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Abstract. In this paper we present experiments concerning the feasibility of 
using genetic algorithms to efficiently build the global routing in lookup-table 
based FPGAs. The algorithm is divided in two steps: first, a set of viable 
routing alternatives is pre-computed for each net, and then the genetic algorithm 
selects the best routing for each one of the nets that offers the best overall 
global routing. Our results are comparable to other available global routers, so 
we conclude that genetic algorithms can be used to build competitive global 
routing tools. 

Introduction 

With the increasing growth of the complexity of electronic devices, the good 
performance of synthesis tools is critical for the success of design and manufacturing 
of non-trivial projects. Concerning the development of FPGA (Field Programmable 
Gate Arrays ) systems, one of the fundamental tasks of these tools is to perform the 
routing of the circuit constrained to the limited resources available in the device. 
Although a lot of research has been made in this area [4,5,6,7,8,9,10,11,12,13], little 
has been done concerning the study of the feasibility of using genetic algorithms [2,3] 
to generate the required routing (see on [17] for a survey of genetic algorithms used 
for VLSI design). With this purpose, in this work we developed a global routing tool 
based on the application of a genetic algorithm for selection for viable routing paths 
on a LUT -based FPGA. Results are very close to those of other available tools, so we 
believe that, with further refinement, the genetic approach can became competitive 
with current techniques. 
 
 

                                                                 
1 This work was partially supported by the Portuguese Ministry of Science and High 
Education, under program POSI 
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FPGA Architecture  

The FPGA architecture we used to test our algorithm is similar to the one described in 
[1] (see Figure 1). In this model, there are four distinct types of blocks, interconnected 
by several routing channels: 
- L-Blocks – These blocks implement any logic function with N inputs. These inputs 

are equally distributed over all sides of the block, and a single output is provided 
on the right side of the block. We chose to select N=4 for all our experiments. 
These blocks can also be referred to as logic cells or logic blocks.  

- IO Blocks – These blocks represent the input and output pins of the FPGA. Since 
the number of pins in real FPGAs is far greater than those that fit along the 
square formed by the L-Blocks, we consider that multiple I/O pins are contained 
in each I/O block. In this work, we consider that two I/O pins are available for 
each I/O block. 

- C Block – These are the blocks through which the L and IO blocks are connected 
to routing channels. The number of alternative tracks to which a connection from 
a L-block or IO-block can be made, characterizes these blocks. In this work, this 
value was predefined to be equal to the width of the routing channel. 

- S -Block – These blocks allow switching the tracks between different  routing 
channels. Their Flexibility is defined as the number of different outputs to which 
a given input can be connected. We use S-Blocks with a Flexibility of 3 in this 
work (see Figure 2). 
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Figure 1- Architecture of the LUT -based FPGA 

 

Figure 2 – S -Block configuration used in this work  
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Genetic Algorithms  

Genetic algorithms (GA) are a group of stochastic optimization techniques [2,3]. 
These algorithms work wit h a set of candidate solutions to the problem (a population 
of individuals, using GA terminology) and seek to evolve them using concepts 
derived from genetics and natural selection. Each individual holds enough 
information (the genes) to describe a possible solution to the problem. They are 
evaluated regarding the quality of that solution (i.e. their fitness is computed), and a 
probabilistic selection method (based on the fitness of each individual) is used to find 
group of individuals (the parents) that will be used to create the next generation of the 
population. They individuals of the new generation are created by applying genetic-
inspired transformations (operators) to the parents. Among these transformations we 
can find mutations and crossover . The mutation operator does random changes to the 
genes, while the crossover combines parts of the genes of two parents to create a 
single individual. After multiple iterations, the quality of the population will increase, 
and when a predetermined stopping condition is met, the solution for the problem will 
be found on the genes of the best individual of the last generation. 

 
1.Randomly initialize population 
2.While stopping condition is not met 

a) Evaluate population 
b) Select parents 
c) Crossover 
d) Mutation 
e) Substitute old population 

Figure 3 – Simple Genetic Algorithm 

 
There are, of course, multiple variants of this simple framework. 

Global Routing for FPGAs 

The synthesis of circuits for FPGAs can be decomposed in several steps: 
1. Logic optimization – The circuits are optimized, shrunk and redundant logic is 

eliminated. 
2. Technology Mapping – The elements of the circuit description are assigned to 

specific classes of resources available in the actual FPGA. For example, logic 
expressions are broken into sub-expressions implemented in a single logic block.  

3. Placement – When there are multiple components in the FPGA capable of 
implementing a specific aspect of the circuit description, a selection needs to be 
made about which one of them will be used (for example, what logic blocks will 
actually be used to implement the sub-expressions generated by the technology 
mapping?) 

