
Accepted for publication to  

Journal of Intelligent and Fuzzy Systems 

 

IFS 01.383.06 

 

STRUCTURE AND PARAMETER LEARNING OF 

NEURO-FUZZY SYSTEMS: A METHODOLOGY AND A 

COMPARATIVE STUDY 

 
 

Rui Pedro Paiva, Research Student 

António Dourado, Professor * 

 

CISUC – Centro de Informática e Sistemas da Universidade de Coimbra 

Department of Informatics Engineering 

Pólo II of the University of Coimbra 

P 3030 Coimbra- Portugal 

 

 

* Correspondent author 
e-mail: dourado@dei.uc.pt 
http://www.dei.uc.pt/~dourado 

 



 1

STRUCTURE AND PARAMETER LEARNING OF 

NEURO-FUZZY SYSTEMS: A METHODOLOGY AND A 

COMPARATIVE STUDY 

 
Rui Pedro Paiva, António Dourado 

 

CISUC – Centro de Informática e Sistemas da Universidade de Coimbra 

Department of Informatics Engineering 

Pólo II of the University of Coimbra 

P 3030 Coimbra- Portugal      {ruipedro, dourado}@dei.uc.pt

Abstract 

A methodology and experimental comparison of neuro-fuzzy structures, namely linguistic 

and zero and first-order Takagi-Sugeno, are developed. The implementation of the model is 

conducted through the training of a neuro-fuzzy network, i.e., a neural net architecture 

capable of representing a fuzzy system. In the first phase, the structure of the model is 

obtained by subtractive clustering, which allows the extraction of a set of relevant rules based 

on a set of representative input-output data samples. Membership functions with two-sided 

Gaussian functions are proposed and discussed. In the second phase, the model parameters 

are tuned via the training of a neural network. Furthermore, different fuzzy operators are 

compared, as well as regular and two-sided Gaussian functions. 

 

Keywords: neuro-fuzzy systems; structure learning; parameter learning; clustering. 
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1. INTRODUCTION 

 

The construction of fuzzy systems for process modeling and prediction or, in general, for 

feature extraction from data is presently carried out in several ways. From the set of possible 

strategies, performing their training through neural networks seems to be the most promising 

one. This strategy leads to so-called neuro-fuzzy systems. The development of neuro-fuzzy 

systems is actually a subject of great activity. In fact, since the pioneer works of Zadeh 

[Zadeh, 1973] and Mamdani [Mamdani, 1974] many progresses have been made regarding 

the development of fuzzy relations based on experiences of skilled operators or from a set of 

observed input-output data [Jamshidi et al,1997]. With the development of neural networks   

and of its training algorithms, their computational potentialities have been introduced into 

fuzzy learning operations leading to neuro-fuzzy systems. Many structures have been 

proposed and some were largely disseminated, among which Jang’s ANFIS structure [Jang, 

1993] is probably the most famous. Several recent developments have improved the 

possibilities of neuro-fuzzy systems. For example Azeem, Hanmandlu and Ahmad [Azeem et 

al, 2000] proposed the GANFIS structure, a generalization of Jang’s work. Hong and Harris 

[Hong and Harris, 2000] researched for new types of basis function for the case of 

n-dimensional input spaces in order to overcome the curse of dimensionality problem when n 

is large. Zhang and Morris [Zhang and Morris, 1999] proposed a type of recurrent 

neuro-fuzzy networks to build long-range prediction models for nonlinear processes easier to 

interpret than strictly black-box models. Pal and Pal [Pal and Pal, 1999] propose a 

connectionist implementation of the compositional rule of inference and an architecture for it 

that automatically finds an “optimal” relation representing a set of fuzzy rules. Kim and 

Kasabov [Kim and Kabasov, 1999] propose an HyFIS- Hybrid Neural Fuzzy Inference 

System for building and optimizing fuzzy models providing linguistic meaning; they use a 
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two-phase methodology: a rule generation phase from data and a rule tuning phase using 

error backpropagation.  

 

In this work, it is presented a methodology carried out in two main phases: in the first one, 

structure learning is performed, i.e., a set of fuzzy rules is obtained by subtractive clustering; 

in the second one, the model parameters (the membership function parameters of the fuzzy 

system) are tuned. 

Based on the generic methodology referred, an analysis is made regarding some important 

issues in fuzzy modeling, e.g., type of rules (Takagi - Sugeno [Takagi and Sugeno, 1985] or 

linguistic), type of operators and membership functions. In terms of membership functions, 

this study is restricted to simple and two-sided Gaussian functions. 

 

The paper is organized as follows.  In Section 2 the main issues of fuzzy identification are 

introduced. In Section 3 subtractive clustering, used for structure learning, is presented. Then, 

the parameter learning strategies used are described in Section 4. The methodologies are 

applied to the Mackey-Glass time series, in Section 5. Finally, some conclusions are drawn in 

Section 6. 

 

 

2. FUZZY MODELLING AND IDENTIFICATION 

 

Dynamical system identification deals with the implementation of models using experimental 

data. Thus, when a model is developed based on the theory of system identification, its 

parameters are tuned according to some criteria, aiming to obtain a final representation 

adequate for the modeling purposes. In this sense, fuzzy identification is presented as a 
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particular case of system identification, in which the model is categorized as a fuzzy system. 

