
Global routing for lookup-table based FPGAs using
genetic algorithms1

Jorge Barreiros 1,2, Ernesto Costa 2
1 Departamento de Engenharia Informática e Sistemas,

Instituto Superior de Engenharia de Coimbra.
2 Centro de Informática e Sistemas da Universidade de Coimbra.

jmsousa@isec.pt , ernesto@dei.uc.pt

Abstract. In this paper we present experiments concerning the feasibility of
using genetic algorithms to efficiently build the global routing in lookup-table
based FPGAs. The algorithm is divided in two steps: first, a set of viable
routing alternatives is pre-computed for each net, and then the genetic algorithm
selects the best routing for each one of the nets that offers the best overall
global routing. Our results are comparable to other available global routers, so
we conclude that genetic algorithms can be used to build competitive global
routing tools.

Introduction

With the increasing growth of the complexity of electronic devices, the good
performance of synthesis tools is critical for the success of design and manufacturing
of non-trivial projects. Concerning the development of FPGA (Field Programmable
Gate Arrays) systems, one of the fundamental tasks of these tools is to perform the
routing of the circuit constrained to the limited resources available in the device.
Although a lot of research has been made in this area [4,5,6,7,8,9,10,11,12,13], little
has been done concerning the study of the feasibility of using genetic algorithms [2,3]
to generate the required routing (see on [17] for a survey of genetic algorithms used
for VLSI design). With this purpose, in this work we developed a global routing tool
based on the application of a genetic algorithm for selection for viable routing paths
on a LUT -based FPGA. Results are very close to those of other available tools, so we
believe that, with further refinement, the genetic approach can became competitive
with current techniques.

1 This work was partially supported by the Portuguese Ministry of Science and High
Education, under program POSI

2 Jorge Barreiros, Ernesto Costa

FPGA Architecture

The FPGA architecture we used to test our algorithm is similar to the one described in
[1] (see Figure 1). In this model, there are four distinct types of blocks, interconnected
by several routing channels:
- L-Blocks – These blocks implement any logic function with N inputs. These inputs

are equally distributed over all sides of the block, and a single output is provided
on the right side of the block. We chose to select N=4 for all our experiments.
These blocks can also be referred to as logic cells or logic blocks.

- IO Blocks – These blocks represent the input and output pins of the FPGA. Since
the number of pins in real FPGAs is far greater than those that fit along the
square formed by the L-Blocks, we consider that multiple I/O pins are contained
in each I/O block. In this work, we consider that two I/O pins are available for
each I/O block.

- C Block – These are the blocks through which the L and IO blocks are connected
to routing channels. The number of alternative tracks to which a connection from
a L-block or IO-block can be made, characterizes these blocks. In this work, this
value was predefined to be equal to the width of the routing channel.

- S -Block – These blocks allow switching the tracks between different routing
channels. Their Flexibility is defined as the number of different outputs to which
a given input can be connected. We use S-Blocks with a Flexibility of 3 in this
work (see Figure 2).

IO IO

IO

IO

IO IO

IO

IO

L L

LL

CC S

C C

S

S

CS

C

S C S

C

CS

C

CS

C

S

Figure 1- Architecture of the LUT -based FPGA

Figure 2 – S -Block configuration used in this work

Global routing for lookup-table based FPGAs using genetic algorithms 3

Genetic Algorithms

Genetic algorithms (GA) are a group of stochastic optimization techniques [2,3].
These algorithms work wit h a set of candidate solutions to the problem (a population
of individuals, using GA terminology) and seek to evolve them using concepts
derived from genetics and natural selection. Each individual holds enough
information (the genes) to describe a possible solution to the problem. They are
evaluated regarding the quality of that solution (i.e. their fitness is computed), and a
probabilistic selection method (based on the fitness of each individual) is used to find
group of individuals (the parents) that will be used to create the next generation of the
population. They individuals of the new generation are created by applying genetic-
inspired transformations (operators) to the parents. Among these transformations we
can find mutations and crossover . The mutation operator does random changes to the
genes, while the crossover combines parts of the genes of two parents to create a
single individual. After multiple iterations, the quality of the population will increase,
and when a predetermined stopping condition is met, the solution for the problem will
be found on the genes of the best individual of the last generation.

1.Randomly initialize population
2.While stopping condition is not met

a) Evaluate population
b) Select parents
c) Crossover
d) Mutation
e) Substitute old population

Figure 3 – Simple Genetic Algorithm

There are, of course, multiple variants of this simple framework.