4. Routing – The communication resources available in the FPGA are used to 
connect adequately all the components of the circuit. Ideally, the routing should 
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use the smallest routing channel width and have minimum source-to-sink distance, 
to maximize circuit speed. 

 
Some approaches combine some of these steps or further refine them into additional 
iterations. The last step is sometimes separated in global and detailed routing. The 
objective of the global routing step is to ensure a balanced occupation of available 
channels. The global router decides which routing channels will be used, without 
deciding about specific track usage inside those channels. Detailed routing will 
complete the process, by making the necessary track assignments within those 
channels. Frequently, it may be impossible to perform detailed routing with the same 
channel width found by the global routing because of restrictions on the flexibility of 
S-Blocks (the routing anomaly, see [1,4]), so the global routing channel width is 
actually a low bound for the width of the routing channels after detailed routing.  

 
Figure 4 - Global vs. detailed routing 

 
For further details about previous work on global and detailed routing, see 

[4,5,6,7,8,9,10,11,12,13]. For information regarding other steps of the synthesis 
process, please consult [14, 15, 16].  

The Routing A lgorithm 

We used a two-step approach for building the global routing: 

1. For each net of the circuit, generate a set of 
alternative routing paths. 

2. Find, for all nets, the combination of 
alternative routing paths that offers the best 
overall global routing 

This approach allows using different optimization techniques for each step. We 
developed three different heuristics for creating the alternate routing paths, and 
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used a genetic algorithm for making the optimization described in step 2, according 
to the objectives of this work. 

 Generation of alternate routing paths 

The generation of the alternate paths is made with the following algorithm: 

For each net, 

1. Generate one routing path that connects all nodes 
in net 

2. While the desired number of alternate paths isn’t 
met, build new routing path by randomly selecting 
and mutating one of the previously built paths  

 
This algorithm will first generate one model net. All other alternative paths are 
deviations from this model net. The rationale behind this option is that it should be 
more efficient to build alternate solutions by making minor changes to pre-existing 
ones than re-computing a new net from scratch. 

Computing the model routing path for each net 
We developed three different algorithms for computing the first model routing. Two 
are graph-based search techniques and the other is based on a heuristic algorithm for 
computing rectilinear Steiner trees. The first graph-based technique is simply a greedy 
search from the source node to each sink node. This algorithm is fast but offers, as 
could be expected, poor quality solutions. The other graph algorithm is based on 
Dijkstra’s algorithm [18] for finding the shortest path between two nodes. Every 
source/sink is connected sequentially using Dijkstra’s algorithm, and the cost of 
previously taken segments is reduced. This algorithm offers reasonable performance, 
but is not as good as our heuristic for computing near optimal rectilinear Steiner trees 
(RST). A RST is the shortest rectilinear tree connecting a given set of points. 
Computing a RST instead of using graph-transversal algorithms eliminates the 
problem of having to route multipoint nets as groups of source/sink paths. The 
performance of those algorithms is very dependant on the order by which those paths 
are processed, and it isn’t clear how to determine what the optimal order is, although 
some heuristic can be used (i.e. longest paths first). Our approach to computing the 
RST for a given set of points is based on a hill-climbing search algorithm that finds an 
optimal partition of those points into smaller RST, as explained bellow and illustrated 
in Figure 5, where a tree representation of the decomposition is presented.  
The points are partitioned across horizontal and vertical axis that transverse de 
median point of each set, sharing one point to ensure a connected net is built. This 
partitioning is applied recursively until no more than a predetermined number of 
points (for illustration purposes, this number is 3 in Figure 5) are contained in every 
partition. The rectilinear tree at the nodes is built by constructing an axis along the 
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median (vertical or horizontal) point, and connecting all other nodes to that is by 
transversal segments. 
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Figure 5 – Example of decomposition of point set into multiple RSTs 

 

 

Figure 6 - (non-optimal) Rectilinear tree resulting from the decomposition 
illustrated in Figure 5 

 
The actual decomposition is dependant on whether a vertical or horizontal axis is 

chosen on each node of the decomposition tree. This information can be represented 
linearly by a vector2 where the first element represents the orientation of the axis on 
the root node, and the remaining information is sp lit in half and interpreted 
accordingly by the left and right descendants of the root. For example, for the specific 
decomposition shown in Figure 5, this string is “hvvhhhh” for the root node. 

The simple linear representation of the decomposition is important, because it 
enables us to use a simple hill-climbing optimization algorithm for finding the 
partition that offers the smallest length rectilinear tree. Figure 7 shows the rectilinear 
trees computed for a random point set with different  values for maximum points per 
leaf. The dashed rectangles represent the points contained in a single leaf. (These trees 
are not optimal; they just represent a possible result of the algorithm.) 