Thus, without loss of generality, let us assume a single-input single-output (SISO) model, 

with one input, u, and one output, y, from where N data samples are collected (1): 

 

[ ] [ ] [ ]{ }(1), (1) , (2), (2) ,..., ( ), ( )NZ u y u y u N y N=  (1) 

 

Using data collected from the system, the goal is to obtain a fuzzy model, represented by a set 

of rules of type Ri (2): 

 

1 1 1ˆ: ( 1) ( ) ( )i i i iR If y t is A and u t d is B then y t isC− −  (2) 

 

where d represents the system time delay and Aji, Bji and Cji denote linguistic terms associated 

to each input and output. Those terms are defined by their respective membership functions 

, ,
ji ji jiA B Cµ µ µ . The previous structure is called a FARX structure (Fuzzy Auto Regressive with 

eXogenous inputs), as a generalization of the well-known ARX structure. Thus, the selection 

of a set of rules of type (2), as well as the definition of the fuzzy sets Aji, Bji and Cji, constitute 

project issues specific to fuzzy systems. 

 

3. STRUCTURE LEARNING 

 

In order to obtain a set of g fuzzy conditional rules, capable of representing the system under 

study, clustering algorithms are particularly suited, since they permit a scatter partitioning of 

the input-output data space, which results in finding only the relevant rules. Comparing to 
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grid-based partitioning methods, clustering algorithms have the advantage of avoiding the 

rule base explosion, i.e., the curse of dimensionality. Some authors use grid-based 

partitioning methods, combined with network pruning. Based on the authors’ previous work 

[Paiva, 1999], it is their opinion that the results are not as good as the ones resulting from 

clustering techniques: curse of dimensionality problems are avoided; the pruning of the 

network can lead to wrong deletion of nodes if the network is not optimized; optimization of 

a large dimension network is very time consuming; after deletion of nodes, the network 

should be re-optimized. 

In this paper, Chiu’s subtractive clustering is applied [Chiu, 1994]. This scheme possesses 

some interesting advantages, especially in a neuro-fuzzy identification context. In fact, 

subtractive clustering is an efficient algorithm and does not require any optimization, being a 

good choice for the initialization of the neuro-fuzzy network. Fuzzy c-means and other 

optimization-based clustering algorithms would lead to a performance diminishing because 

they perform an unnecessary optimization phase prior to network training. Also, progressive 

clustering and compatible cluster merging algorithms are computationally expensive and 

need metrics for validation of individual clusters [Davé and Krishnapuram, 1997]. Therefore, 

despite their potential, they are too complex for a simple initialization of a fuzzy neural 

network. 

Chiu’s algorithm belongs to the class of potential function methods, being, more precisely, a 

variation of the mountain method (see [Davé and Krishnapuram, 1997]). In this class of 

algorithms, a set of points are defined as possible group centers, each of them being 

interpreted as an energy source. In subtractive clustering the center candidates are the data 

samples themselves. In this way, the main limitation of the mountain method is overtaken. In 

fact, there, the candidates are defined in a grid, leading to curse of dimensionality problems. 

So, let ZN (1) be a set of N data samples, z1, z2, …, zN, defined in a m+n space, where m 
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denotes the number of inputs and n the number of outputs. In order to make the range of 

values in each dimension identical, the data samples are normalized, so that they are limited 

by a hypercube. 

As it was referred, it is admitted that each of the samples defines a possible cluster center. 

Therefore, the potential associated to zi is (3):  

 

( )
2

2
1

4
, , , 1,2, ,

N z zi jN
i i

j a

P z Z e i N
r

α
α

− −

=

= = =∑ L  (3) 

 

where ra>0 is radii, a constant which defines the neighborhood radius of each point. Thus, 

points zj located out of the radius of zi will have a reduced influence in its potential. On the 

other hand, the effect of points close to zi will grow with their proximity. In this way, points 

with a dense neighborhood will have higher associated potentials.  

After computing the potential for each point, the one with the highest potential is selected as 

the first cluster center. 

Next, the potential of all the remaining points is reduced. Defining z1
* as the first group 

center and denoting its potential as P1
*, the potential of the remaining points is reduced as in 

(4):  

 

* 2
* 1

1 2

4
,

z zi
i i

b

P P P e
r

β
β

− −
← − =  (4) 

 

where the constant rb>0 defines the neighborhood radius with sensible reductions in its 

potential. 
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In this way, points close to the center selected will have their potentials reduced in a more 

significant manner, and so the probability of being chosen as centers diminishes. This 

procedure has the advantage of avoiding the concentration of identical clusters in denser 

zones. Therefore, the rb value is selected in order be slightly higher than ra, so as to avoid 

closely spaced clusters. Typically, rb = 1.5 ra. 

After performing potential reduction for all the candidates, the one with the highest potential 

is selected as the second cluster, after what the potential of the remaining points is again 

reduced. Generically, after determining the rth group, the potential is reduced as (5): 

 

* 2
* z zi r

i i rP P P e
β− −

← −  (5) 

 

The procedure of center selection and potential reduction is repeated until the following 

stopping criterion (Alg. 1) is reached. 

 

 
If Pk

*>ε upP1
*  

      Accept zk* as the next cluster center and continue 

Otherwise,  

      If Pk
*<ε downP1

*  

            Reject zk
* and finish the algorithm. 