Global Routing for FPGAs

The synthesis of circuits for FPGAs can be decomposed in several steps:
1. Logic optimization – The circuits are optimized, shrunk and redundant logic is

eliminated.
2. Technology Mapping – The elements of the circuit description are assigned to

specific classes of resources available in the actual FPGA. For example, logic
expressions are broken into sub-expressions implemented in a single logic block.

3. Placement – When there are multiple components in the FPGA capable of
implementing a specific aspect of the circuit description, a selection needs to be
made about which one of them will be used (for example, what logic blocks will
actually be used to implement the sub-expressions generated by the technology
mapping?)

4. Routing – The communication resources available in the FPGA are used to
connect adequately all the components of the circuit. Ideally, the routing should

4 Jorge Barreiros, Ernesto Costa

use the smallest routing channel width and have minimum source-to-sink distance,
to maximize circuit speed.

Some approaches combine some of these steps or further refine them into additional
iterations. The last step is sometimes separated in global and detailed routing. The
objective of the global routing step is to ensure a balanced occupation of available
channels. The global router decides which routing channels will be used, without
deciding about specific track usage inside those channels. Detailed routing will
complete the process, by making the necessary track assignments within those
channels. Frequently, it may be impossible to perform detailed routing with the same
channel width found by the global routing because of restrictions on the flexibility of
S-Blocks (the routing anomaly, see [1,4]), so the global routing channel width is
actually a low bound for the width of the routing channels after detailed routing.

Figure 4 - Global vs. detailed routing

For further details about previous work on global and detailed routing, see

[4,5,6,7,8,9,10,11,12,13]. For information regarding other steps of the synthesis
process, please consult [14, 15, 16].

The Routing A lgorithm

We used a two-step approach for building the global routing:

1. For each net of the circuit, generate a set of
alternative routing paths.

2. Find, for all nets, the combination of
alternative routing paths that offers the best
overall global routing

This approach allows using different optimization techniques for each step. We
developed three different heuristics for creating the alternate routing paths, and

Global routing for lookup-table based FPGAs using genetic algorithms 5

used a genetic algorithm for making the optimization described in step 2, according
to the objectives of this work.

 Generation of alternate routing paths

The generation of the alternate paths is made with the following algorithm:

For each net,

1. Generate one routing path that connects all nodes
in net

2. While the desired number of alternate paths isn’t
met, build new routing path by randomly selecting
and mutating one of the previously built paths

This algorithm will first generate one model net. All other alternative paths are
deviations from this model net. The rationale behind this option is that it should be
more efficient to build alternate solutions by making minor changes to pre-existing
ones than re-computing a new net from scratch.

Computing the model routing path for each net
We developed three different algorithms for computing the first model routing. Two
are graph-based search techniques and the other is based on a heuristic algorithm for
computing rectilinear Steiner trees. The first graph-based technique is simply a greedy
search from the source node to each sink node. This algorithm is fast but offers, as
could be expected, poor quality solutions. The other graph algorithm is based on
Dijkstra’s algorithm [18] for finding the shortest path between two nodes. Every
source/sink is connected sequentially using Dijkstra’s algorithm, and the cost of
previously taken segments is reduced. This algorithm offers reasonable performance,
but is not as good as our heuristic for computing near optimal rectilinear Steiner trees
(RST). A RST is the shortest rectilinear tree connecting a given set of points.
Computing a RST instead of using graph-transversal algorithms eliminates the
problem of having to route multipoint nets as groups of source/sink paths. The
performance of those algorithms is very dependant on the order by which those paths
are processed, and it isn’t clear how to determine what the optimal order is, although
some heuristic can be used (i.e. longest paths first). Our approach to computing the
RST for a given set of points is based on a hill-climbing search algorithm that finds an
optimal partition of those points into smaller RST, as explained bellow and illustrated
in Figure 5, where a tree representation of the decomposition is presented.
The points are partitioned across horizontal and vertical axis that transverse de
median point of each set, sharing one point to ensure a connected net is built. This
partitioning is applied recursively until no more than a predetermined number of
points (for illustration purposes, this number is 3 in Figure 5) are contained in every
partition. The rectilinear tree at the nodes is built by constructing an axis along the

6 Jorge Barreiros, Ernesto Costa

median (vertical or horizontal) point, and connecting all other nodes to that is by
transversal segments.