Generating mutations from model path  
Deviations from a model routing path are built by applying a mutation to previously 
built nets. The algorithm is based on the idea of generating an intersecting rectangle 
over the model network and re-routing the internal connections on the borders of that 
rectangle. For space considerations, some details are omitted (e.g. handling nodes 
                                                                 
2 Although padding may be required for unbalanced decomposition trees.  
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internal to the rectangle, or multiple branches), but the general idea is illustrated in 
Figure 8. 

 

 

 

 

Figure 7 - Rectilinear trees for random set of points, with maximum of 4 
points per leaf (left) and 8 points per leaf (right). 

 
Figure 8 - Generating alternative routing paths. 

Genetic Algorithm 

The genetic algorithm decides among the possible alternate routes which ones will be 
used in the global routing. Each individual (solution) is represented only by an integer 
vector3. Each position of this vector is associated to a net of the circuit, and in that 
position it is held an index that identifies what is the chosen routing alternative for 
that net. 
                                                                 
3 Actually, some auxiliary data is also kept in each individual to help to speed up some 

computations. That detail isn’t relevant to understand the main operation of the algorithm, so 
it is left out of the description. 
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After some tuning tests, the following configuration was found to offer the best 
results for the GA: 
- Population size: 50 
- Maximum number of generations: 2500 
- Mutation rate: 8%  
- Crossover rate:80% 
- Elitism: 4 individuals 
- Lamarckian learning4  

Results  

We used circuits from LGSynth93 test suite [19] to benchmark our algorithm. A set of 
30 circuits of diverse complexity was chosen. The circuits were placed using VPR 
[10] and our tool was used to generate the global routing. For comparison purposes, 
VPR was also used to globally route the same circuits. A single run of both tools was 
used for all circuits. The test machine was a Pentium 3 processor at 866MHz with 384 
MB RAMS. The results are presented in Table 1. 

As we can see, although VPR offers slightly better results, both in terms of CPU 
time and track number. However, results are reasonably close, and in some cases the 
AG actually computed a better solution. We believe the small difference in 
performance can be further reduced if other heuristics  for net generation are tried and 
more exhaustive tuning is made.  

Additionally, the AG seems to have a very large performance advantage when 
compared with reported results for older global routers [11], which suggests that our 
approach seems valid and worthy of further development. 

Conclusions and future work  

Our main goal was to investigate the feasibility of constructing a global router for 
FPGAs using genetic algorithms. We believe that our results show that this class of 
algorithms is worthy of consideration when designing this kind of tools. Results seem 
to suggest that the AG offers performance that is comparable with that of other known 
algorithms, although in the current implementation it is on average slightly inferior. 
However, this difference in performance isn’t very significant, and further 
improvement of the algorithm may offer better results. Although some tuning tests 
were made, a more exhaustive set of tests might reveal some better parameterization. 
Also, one improvement that might significantly improve efficiency would be to 
generate alternative routings dynamically, only when judged necessary, instead of 
pre-computing a fixed-size set of alternate paths. Further work could also be done by  
adapting the algorithm to use architectural features of current FPGAs, like routing 
segments of heterogeneous size. 

                                                                 
4 A quick, non-exhaustive local search is conducted for each individual, and if any 

improvement is found it the individual is changed accordingly. 
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Circuit Channel 

Width 
Channel 

Width 
CPU (s) CPU (s) 

 (VPR) (AG) (AG) (VPR) 
pdc 20 20 4299 8154 
ex1010 11 13 2609 952 
spla 16 17 1881 2654 
s298 9 10 1247 814 
seq 13 14 1158 278 
alu4 11 11 807 184 
misex3 12 12 661 210 
ex5p 15 14 518 824 
apex3 13 12 558 134 
pair 8 9 476 59 
C6288 6 6 89 11 
i8 9 9 200 95 
table5 11 12 109 33 
cordic 10 10 99 68 
C3540 8 9 40 27 
i9 6 7 116 27 
x3 6 6 273 12 
vda 9 9 77 35 
s1238 7 7 43 13 
e64 9 8 158 45 
planet 6 7 29 14 
i7 4 5 12 93 
mm9b 7 7 42 8 
i6 5 5 13 61 
alu2 7 7 33 8 
too-large 7 8 8 8 
C880 8 7 31 5 
example2 6 6 48 3 
term1 5 5 4 4 
misex2 5 5 1 1 
TOTAL 269 277 15639 14834 

 

 Table 1. Results for LGSynth93 test suite benchmark 
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