
An Hybrid Genetic Algorithm for Computing

(near)Optimal Euclidean Steiner Trees ∗

Jorge Barreiros 1,2
1 Departamento de Engenharia Informtica e Sistemas,

Instituto Superior de Engenharia de Coimbra
2 Centro de Informática e Sistemas da Universidade de Coimbra

jmsousa@isec.pt

Abstract

In this paper we present an algorithm for finding an approximation
to the Euclidean Steiner Tree for a given set of terminal points. This
is defined as the shortest length geometric construction that unites all
the terminals. Our algorithm dynamically partitions the point set into
multiple, separately optimized subsets. The Steiner tree for these subsets
is constructed by running a highly modified genetic algorithm.

1 Introduction

The Euclidean Steiner Tree (EST) problem concerns the construction of the
minimum length tree that interconnects a given set of points. Although exact
algorithms are known, it has been proved that the EST problem is a NP-hard
problem and so heuristics and approximation methods are necessary in practice.
In this work, we present an hybrid genetic algorithm that offers a (near)optimal
solution for the problem. The preliminary results we obtain are encouraging
enough to support further investigation about this approach. The paper is
organized as follows. In section 2, we introduce Steiner trees and the Steiner
Tree Problem (STP). Next., in section 3, we made a brief reference to genetic
algorithms. In section 4, we present our algorithm, while in section 5, we show
the results. Finally, in section 6, we draw some conclusions and point for future
work.

2 Steiner Trees

The Steiner Tree (ST) of a set of points P is the shortest path that interconnects
all points belonging to P . This tree is the Minimum Spanning Tree (MST) of
P ∪ S, where S is a set of points aptly named as Steiner Points (see Figure
1). Therefore, the Steiner problem (the determination of the Steiner tree for a

∗This work was partially supported by the Portuguese Ministry of Science and high Edu-
cation under Program POSI.

1



given set of points) can be formulated has the search for the set S that mini-
mizes MST(P∪S). Depending on the nature of the space where the points and
corresponding connections exist, the problem description can be further refined
by distinguishing between the Euclidean and rectilinear Steiner Problems. In
this work, we present a novel algorithm based on a heuristic genetic algorithm
to find a (near)optimal solution for the Euclidean Steiner Problem (ESP). The
ESP is related to many engineering applications, like network or VLSI routing.
For further details on Steiner Trees and related issues, consult [4, 3]

Figure 1: Abstract model of a Steiner Tree. Black circles represent elements od
the set P, while white circles are Steiner points.

3 Genetic Algorithms

Genetic Algorithms (GA) are stochastic search procedures inspired by the Dar-
winian principles of natural selection and the ideas of Mendelian genetics. A
GA starts with a randomly initialized population of candidate solutions and
implements probabilistic and parallel exploration in the search space using
the domain-independent genetic operators of selection, crossover and mutation
([5, 7]). A GA associates each individual candidate in the population with a
fitness which measures the quality of a solution. Selection chooses individuals
probabilistically, according to their fitness. The higher the fitness, the more
likely it is for an individual to be selected. Genetic operators, like crossover and
mutation, produce new individuals: for instance, crossover exchanges genetic
information between two selected parents; mutation randomly changes one gene
value to the generated offspring. The GA searches through an iterative pro-
cess: the process of one generation involving selection, crossover and mutation
is called one cycle of iteration and is repeated until convergence is reached or
the number of generations achieves the established limit (see Figure 2).

1. Randomly initialize population

2. Do

a) Evaluate Population

b) Select parents

c) Crossover

d) Mutation

d) Substitute old population

Until (DONE)

Figure 2: The simple Genetic algorithm

There are many variants of this general scheme.

2



4 The Algorithm

Our algorithm has two layers of depth. A top level algorithm, that makes high
level partitioning decisions, and a low level algorithm, that solves the ESP for
any given partition. The low level algorithm is capable of easily finding opti-
mal or near-optimal solutions for most simple ESP problems of low dimension,
while the top level algorithm makes intelligent choices about partitioning of the
problem point set in multiple, separately optimized partitions. Partitions are
created or recombined whenever deemed necessary, according to the evolution
of the search process. It is the combination of these two steps that makes our
approach capable of dealing with any type of ST. In the following, and due to
lack of space, we only present the main ideas behind each one.