h-vvh- hhh

v-v-h h-h-h(vvh) (hhh)

v (v)

(h)

h

(h)

(h)

h

h

Figure 5 – Example of decomposition of point set into multiple RSTs

Figure 6 - (non-optimal) Rectilinear tree resulting from the decomposition
illustrated in Figure 5

The actual decomposition is dependant on whether a vertical or horizontal axis is

chosen on each node of the decomposition tree. This information can be represented
linearly by a vector2 where the first element represents the orientation of the axis on
the root node, and the remaining information is sp lit in half and interpreted
accordingly by the left and right descendants of the root. For example, for the specific
decomposition shown in Figure 5, this string is “hvvhhhh” for the root node.

The simple linear representation of the decomposition is important, because it
enables us to use a simple hill-climbing optimization algorithm for finding the
partition that offers the smallest length rectilinear tree. Figure 7 shows the rectilinear
trees computed for a random point set with different values for maximum points per
leaf. The dashed rectangles represent the points contained in a single leaf. (These trees
are not optimal; they just represent a possible result of the algorithm.)

Generating mutations from model path
Deviations from a model routing path are built by applying a mutation to previously
built nets. The algorithm is based on the idea of generating an intersecting rectangle
over the model network and re-routing the internal connections on the borders of that
rectangle. For space considerations, some details are omitted (e.g. handling nodes

2 Although padding may be required for unbalanced decomposition trees.

Global routing for lookup-table based FPGAs using genetic algorithms 7

internal to the rectangle, or multiple branches), but the general idea is illustrated in
Figure 8.

Figure 7 - Rectilinear trees for random set of points, with maximum of 4
points per leaf (left) and 8 points per leaf (right).

Figure 8 - Generating alternative routing paths.

Genetic Algorithm

The genetic algorithm decides among the possible alternate routes which ones will be
used in the global routing. Each individual (solution) is represented only by an integer
vector3. Each position of this vector is associated to a net of the circuit, and in that
position it is held an index that identifies what is the chosen routing alternative for
that net.

3 Actually, some auxiliary data is also kept in each individual to help to speed up some

computations. That detail isn’t relevant to understand the main operation of the algorithm, so
it is left out of the description.

8 Jorge Barreiros, Ernesto Costa

After some tuning tests, the following configuration was found to offer the best
results for the GA:
- Population size: 50
- Maximum number of generations: 2500
- Mutation rate: 8%
- Crossover rate:80%
- Elitism: 4 individuals
- Lamarckian learning4

Results

We used circuits from LGSynth93 test suite [19] to benchmark our algorithm. A set of
30 circuits of diverse complexity was chosen. The circuits were placed using VPR
[10] and our tool was used to generate the global routing. For comparison purposes,
VPR was also used to globally route the same circuits. A single run of both tools was
used for all circuits. The test machine was a Pentium 3 processor at 866MHz with 384
MB RAMS. The results are presented in Table 1.

As we can see, although VPR offers slightly better results, both in terms of CPU
time and track number. However, results are reasonably close, and in some cases the
AG actually computed a better solution. We believe the small difference in
performance can be further reduced if other heuristics for net generation are tried and
more exhaustive tuning is made.

Additionally, the AG seems to have a very large performance advantage when
compared with reported results for older global routers [11], which suggests that our
approach seems valid and worthy of further development.

Conclusions and future work

Our main goal was to investigate the feasibility of constructing a global router for
FPGAs using genetic algorithms. We believe that our results show that this class of
algorithms is worthy of consideration when designing this kind of tools. Results seem
to suggest that the AG offers performance that is comparable with that of other known
algorithms, although in the current implementation it is on average slightly inferior.
However, this difference in performance isn’t very significant, and further
improvement of the algorithm may offer better results. Although some tuning tests
were made, a more exhaustive set of tests might reveal some better parameterization.
Also, one improvement that might significantly improve efficiency would be to
generate alternative routings dynamically, only when judged necessary, instead of
pre-computing a fixed-size set of alternate paths. Further work could also be done by
adapting the algorithm to use architectural features of current FPGAs, like routing
segments of heterogeneous size.

4 A quick, non-exhaustive local search is conducted for each individual, and if any

improvement is found it the individual is changed accordingly.

