucd-snmp.ucdavis.edu/
[13] The Compaq Tru64 UNIX Product, http://www.tru64unix.compaq.com/
[14] Wind River Networking Products - Envoy SNMP Agent,

http://www.wrs.com/products/html/envoy.html/
[15] L. Silva, P. Simoes, G. Soares, P. Martins, V. Batista, C. Renato, L. Almeida, N. Stohr,

“JAMES: A Platform of Mobile Agents for the Management of Telecommunication
Networks”, in Proceedings of IATA’99, Stockholm, 1999, Springer-Verlag

[16] P. Simões, L. Silva, F. Boavida, “Integrating SNMP into a Mobile Agent Infrastructure”, in
Proceedings of DSOM’99, Zurich, 1999

[17] P. Simões, R. Reis, L. Silva, F. Boavida, “Enabling Mobile Agent Technology for Legacy
Network Management Frameworks”, Proceedings of SoftCOM’99, Split, 1999

[18] CARLETON, NOMS2000