4.1 Low level genetic algorithm for solving the ESP

Let us start by explaining the low level algorithm. This is a modified GA that
finds an approximate ST for any given set of points. This algorithm is specially
useful for ST with points sets of small dimension. We will use the abstract
model shown in Figure 1. As we can see number of Steiner points is equal to
the number of the problem points or nodes 1.

In this algorithm, two consecutive Steiner points, according to the model
represented in 1 are always considered to be connected (ie., these points form a
“backbone” of the ST) 2. On the other hand, the connections between nodes and
Steiner points are determined dynamically. Every node is always considered to
be connected to the nearest Steiner point. The GA task is to find the backbone
of Steiner points (from now on referred to only as “backbone”) that offers the
best solution.

Genetic Operators

The genetic operators are grouped in two categories, according to their capabil-
ity of disruption. The operators with higher disruption are applied with higher
probability. This tries to follow “typical” values of mutation and crossover used
in standard GA’s (less then 10% for mutations (low disruption operator) and
around 80% for crossover (high disruption operator)).

The following genetic operators were used:

First category:

• Mutation: a Steiner point is selected randomly and moved to a random
location.

• Crossover : One point simple crossover of two backbones
1Although theoretically it has been shown that only n-2 Steiner points are necessary to

create the correct ST for n nodes, using n Steiner points enables us to make some simplifying
assumptions on our algorithm. These simplifications do not reduce the potential quality of
the solution, because nothing prevents that two pairs of these points occupy the same physical
location.

2These nodes will be referred to as being neighbors

3



• Snap: The Steiner points rotate a random number of positions in a random
direction along the backbone.

• Swap: Two Steiner points exchange positions along the backbone.

Second category:

• Nudge: A random Steiner point is moved randomly a small distance.

• Slide: A randomly selected Steiner point moves towards or away from one
of it’s neighbors (along the backbone). This movement has an random
amplitude between –50% and 50% of the distance between those points.

• Compress: A Steiner point is selected randomly and moves towards the
node that he is attached to. This movement ranges from 0 to 100% of the
distance between those two points.

Some of these operators are illustrated in Figures 3 and 4.

Figure 3: The operator compress

Figure 4: The operator snap

Fitness

The fitness of a solution is given by the length of the ST. The total length is
equal to the sum of the length of backbone plus the length of the connections
between the Steiner points and nodes.

Selection

Whenever it is necessary to select a solution to generate a new element for a
new population, each solution i, from the old population, can be selected with
probability:

4



1. If the algorithm is in suspended state then stop.

2. Let the best element from the last population become the first element of the new
population

3. Create a new element for the new population by selecting one element from the old
population and

a) Choose one among mutation, crossover, snap and swap. Apply that operator
with probability 80% if snap or crossover was chosen, else apply operator with
10% probability.

b) Choose one among nudge, slide and compress. Apply the chosen operator with
probability 10%.

4. If the total length from the best solution didn’t changed within a pre-defined number
of generations then the algorithm enters in suspended state.

Figure 5: One step of the modified GA

1

(Di+1)
∑

k

1
Dk+1

where Dn is the total length of the ST represented by the solution n.

The modified GA: one step of iteration

A modified GA algorithm is used to find the backbone that generates the lowest
length interconnection tree. The Figure 5 explains one step of the iteration
process of the GA. We say that the state of the GA is suspended when the
solution’s length doesn’t change for a predetermined number of iterations 3.

4.2 Top level algorithm

Unfortunately, the simplicity of the model of the previous section has a serious
limitation: it can’t represent adequately star or tree-shaped backbone configu-
rations. Although it would be possible, in theory, to use more Steiner points
to enable more flexible constructs, this approach would make the model less
suitable to the incremental changes required by the optimization algorithm.