      Otherwise 

            Let dmin be the shortest distance between zk
* and all the centers already 

found 

            If dmin/ra + Pk
*/P1

* ≥ 1 
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                 Accept zk
* as the next cluster center and continue 

           Otherwise 

                 Reject zk
* and assign it the potential 0.0. 

                 Select the point with higher potential as new zk
*. 

                 Repeat the test. 

           End If 

      End If 

End If 

 

Alg. 1. Stopping criterion for subtractive clustering. 

 

In Alg. 1, εup specifies a threshold above which the point is selected as a center with no 

doubts and εdown specifies the threshold below which the point is definitely rejected. The third 

case is where the point is characterized by a good trade-off between having a sufficiently 

high potential and being distant enough from the clusters determined before. Typically, 

εup=0.5 and εdown=0.15. 

As it can be understood from the description of the algorithm, the number of clusters to 

obtain is not pre-specified. However, it is important to note that the parameter radii is directly 

related to the number of clusters found. Thus, a small radius will lead to a high number of 

rules, which, if excessive, may result in overfitting problems. On the other hand, a bigger 

radius will lead to a smaller number of clusters, which may originate underfitting, and so, 

models with reduced representation accuracy. Therefore, in practice it is necessary to test 

several values for radii and select the most adequate according to the results obtained. 

However, despite the fact that some radii values should be tested, this parameter gives an 

initial hint on the number of clusters necessary [Paiva, 1999]. This constitutes an important 
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advantage over optimization-based and other classes of clustering algorithms, when little 

information is known regarding the best number of clusters. Another advantage of subtractive 

clustering is that the algorithm is noise robust, since outliers do not significantly influence the 

choice of centers, due to their low potential.  

After applying subtractive clustering, each of the clusters obtained will constitute a prototype 

for a particular behavior of the system under analysis. So, each cluster can be used to define a 

fuzzy rule, able to describe the behavior of the system in some region of the input-output 

space. Typically, g fuzzy conditional rules of type (6) are obtained: 

 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … AND (Xm is LXm(r))  

 THEN (Y1 is LY1(r)) AND (Y2 is LY2(r)) AND … AND (Yn is LYn(r)) 

(6) 

 

where each of the linguistic terms in the antecedent, LXj(r), has an associated membership 

function defined as follows (7): 

 

( ) ( ) ( )2*

, 1,2, , ; 1,2, ,r

x xj rj
jLXj

x e r g j m
α

µ
− −

= = =L L  (7) 

 

Here, xj denotes a numeric value related to the jth input dimension and xrj
* is the jth coordinate 

in the m-dimensional vector xr
*. Equation (7) results from the computation of the potential 

associated to each point in the data space. Clearly, expression (6) is a consequence of using 

linguistic models, i.e., models in which the consequents are fuzzy sets. Such consequents 

result naturally from the application of subtractive clustering and are obtained as follows (8): 
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( ) ( ) ( )2*

, 1,2, ,r

y yo ro
oLYo

y e o n
α

µ
− −

= = L  (8) 

 

where yo denotes a numeric value regarding the oth output dimension and yro
* is the jth 

coordinate in the n-dimensional vector yr
*.  

Obtaining an initial structure for Takagi-Sugeno models, in which the terms in the 

consequents are typically zero and first-order linear functions, is performed similarly. 

However, since the consequents are not fuzzy sets, the initialization procedure just described 

applies only to the antecedents. In fact, based on the linear characteristics of the consequents, 

their values can be easily obtained by means of linear optimization techniques. 

Comparing (7), (8) and the general equation for Gaussian functions, it becomes clear that the 

membership functions considered belong to the type referred. Thus, regarding the standard 

deviation of each function, expression (9) is obtained : 

 

8
a

rj
r

σ =  (9) 

 

Finally, after the parameterization of the Gaussian membership functions, the data used, 

normalized previously, are restored to their initial values. In the same way, the function 

parameters are adjusted to the domains defined for each dimension. 

 

4. PARAMETERS LEARNING 

 

After determining a fuzzy model structure, the model parameters, i.e., the centers and 
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standard deviations of the Gaussian membership functions, should be tuned. Therefore, it is 

necessary to select the type of model to use. In linguistic models, the conditional rules belong 

to type (6). Regarding zero-order Takagi-Sugeno models, with constant consequents, the 

rules are of type (10). As for first order Takagi-Sugeno models, the rules are of type (11), 

where for(x) is defined as in (12). 

 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … AND (Xm is LXm(r))   

 THEN (y1= b1r) AND (y2= b2r) AND … AND (yn= bnr) 

(10) 

Rule r:  

 IF (X1 is LX1(r)) AND (X2 is LX2(r)) AND … AND (Xm is LXm(r))  

 THEN [y1= f1r(x)] AND [y2 = f2r(x)] AND … AND [yn= fnr(x)] 

(11) 

( ) 0 1 1 2 2

, 1,2, , ; 1,2, , ; 1,2, ,
or or or or orm m

orj

f x b b x b x b x

b j m o n r g

= + + + +

∈ℜ = = =

L

L L L
 (12) 

 

As it can be seen, first order Takagi-Sugeno models are characterized by having more 

flexible consequents. Thus, these structures can be seen as smooth shifters between local 

linear models, which is an advantage comparing to the interpolative properties of both 

linguistic and zero-order models. 

