
12 http://www.oracleprofessionalnewsletter.comOracle Professional March 2001

Oracle
Professional

The UNKNOWN Factor
Pedro Bizarro

Sometimes conditions might produce UNKNOWN instead of
an expected Boolean value of TRUE or FALSE. If you have
several Boolean values ANDed, ORed, and NOTed together,
and if one value is UNKNOWN, it might not be obvious what
the final combined value is. In this article, Pedro Bizarro
presents an example of an UNKNOWN value that propagates
its insidious effects, producing a surprising result set.

AS an example for this article, I’m using the scott/
tiger schema deployed with Oracle. The EMP
table has, among others, two columns: EMPNO

(the primary key) and MGR (a foreign key to EMPNO).
With this relation, a hierarchy is established: Some
employees manage others who manage others and so
on. But life is harsh, and, of course, there are some
employees who manage no one.

If I want to select just the employees who manage
someone, I do the following:

/* query 01 */
SELECT empno, ename
 FROM emp
 WHERE empno IN (SELECT DISTINCT mgr FROM emp);

EMPNO ENAME
---------- ----------
 7566 JONES
 7698 BLAKE
 7782 CLARK
 7788 SCOTT
 7839 KING
 7902 FORD

6 rows selected.

Because I know that EMP has 14 records, I now
know that if six employees are managers, then eight
aren’t. Let’s find their names:

/* query 02 */
SELECT empno, ename
 FROM emp
 WHERE NOT empno IN (SELECT DISTINCT mgr FROM emp);

EMPNO ENAME
---------- ----------
0 rows selected.

What’s wrong with this statement? Why don’t I get
the eight employees that don’t manage? Before going
any further, please try to mentally execute the query
and discover why it doesn’t give us the employees that
don’t manage.

The problem is threefold:
1. The MGR column allows NULL values.
2. “IN” is the same as “= ANY”.
3. There’s one UNKNOWN here.

Let’s see, step by step, why query 02 doesn’t return
any rows.

King has a NULL
There’s one employee, KING, who has no manager.
His MGR value is NULL. Therefore, the complete list
of MGR available includes a NULL. Let’s execute just
the subquery:

/* query 03 */
SELECT DISTINCT mgr FROM emp;

MGR

 7566
 7698
 7782
 7788
 7839
 7902

7 rows selected.

Remember that the first query yielded six rows,
and this one retrieves one extra row. The extra value,
the last one, is a NULL. This can be shown more
explicitly with the following:

/* query 04 */
SELECT DISTINCT nvl(to_char(mgr), 'NULL') MGR
 FROM emp;

MGR
--
7566
7698
7782
7788
7839
7902
NULL

7 rows selected.

IN is the same as “= ANY”
I can safely replace query 02:

/* query 02 */
SELECT empno, ename
 FROM emp

http://www.oracleprofessionalnewsletter.com 13Oracle Professional March 2001

 WHERE NOT empno IN (SELECT DISTINCT mgr FROM emp);

with this:

/* query 05 */
SELECT empno, ename
 FROM emp
 WHERE NOT empno IN (7566, 7698, …, 7902, NULL);

I can expect the results to be the same, which
they are; no rows are returned. I can further
change the query knowing that “IN” is equivalent
to “= ANY”:

/* query 06 */
SELECT empno, ename
 FROM emp
 WHERE NOT empno = ANY (7566, 7698, …, 7902, NULL);

Because “= ANY” is the same as a sucession of ORs,
the query can be rewritten as follows:

/* query 07 */
SELECT empno, ename
 FROM emp
 WHERE NOT (empno = 7566
 OR empno = 7698
 OR empno = 7902
 ...
 OR empno = NULL);

Probably one could say that step 06 isn’t
necessary. Anyone can change from query 05 to
query 07. But I wanted to make it very evident that
the comparison implied and used by the operator IN
is the equality (“=“) no matter what we compare.
The operator IN could be smarter and use IS NULL
whenever a NULL was involved. But it’s not, and that
will lead to UNKNOWN.

Figure 1. Truth tables involving UNKNOWNs. Figure 2. Conditions returning UNKNOWNs.

The UNKNOWN factor
The condition “empno = NULL” returns UNKNOWN.
Most of the time, UNKNOWN behaves as FALSE. For
instance:

/* query 08 */
SELECT empno, ename
 FROM emp
 WHERE empno = NULL;

Query 08 returns no rows. UNKNOWN is like
FALSE when the DBMS is deciding whether or not to
retrieve rows. However, UNKNOWN doesn’t behave
like FALSE when Boolean operations like AND, OR,
and NOT are involved. Figure 1 shows the truth tables
involving UNKNOWNs. Figure 2 shows which
conditions return UNKNOWNs and which don’t.