Global routing for lookup-table based FPGAs using genetic algorithms 9

Circuit Channel

Width
Channel

Width
CPU (s) CPU (s)

 (VPR) (AG) (AG) (VPR)
pdc 20 20 4299 8154
ex1010 11 13 2609 952
spla 16 17 1881 2654
s298 9 10 1247 814
seq 13 14 1158 278
alu4 11 11 807 184
misex3 12 12 661 210
ex5p 15 14 518 824
apex3 13 12 558 134
pair 8 9 476 59
C6288 6 6 89 11
i8 9 9 200 95
table5 11 12 109 33
cordic 10 10 99 68
C3540 8 9 40 27
i9 6 7 116 27
x3 6 6 273 12
vda 9 9 77 35
s1238 7 7 43 13
e64 9 8 158 45
planet 6 7 29 14
i7 4 5 12 93
mm9b 7 7 42 8
i6 5 5 13 61
alu2 7 7 33 8
too-large 7 8 8 8
C880 8 7 31 5
example2 6 6 48 3
term1 5 5 4 4
misex2 5 5 1 1
TOTAL 269 277 15639 14834

 Table 1. Results for LGSynth93 test suite benchmark

10 Jorge Barreiros, Ernesto Costa

[1] “On two-step routing for FPGAs”, Lemieux, G. ; Brown, S. ; Vranesic, D. , International
Symposium on Physical Design, Abril 1997

[2] “Genetic Algorithms in Search, optimization and machine learning”, Goldber, D. Addison
Wesley, 1989

[3] “An introduction to Genetic Algorithms”, Mitchel, M., MIT Press, 1996
[4] “New performance-driven FPGA routing algorithms”, Alexander, M. ; Robins, G; Design

Automation Conference, June 1995
[5] “A detailed router for Field-Programmable gate arrays”, Brown, G. ; Rose, Z. ; Vranesic,

G., IEEE Transactions on Computer-Aided Design, Vol. 11, No. 5, May 1992
[6] “Plane parallel A* maze router and it’s application to FPGA’s”; Palczewski, M. ;

Proceedings of the Design Automation Conference, 1992.
[7] “New performance-driven FPGA routing algorithms”, Alexander, M. ; Robins, G; Design

Automation Conference, June 1995
[8] “Performance-oriented placement and routing for Field-Programmable gate arrays”,

Alexander, M; Cohoon , J. ; Ganley, J. ; Robins, G., European Design Automation
Conference, Sept. 1995

[9] “New performance-driven FPGA routing algorithms”; Alexander, M ; Robins , G. ; IEEE
Transactions on Computer Aided Design of Integrated Circuits and Systems, Vol. 15, N. 12,
Dec. 1996.

[10] “Directional bias and Non-uniformity in FPGA global routing architectures”, Betz, V.;
Rose, J. ; IEEE/ACM International Conference on Computer Aided Design, 1996

[11] “LocusRoute: A parallel global router for standard cells”; Rose, J. ; Proceedings of the
Design Automation Conference, 1988.

[12] “A detailed routing algorithm for allocating wire segments in field-programmable gate
arrays”; Lemieux, G; Brown, S; Proceedings of the ACM Physical Design Workshop, 1993.

[13] “A performance and routability driven router for FPGAs considering path delays”, Lee, Y.
; Wu, A.; IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems,
vol 16, nº2, Feb. 1997

[14] “Optimal FPGA mapping and retiming with efficient initial state computation”, Cong ; J. ;
Wu, C. Proceedings of the 35th Design Automation Conference, 1998.

[15] “Technology mapping for TLU FPGA’s based on decomposition of binary decision
diagrams”, Chang, Shih-Chieh ; Marek-Sadowska, M. ; Hwang, T., IEEE Transactions on
computer aided design of integrated circuits and systems, Vol. 15, N.10, 1996

[16] “Combining technology mapping and placement for delay-minimization in FPGA
designs”, Chen, C. -S. ; Tsay, Y.-W. ; Hwang, T.; Wu, A. ; Lin, Y.-L.; IEEE

[17] “Genetic Algorithms for VLSI design, layout & test automation”, Mazumder, P., Rudnik,
E., 1999, Prentice Hall, ISBN 0-13-011566-5

[18] “A note on two problems in connection with graphs”, Dijkstra, E. W.; Numerische
Mathematik, vol. 1, 1959

[19] CAD Benchmarking Laboratory, North Carolina State University, LGSynth93 suite,
http://www.cbl.ncsu.edu/www/