The parameters of each of the referred fuzzy structures are adjusted by means of a fuzzy 

neural network, i.e., a neural network able to represent the functions of a fuzzy system, 

namely, fuzzification, fuzzy implication and defuzzification. 
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4.1. Neuro-Fuzzy Arquitectures 
 

Basically, the nets presented in the following paragraphs are composed by an input layer, 

preceding a fuzzification layer and then a rule layer. After the initial layers, the next layer is, 

in the case of Takagi-Sugeno models, the final linear output layer. As for fuzzy consequents, 

the fourth layer is the union layer, used to integrate rules with the same consequents, and the 

last one is the output layer, responsible for defuzzification. 

In order to make the next expressions more readable, the notation used is presented 

beforehand: 

- m: number of network inputs 

- n: number of network outputs 

- g: number of fuzzy rules (groups) 

- ai
(p2): activation of neuron i in layer 2, regarding training pattern p (i denotes an input 

term: “input”); 

- ar
(p3): activation of neuron r in layer 3, regarding pattern p (r denotes “rule”); 

- as
(p4): activation of neuron s in layer 4, regarding pattern p (s denotes “S-norm”); 

- ao
(p5) = yo

(p): activation of neuron o in layer 5, i.e., output, regarding pattern p (o denotes 

“output”); 

- yo
(p): desired activation for neuron o in layer 5, i.e., for the network output, regarding 

pattern p; this is an output sample. 

 

As for Takagi-Sugeno models, the output takes place in the fourth layer, resulting: 

- ao
(p4) = yo

(p): activation of neuron o in layer 5, i.e., output, regarding pattern p (o denotes 

“output”); 

- yo
(p): desired activation for neuron o in layer 5, i.e., for the network output, regarding 
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pattern p. 

 

Takagi-Sugeno models 

 

From the described previously, Takagi-Sugeno structures are represented by the architecture 

in Figure 1. Naturally, the network presented serves both first and zero-order models, in 

which the consequents will be either first order functions or constants, respectively.  

In this structure, the input layer simply receives data from the external environment and 

passes them to the next layer.  

 

∩

∩

∩

∩

∩

x1

xm

. .
 .

. .
 .

. .
 .

. .
 . . .

 .
for(x; borj)

$y1

$yn

LXj r( )

 

Figure 1. Neuro-fuzzy network: Takagi-Sugeno type consequents. 

 

In the second layer, the fuzzification layer, each of the cells corresponds to a membership 

function associated to each of the inputs. Defining conventional Gaussian functions, the 
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output of each neuron in this layer is given by (13): 

 

( )

( )( )2

2
2 2

p
j ij

p ij
i

x c

a e
σ

−
−

=  
(13) 

 

where cij and σij represent, respectively, the center and standard deviation of the ith 

membership function related to the jth input. Such parameters constitute the weights of layer 

one to layer two links (LXj(r) in Figure 1). In the same expression, xj
(p) denotes the pth pattern 

associated do input j. 

Alternatively, it is possible to define two-sided Gaussian functions, which are characterized 

by their possibility of being asymmetric and containing a plateau, as a generalization of 

conventional functions (Figure 2). Therefore, the possibility of obtaining better results can be 

formulated, due to the increased flexibility of the generalized functions. 

 

cL cR+3σRcL-3σL cR

0

1

 

Figure 2. Two-sided Gaussian function. 

 

In the case where two-sided Gaussians are used, the activation of each of the neurons in this 

layer is given by (14). 
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( )

( )( )
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( )

( )( )
( )
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j ijL
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j ijR

pijR
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e x c

σ
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


= ≤ ≤


 − −

>

,

,

,

 
(14) 

 

Here, cijL and σijL represent, respectively, the center and standard deviation of the left 

component of the ith membership function related to the jth input. For the right component, the 

index R is used. Such parameters constitute the weights of layer one to layer two links (LXj(r) 

in Figure 1). In the same expression, xj
(p) denotes the pth pattern associated to input j. 

 

As for the neurons in the rule layer, their function consists of performing the antecedent 

conjunction of each rule, by means of some T-norm, e.g., product (15) or minimum (16). The 

first one is classified as an algebraic operator and the second one is a truncation operator. 

 

 

( ) ( )( ) ( )3 2 2

1
1

nana rrp p p
r i i

i
i

a T norm a a
=

=

= − = ∏  (15) 

( ) ( )( ) ( )( )3 2 2

1 1
min

na nar rp p p
r i i

i i
a T norm a a

= =
= − =  (16) 

 

In the previous expressions, nar stands for the number of inputs in the antecedent of rule r. 

Regarding the output layer, its task consists of computing numeric outputs based on the level 
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of activation of each rule. As referred previously, in zero-order models the weights in this 

layer denote the rule consequents, defined by constants. Therefore, each output neuron is 

activated as in (17). In the implementation of first order Takagi-Sugeno models, the net 

defines a fuzzy system with rules of type (11). In this way, the task of the output neurons is 

very similar to the ones in zero-order models, being defined as in (18). 