Having the tables of Figure 1 and Figure 2, the
explanation of why query 02 doesn’t return rows
is straightforward. All of the numeric conditions ORed
in the subquery in query 07 will yield either TRUE
or FALSE.

If the result is TRUE, then we have “TRUE OR
UNKNOWN” (the UNKNOWN coming from “emp =
NULL”), which gives TRUE. Furthermore, because
everything is NOTed, the final result is FALSE. Thus, no
rows are returned.

On the other hand, the numeric conditions
ORed might yield a value of FALSE. In that case,
“FALSE OR UNKNOWN” gives UNKNOWN, and
NOT (UNKNOWN) still gives UNKNOWN, which
explains why, in any case, query 07 never returns
any row.

Continues on page 19

http://www.oracleprofessionalnewsletter.com 19Oracle Professional March 2001

The UNKNOWN Factor...
Continued from page 13

Conclusions
• NULLs require IS NOT or IS NOT NULL

in comparisons.
• variable = NULL always returns UNKNOWN,

even if the value of variable is NULL.
• NOT (UNKNOWN) is still UNKNOWN.
• UNKNOWN isn’t the same as FALSE when Boolean

expressions are involved.

As a final remark, there are several solutions to the
original problem of finding the employees that don’t
manage. Here are two examples:

/* query 09 */
SELECT empno, ename

 FROM emp
 WHERE NOT empno IN (SELECT DISTINCT mgr
 FROM emp
 WHERE mgr IS NOT NULL);

Or

/* query 10 */
SELECT empno, ename
 FROM emp
 WHERE empno IN (SELECT empno FROM emp
 MINUS
 SELECT encar FROM emp);

Acknowledgements
I want to thank to Dr. Pedro Furtado (pnf@dei.uc.pt) for
helping me solve this problem. ▲

Pedro Bizarro is a graduate student at University Nova de Lisboa and a

teaching assistant in all database courses at University of Coimbra,

Portugal. He will soon finish work for his master’s degree and is already a

Fulbright grantee for his Ph.D. program, beginning September 2001.

pedro.b@acm.org.

procedure: We really shouldn’t force developers to
name their dump state program “dump_state.”
Add get and set programs to state_pkg to allow for
some variation.

API-drive utilities are neat!
The elegance (as I see it) underlying the state_pkg
implementation is that I “publish” an API (“name your
dump procedure dump_state”) or set of rules that you
should follow in setting up your code. Then, once you
follow those rules, I can use dynamic PL/SQL to work
all sorts of magic.

Sure, it would be wonderful to have a full set of
“reflection” features in PL/SQL, as you’ll find in
the Java reflection classes. But what’s the point in
whining about what we don’t have? It’s so much more
fun and productive to work within the constraints of
our reality and produce useful utilities regardless of
those constraints. ▲

FEUER03.ZIP at www.oracleprofesionalnewsletter.com

Steven Feuerstein, an Oracle Professional Contributing Editor, is

considered one of the world’s leading experts and trainers on the

Oracle PL/SQL language, having written the O’Reilly & Associates

Enhanced Debugging...
Continued from page 10

PL/SQL series, including Oracle PL/SQL Programming, Oracle Built-in

Packages, and the Oracle PL/SQL Developer’s Workbook. When he isn’t

writing books, he builds developer tools and knowledge bases for

RevealNet, Inc. (http://www.revealnet.com). Steven sysops the very

popular PL/SQL Pipeline, an online community for PL/SQL developers

(http://www.revealnet.com/plsql-pipeline) and is president of

PL/Solutions, a firm that provides PL/SQL consulting and training

(http://www.plsolutions.com). Finally, he’s vice president of the board of

directors of the Crossroads Fund, which makes grants to Chicagoland

organizations working for social, environmental, racial, and economic

justice (http://www.CrossroadsFund.org). www.StevenFeuerstein.com,

steven@stevenfeuerstein.com.

Explanation of the Source
Code File’s Contents

• state_pkg.pkg—The automated state-

dumping package

• err.sql—The generic error-handling package

• overdue.pkg—The overdue fines rules package

• show_overdue.sql—The show_overdue procedure

• te_book.pkg—A portion of a table encapsulation

package for the book table

• test.sql—A simple test script