This limitation is solved by using a top-level algorithm that partitions the
node set into smaller subsets whose ST is computed independently. This par-
titioning, made dynamically during the execution of the algorithm, is based on
well known properties of Steiner trees, and will enable the use of a different
backbone for every subset. The combination of these multiple backbones can
represent the tree or star-shaped structures that are missing from the basic
ST model. Additionally, this partitioning also offers advantages concerning the
efficiency of the algorithm.

3After entering this state, the algorithm won’t make any further evolution, but all the
information for resuming computation is kept. This is important because the suspended state
can be reset by the top level algorithm.

5



The algorithm

The top level algorithm is presented in Figure 6. Due to lack of space we can-
not enter into many details and explanations and concentrate only on the most
important aspects.

Let P be the set of nodes for which the Steiner Tree should be computed:

1. Determine the processing order of the points in P 4.

2. Let G be an empty set of low level GAs.

3. Create low level GA, with first 4 points in P, and add it to G.

4. If a pre-defined number of generations is reached or the result converge then stop

5. If the number of solutions is multiple of a pre-defined constant then add next point
in P to the closest GA in G.

6. If the number of generations is multiple of a pre-defined constant then check the GAs
in G for the possibility/necessity of recombining 2 or more distinct GAs in a single GA.
At the same time, check if the suspended state of any GA in G should be reset 5.

7. If the number of generations is superior to a certain constant, then for each element
of G, with a pre-defined probability , consider the possibility of dividing it in two
subproblems or partitions.

8. Do a single iteration in all GAs in G.

9. Goto 4.

Figure 6: The top level algorithm

Partitioning

After an initial transient phase is passed, the problem point set is divided in
multiple subsets that are optimized independently. This partitioning, is a cru-
cial step, and is achieved by applying algorithm in Figure 7, with a predefined
probability, to every low-level GA (LLGA).

For a given low-level GA (LLGA), search for the best individual and do the following:

1. Choose randomly two neighboring Steiner points A and B.

2. Let PA be the set of nodes connected to Steiner points closer (along the backbone) to
B then A

3. Let Nd be the node in PA closest to A

4. Let N be the set of all nodes

5. If the distance between A and PA is smaller than the distance between A and B,
then Divide the GA into two new GA that optimize the following point sets: PA and
(N|PA)∪{Nd}, respectively 6.

6. One individual in each one of these two new GAs is initialized with the correspond-
ing Steiner points from LLGA.

7. Destroy LLGA

Figure 7: The partioning algorithm

6



Figure 8: Step 1

Figure 9: steps 2 and 3

Figure 10: Steps 4, 5 and 6

The Figures 8, 9 and 10 ilustraste the behavior of the algorithm.

Recombining GAs

Two low-level GAs that solve the ESP for the point sets P1 and P2 will be
recombined, when necessary, simply by creating a new low level GA that solves
the problem for the point set P1 ∪ P2.

5 Results

To test the algorithm, some test sets from the OR-library (see [1]) test suite were
used. These test sets are compiled from [2, 6]. We present the results for the full
10 and 100 points sets described in [2] and some results from higher dimension
sets, as well the results for the Soukup and Chow test problems described in [6].

In the following tables we display the reduction in length when compared to
the length of the MST (a known upper bound for the length of the ST), both
for the exact ST and the GA computed ST. The Performance column displays
the ratio between the previous two values.

The Table 1 shows the results for the test set with 10 points. The algorithm
was executed a variable number of times for each case, 5 times or less on most
cases and up to 10 on the hardest problems. In some of these cases performance
rises above 100% (which should be impossible), likely because of roundoff errors

7



(1/400) introduced when converting the normalized float coordinates in which
the test set is stored into the integer coordinates used by our implementation 7.

Problem
Nr.