 

( ) ( )

( )

( )

3
0

4 1

3

1

ˆ

g
p

r r
p p r

o o g
p

r
r

a b
y a

a

=

=

⋅
= =

∑

∑
 (17) 

( ) ( )

( ) ( )

( )

3
0

1 14

3

1

ˆ

g m
p p

r orj j or
r jp p

o o g
p

r
r

a b x b

y a
a

= =

=

 
⋅ + 
 = =

∑ ∑

∑
 (18) 

 

 

Fuzzy consequents models 

 

As a basis for dealing with fuzzy consequents, Lin defines in his NFCN architecture [Lin, 

1995] a fuzzy neural net composed by five layers, as in Figure 3. However, the original 

structure is adapted in the present work, so as to allow different operators and membership 

functions. 

Comparatively to the network depicted in Figure 1, the first three layers perform exactly the 

same tasks. Obviously, the difference resides in the layers following those. 
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$y1

$yn

LXj r( )
LYo r( )

 

Figure 3. Neuro-fuzzy network: fuzzy consequents. 

 

Thus, the fourth layer, called the union layer, is responsible for integrating the rules with the 

same consequents, via some S-norm, e.g., bounded sum (19) or maximum (20). The first one 

is classified as an algebraic operator and the second one is a truncation operator. There, nrs 

stands for the number of rules which have neuron s as consequent. 

 

( ) ( )( ) ( )4 3 3

1
1

min 1,
nrnr ssp p p

s r r
r

r

a S norm a a
=

=

 
= − =   

 
∑  (19) 

( ) ( )( ) ( )( )4 3 3

1 1
max

nr nrs sp p p
s r rr r

a S norm a a
= =

= − =  (20) 

 

As for the output layer, or defuzzification layer (d, in Figure 3), layer four to layer five links 

(LYo(r) in the same figure) define the parameters of the membership functions associated to 
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the output linguistic terms. Thus, based on these membership functions and on the activation 

of each rule, its neurons should implement a defuzzification method suited to the types of 

fuzzy consequents, as the one presented in [Lin, 1995] (21): 

 

( ) ( )

( )
( )

( )
( )

4

5 1

4

1

ˆ

o

o

T Y
p

os os s
p p s

o o T Y
p
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c a
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σ

σ

=

=

= =
∑

∑
 (21) 

 

In (21), cos and σos represent the center and standard deviation of the sth membership function 

related to output o. In the case where two-sided Gaussians are used, equation (22) results, as 

is defined in [Paiva et al, 1999]. 

( ) ( )
( )

( )
( )

( )
( )

( )

4

5 1

4

1

1
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1
2

o

o
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osL osL osR osR s
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o o T Y
p

osL osR s
s

c c a
y a

a

σ σ

σ σ

=

=

+
= =

+

∑

∑
 (22) 

 

In the previous expressions,T(Yo) stands for the number of membership functions 

associated to each linguistic output variable Yo. The main idea of the defuzzification method 

proposed is to weight the activation of each rule, not only by the centers, right and left, but 

also by their standard deviations. Clearly, expression (22) is equivalent to equation (21) in the 

cases where one deals with regular Gaussian functions. 

Based on the function performed by each neuron, the linguistic networks are trained in batch 

mode, via the well-known backpropagation algorithm. Regarding Takagi-Sugeno models, 

several alternatives are applicable. In fact, the training can be also conducted through 

backpropagation. However, as a consequence of the linearity in the output layer, it is possible 
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to apply the least square estimator in matrix form. This strategy has the advantage of leading 

to a significant reduction of the number of epochs required. However, the time necessary for 

each epoch will be greater. 

 

4.2. Training Methodologies 

 

Based on the function performed by each neuron, the network is trained in batch mode 

through backpropagation. The training of the fuzzy neural network starts by defining a 

criterion for error minimization. The sum squared error (SSE) is used. In this way, the total 

network error E (23), is defined as the sum of squared errors ( )pE (24), computed for each 

training pattern p. 

 

( )

1

N
p

p

E E
=

= ∑  (23) 

( ) ( ) ( )( )2

1

1 ˆ
2

no
p p p

o o
o

E y y
=

= −∑  (24) 

 

where, ( )ˆ p
oy  stands for the pth network output pattern for the oth output variable, ( )p

oy represents 

the corresponding real output sample and no denotes the number of network outputs. 

In this way, every pattern is subjected to a forward pass, where signals flow from the input 

layer until the output layer, where the error for that specific pattern is calculated. 

Next, starting from the output layer, a backward pass takes place, in which the network 

parameters are adjusted towards error minimization. The minimization procedure is 

conducted iteratively via the gradient descent method, as follows (25): 
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( )pE
w

w
∂

γ
∂

∆ = −  (25) 

 

where w denotes, generically, any adjustable network parameter, or weight, and γ represents 

the network learning rate. Typically, the error derivative relative to the weight is calculated 

by the chain rule as follows (26): 

 

( ) ( )

( )

( )p p p

p

E E a
w wa

∂ ∂ ∂
∂ ∂∂

= ⋅  (26) 

 

In the previous expression, a(p) stands for the activation of any neuron in the network. In the 

output layer, a(p) is equivalent to some network output, ( )ˆ p
oy . 

As for the delta signals that need to be backpropagated, their value for an output neuron is 

computed as in (27). For a neuron in layer Li, its delta value is computed via the chain rule, 

based on the delta signal of the following layer, Li+1 (28). In (28), nLi+1 denotes the number of 

neurons in layer Li+1. 
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Fuzzy consequent models 

 

Regarding the five-layered linguistic network (Figure 3), the network training equations were 

generalized from [Lin, 1995], in order to allow the integration of two-sided Gaussian 

functions, as well as algebraic and truncation operators for conjunction and disjunction. 

In this way, in regular Gaussians, the centers associated to the output layer are tuned via 

equations (29) e (30): 
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In case two-sided Gaussians are used, equation (30) is replaced by (31): 
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(31) 

 

The previous equation is related to the left side of the Gaussian function (which will be used 

throughout this paper). As for the right sided, the expressions are exactly the same, except for 

the subscript L, which is substituted by R. 

Regarding the standard deviations, their tuning is performed as in (32) for regular Gaussians 

and (33) for two-sided Gaussians: 
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In the fourth layer there are no parameters to adjust. However, the delta signal must be 

calculated, in order to backpropagate it to the inner layers. This signal is computed based on 

the same signal in the following layer, as stated before, resulting in (34) and (35) for regular 

and two-sided Gaussians, respectively. 
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As for the third layer, once again there are no parameters to adjust. So, the only task to 

perform is to calculate the delta signals. Generically, it comes (36): 
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where nor stands for the number of consequents defined for rule r. 

In the original version [Lin, 1995], the disjunction is performed by means of bounded-sum, 

which is not continuously differentiable. In order to overcome that problem, simple sum is 

used, resulting (37): 
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In case the S-norm is performed by maximum, some care must be taken while calculating the 

derivative. In this case, it is necessary to save the index associated to the neuron that 
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originated the maximum. Thus, the derivative regarding that element (the “winner”) will be 1, 

being 0 for the “loosers” (38): 
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In the second layer, there are again parameters to adjust. Their tuning is conducted based on 

equations (39) e (40), for the centers, and (41) e (42), for the widths: 
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(42) 

 

where nri represents the number of rules that have neuron i as antecedent and j stands for the 

input variable associated with the ith membership function. 

In this case, centers are tuned in exactly the same manner, both for regular and two-sided 

Gaussians. The only difference is that two-sided Gaussians have two centers to adapt. 
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As in layer 3, it is necessary to choose an operator to implement the T-norm. In the original 

version [Lin, 1995], minimum is used (43): 

 

( )

( )

( ) ( )

( ) ( )

3 23

2 3 2

1 ,

0 ,

p pp
r rr

p p p
i i i

a aa
a a a

 =∂ = 
∂ ≠

 (43) 

 

In the previous equation, the same artifice used in (38) was performed, since those operators 

are not continuous. Alternatively, product, which is continuously differentiable, can be used.  

In this case, it comes (44): 
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Usually, minimum and maximum operators, referred in this section, are called truncation 

operators, whereas sum and product are called algebraic operators. Algebraic operators have 

some advantages. Namely, they lead to smoother output surfaces and permit the direct 

application of gradient descent without the artifices used with truncation operators. 

Tuning the parameters without any constraints, can lead to inconsistent membership 

functions. In fact, it makes no sense to have neither negative standard deviations nor 

two-sided Gaussian functions with right and left centers exchanged. Therefore, after adjusting 

the parameters, the integrity of the membership functions must be verified and guaranteed. 

Thus, in case centers in two-sided Gaussians get exchanged, it was decided to attribute them 

their mean value. As for standard deviations, in case they become negative, they are given a 

“small” value, which is quantified as 1% of the domain amplitude. Formally, it results (45).  
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where the domain interval is [Xmin, Xmax]. However, it is important to note that, with the 

constraints imposed, the true gradient is not followed any longer. Instead, an approximation is 

performed. 

 

Takagi-Sugeno models 

 

Regarding Takagi-Sugeno fuzzy models, zero or first-order, several alternatives are 

applicable. 

In a first alternative, the network can be trained via backpropagation. In this way, the only 

differences comparatively to fuzzy consequents models regard parameter tuning in the linear 

output layer and calculating the delta signals necessary to the rule layer.  

However, since the output layer is linear, the least squares estimator can be applied in matrix 

form. In this way, matrix equation (46) is obtained: 

 

T TY B= Φ ⋅  (46) 

 

In (46), B denotes a (m+1)⋅g×n matrix with parameters to identify, defined as follows (47): 
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In (47), each column in matrix B represents one model output. Each of those columns has 

(m+1)⋅g parameters associated. The same matrix can be divided in g sets of m+1 lines 

(separated by dashed lines). Each of those sets contains the parameters defined for the 

consequents of each rule. Thus, the total number of parameters for Takagi-Sugeno models 

will be (m+1)⋅g⋅n. In zero-order models, each rule will have a unique parameter, bor0, and so 

matrix B will be g×n. 

Still in equation (46), Y represents an n×N matrix containing real output data, and Φ is a 

(m+1)⋅g×N matrix, defined in (48), where ( )p
ix  is the pth pattern received by input i. For zero-

order models, vector ( )pX  is reduced to ( ) 1pX = . 
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Typically, equation (46) can be solved in a single step, as follows (49): 

 

( ) 1T TB Y
−

= Φ Φ Φ ⋅  (49) 

 

This requires matrix TΦ Φ  to be positive definite. By its construction, that matrix is always 

positive semi-definite. However, in case it is singular, that requirement is not followed any 

longer. In this case, an infinite number of solutions will result. Therefore, data collection 

must be carried out very carefully, so that the samples obtained are informative enough, in 

order to avoid the problem referred. 