CPU
(s)

Red.
Best

Red.
GA

Performance

1 5 4.23% 3.56% 84.1%
2 5 0.47% 0.46% 98.7%
3 5 4.34% 4.34% 100.0%
4 5 1.13% 1.12% 99.7%
5 6 2.47% 2.47% 100.0%
6 4 4.70% 4.70% 99.9%
7 5 7.84% 7.84% 100.0%
8 6 6.76% 6.75% 100.0%
9 4 2.39% 2.08% 87.1%
10 9 2.03% 2.03% 100.0%
11 5 5.47% 5.46% 99.8%
12 8 0.56% 0.56% 100.2%
13 6 6.09% 6.09% 100.1%
14 9 5.64% 5.69% 100.8%
15 4 3.04% 2.79% 91.8%

Table 1: Results for 10 point set (esteiner10)

In the following figures we can observe, for problem 14, the Steiner tree
referred to as optimal in the test set description and the slightly improved
version found by the algorithm (probably due do rounding errors, as it has
already been discussed).

The results for the 100 points set are presented in Table 2. The algorithm
was executed twice for each test and the best result is shown here.

The following figures show, for the 100 points problem number 2, the optimal
solution and the solution found by the GA.

The results for the 46 Soukup and Chow tests are summarized in Table 3.
we used 5 to 10 runs per test case, depending on the difficulty of the problem.

To test the algorithm’s behavior with the test sets with higher dimension,
one single test was run for the first problem of the 250, 500 and 1000 point
sets. The data for the exact ST was taken from [3]. The results are presented
in Table 4.

These results are encouraging, because the algorithm offers reasonable per-
formance even with higer dimension sets. The algorithm is faster than exact
ESP algorithms (see [3]) without considerable loss of quality of the solution.

6 Conclusions

We presented a hybrid genetic algorithm based into a decomposition into two
layers of depth. The algorithm achieved good results and is reasonably efficient.
We hope that with better tuning and additional testing we will be able to in-
crease performance and reduce execution time even further. Additional tests

7All tests were run on a Pentium 3 processor at 866MHz running MS Windows 98.

8



Problem
Nr.

CPU
(s)

Red.
Best

Red.
GA

Performance

1 60 3.20% 2.92% 91.4%
2 78 3.40% 2.88% 84.8%
3 80 3.39% 3.05% 90.0%
4 73 3.19% 2.84% 89.0%
5 103 3.29% 3.11% 94.6%
6 105 3.36% 2.75% 81.6%
7 107 4.00% 3.43% 85.7%
8 88 3.49% 3.08% 88.1%
9 80 3.49% 3.13% 89.8%
10 84 3.32% 2.93% 88.3%
11 77 2.78% 2.58% 92.8%
12 70 2.59% 2.42% 93.5%
13 101 2.61% 2.21% 84.5%
14 64 3.55% 2.91% 81.9%
15 109 2.71% 2.01% 74.1%

Table 2: Results for 100 point set (esteiner100)

Average Performance 92.0 %
% of tests where performance reaches 100% 78.6%

Table 3: Summary of results for Soukup and Chow test set

Problem
Nr.

CPU
(s)

Red.
Best

Red.
GA

Performance

250-1 450 3.08% 2.25% 72.96%
500-1 2024 3.42% 2.76% 80.77%
1000-1 13728 4.45% 2.64% 76.40%

Table 4: Results for higher dimension sets

9



can also be included for improving the early detection of erroneous constructs
(e.g. the luna and/or bottleneck tests). Some of the test cases seemed to be
extremely sensitive to minor variations caused by rounding errors, so that issue
must be addressed also in the future.

References

[1] J. E. Beasley. Or-library: distributing test problems by electronic mail.
Journal of Operational Research, 41, 1990.

[2] J. E. Beasley. A heuristic for euclidean and rectilinear steiner problems.
European journal of Operational Research, 58:284–292, 1992.

[3] M. Zachariasen D. Warme, P. Winter. Exact algorithms for plane steiner
tree problems: a computational study. Technical Report DIKU-TR-98/11,
University of Copenhagen, 1998.

[4] P. Winter F. K. Hwang, D. S. Riochards. The Steiner tree problem. Elsevier
Science Publishers B. V., 1992.

[5] D. E. Goldberg. Genetic algorithms in search, optimization and machine
learning. Addison Wesley, 1989.

[6] W. F. Chow J. Soukup. Set of test problems for the minimum length con-
nectoin networks.

[7] M. Mitchell. An introduction to Genetic Algorithms. MIT Press, 1996.

10