In (49), calculating the inverse can be computationally heavy. Therefore, the recursive 

version of the least square estimator (RLS) is preferred (50): 
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Here, Φ(p) stands for the pth column in matrix Φ and ( )pY  e ( )ˆ pY  are n×1 vectors that denote, 

respectively, real and model output. 

The method described has the advantage of guaranteeing the optimum solution, for fixed 

parameters in the second layer. Therefore, it is usual to use it in a hybrid scheme [Jang, 

1993]. In this scheme, the network performs a forward pass, until the rule layer. At this point, 

matrix Φ is determined. Next, the optimal parameters for matrix B are obtained through RLS 

and the modeling error is calculated. In the second phase, the network performs 

backpropagation, and the second layer parameters are tuned as described previously, based on 

the delta signal relative to the rule layer. 

This scheme, which is used in this work, allows a significant reduction of the number of 

training epochs. However, it is important to note that the computing time for each epoch is 

notoriously higher than the pure application of backpropagation to the training of the 

network. 

In order to reduce the network convergence time, an adaptive learning rate is used, both for 

fuzzy consequents models and Takagi-Sugeno models. Thus, if the error is reduced for numred 

consecutive epochs, the learning rate is increased by a factor µup. In case error grows for 

numinc consecutive epochs or oscillates for numosc consecutive epochs, the learning rate is 

reduced by a factor of µdown. As for the stopping criterion, training finishes when the Root 

Mean Squared Error (RMSE) reaches some satisfactory threshold, stabilizes or overtraining 

happens. 
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5. A COMPARATIVE STUDY: SIMULATION RESULTS 

 
One of the most commonly used case studies in system identification consists of the 

prediction of the Mackey-Glass chaotic time series [Mackey and Glass, 1977], described by 

equation (51): 
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−
= −

+ −
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It does not show a clear periodic behavior and it is also very sensible to initial conditions. 

The problem consists of predicting future values of the series. 

The application of the techniques described previously is carried out based on identification 

data from the “IEEE Neural Network Council, Standards Committee, Working Group on 

Data Modelling Benchmarks”, which are also used in the analysis of several other 

methodologies. So, in order to obtain a numeric solution, the fourth order Runge-Kutta 

method was applied. For integration, it was assumed x(t)=0, t<0, and a time interval of 0.1. 

The initial condition x(0)=1.2 and the τ parameter (τ=17) were also defined. In this case, [x(t-

18), x(t-12), x(t-6), x(t)] are used to predict x(t+6). Based on the parameterization described, 

data was obtained in the interval t ∈ [0; 2000]. Then, 1000 input-output pairs were selected 

from interval t ∈ [118; 1117]. The data collected is depicted in Figure 4. This data set was 

divided in order to get the training and validation suits: first and last 500 samples, 

respectively. 

Using the samples obtained, the chaotic time series was modeled, according to the procedures 

described in the previous sections. The parameter ra was assigned the value 0.5, resulting 9 
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fuzzy rules. Next, the network, with four inputs and one output, was trained. 
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Figure 4. Chaotic time series: identification data.  

 

After the application of the set of methodologies described, the results in Table 2 were 

obtained, where FC, CC and FOC denote respectively fuzzy, constant and first order 

consequents. The algorithms described were programmed in C++ and the experiments were 

conducted on a PC under Microsoft Windows  NT, running at 266 MHz on a Pentium II 

processor, with 64MB RAM.  

 
RMSE 

Method 
Type of 

Gaussians  
Nr.  

Param. 
Fuzzy. 
Oper. 

Nr.  
Epochs. 

Time  
p/ Ep. Train Test 

1 FC 2-sided 180 Algebraic 2000 0.27s 0.0070 0.0076 

2 “ “ “ Truncation “ 0.24s 0.0111 0.0121 

3 “ Regular 90 Algebraic “ 0.26s 0.0066 0.0071 

4 CC 2-sided 153 Algebraic 1500 0.54s 0.0047 0.0050 

5 “ “ “ Truncation “ 0.52s 0.0097 0.0108 

6 “ Regular 81 Algebraic “ 0.53s 0.0050 0.0052 

7 FOC 2-sided 189 Algebraic 300 4.1s 0.0025 0.0030 

8 “ “ “ Truncation “ 4.3s 0.0038 0.0043 

9 “ Regular 147 Algebraic “ 4.0s 0.0030 0.0033 

Table 2. Chaotic series: training results. 
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The results presented allow some conclusions to be drawn. Using regular Gaussian functions 

presents some advantages in case fuzzy consequents are utilized. In fact, the higher 

complexity that results from the use of two-sided Gaussian functions does not originate a 

significant gain in terms of model accuracy, and so regular Gaussians are preferable. As for 

fuzzy operators, algebraic operators lead to much better results than truncation operators. 

Models with constant consequents allow better results than linguistic models but first order 

models are the most accurate and need a considerable lower number of training epochs. 

However, linear optimization leads to high processing time, which may be problematic for 

real-time learning, unless code optimization is performed. As a consequence, zero order 

models appear to have a satisfactory trade-off between accuracy and computer efficiency. 

Figure 6 depicts the output for real and test data, regarding method 1. That figure shows the 

high prediction accuracy of the model, which is not the best one achieved in the simulations. 

In Figure 5, the results for method 9 (first-order consequents, regular Gaussian functions and 

algebraic operators) are presented, where real output data can hardly be distinguished from 

the model output. 

Despite the fact that only one experiment is presented, the authors tested the methodology in 

many commonly used benchmark problems (Box-Jenkins gas furnace, Narendra’s 

benchmarks, etc.), getting consistent conclusions, which could be generalized. 
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Figure 5. Chaotic series: output prediction in a first-order Takagi-Sugeno model with 

algebraic operators and two-sided Gaussians. 
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Figure 6. Chaotic series: output prediction in a linguistic model with algebraic operators and 

regular Gaussians. 

 

One interesting point regarding method 1 (fuzzy consequents) is that, though it is called a 

linguistic model, it is hard to assign linguistic labels to its membership functions, as can be 

seen in Figure 7 (the parameters for the membership functions in that figure are presented in 
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Table 3, where MF stands for membership function). In fact, the membership functions are 

strongly overlapped, which makes it very hard to label them. Thus, the functions are labeled 

as MF1, MF2, …, MF9, and the rule base obtained (Table 4) is not very intelligible, in terms 

of human cognition. This problem of interpretability (or transparency) is being object of 

research by the authors. 
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Figure 7. Method 1: membership functions obtained.  

 

 

Comparison with other methods 

 

This example has been treated before by other methods. Table 5 shows the comparison data.  

The first three lines refer to the results of the present work; lines 4 to 6 are extracted from 

[Chiu, 1994]; lines 7 and 8 are adapted from [Nauck and Kruse, 1999]. From there, it can be 

concluded that neural networks trained by backpropagation require a significantly higher 

number of adjustable parameters than other methods, based on fuzzy systems. Moreover, 

fuzzy systems require fewer training epochs. Also, the fact that in the present work all the 
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model parameters of first-order TS model are adapted (this does not happen in other 

methods) allows the number of rules to be reduced, without losing model precision, and as a 

consequence the number of rules is significantly reduced. In other methods, e.g., [Chiu, 

1994], the consequents are optimized by means of the least square estimator, but the 

antecedents are not changed. Thus, the model obtained is not fully optimized and, 

consequently, more rules are necessary to achieve the same model accuracy. If regular 

Gaussian functions would be used (leading to a small degradation of model accuracy), the 

number of free parameters would be reduced significantly, as can be seen in Table 2, by 

comparing lines 7 and 9. The ANFIS results are superior, but at the cost of a higher number 

of rules. 

 

 
6. CONCLUSIONS 

 
In this paper a comparative analysis of different fuzzy structures and parameterizations is 

performed. By the application of subtractive clustering an initial structure for the fuzzy model 

is obtained, which is used for the initialization of a fuzzy neural network. Next, the 

parameters are adjusted through the training of the network, according to the structure 

defined, i.e., linguistic, zero order or first order Takagi-Sugeno. Algebraic and truncation 

operators are used, as well as regular and two-sided Gaussian functions. The techniques 

described are applied to the Mackey-Glass time series, having been concluded that first order 

models are the most accurate. However, zero order models present the best trade-off between 

model accuracy and computer efficiency. In terms of fuzzy operators, algebraic operators 

lead to more precise models. As for membership functions, it was concluded that the 

additional complexity of two-sided Gaussians did not originate a significant gain. So, regular 

Gaussian functions are preferable. 
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  MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 

cL 0.45890 0.57942 0.73123 0.90927 0.94710 1.09923 1.13540 1.13788 1.23283 

cR 0.51762 0.60231 0.73124 0.91222 0.96767 1.10719 1.13541 1.18007 1.28358 

σL  0.15626 0.21683 0.17104 0.16290 0.15573 0.07965 0.16155 0.18267 0.13798 
x(t-18) 

σR 0.22855 0.23605 0.24308 0.16850 0.15877 0.14930 0.13472 0.14538 0.15774 

cL 0.45925 0.70339 0.74875 0.81388 0.93538 1.01849 1.15110 1.16626 1.18986 

cR 0.53720 0.76558 0.75697 0.83325 0.93538 1.06013 1.15110 1.16627 1.20855 

σL  0.15982 0.17073 0.12746 0.13132 0.14550 0.10050 0.07397 0.09911 0.15912 
x(t-12) 

σR 0.15850 0.11472 0.14399 0.20298 0.13431 0.10582 0.13079 0.10362 0.19192 

cL 0.70946 0.72954 0.75930 0.75956 0.86176 0.97492 0.98703 1.05702 1.19090 

cR 0.71303 0.81760 0.84009 0.75956 1.12831 0.97531 0.98705 1.16716 1.21067 

σL  0.10654 0.18578 0.22580 0.19969 0.30088 0.16496 0.17036 0.19722 0.20099 
x(t-6) 

σR 0.26867 0.22552 0.27750 0.17792 0.22936 0.15089 0.19838 0.19709 0.13985 

cL 0.55795 0.62578 0.72673 0.86851 0.95754 0.96978 1.01331 1.05637 1.12134 

cR 0.58266 0.65020 0.77437 0.96156 1.01022 0.98347 1.04280 1.05638 1.23770 

σL  0.16476 0.14495 0.16442 0.13607 0.23840 0.15556 0.33283 0.02425 0.17506 
X(t) 

σR 0.19925 0.14922 0.20002 0.15158 0.17186 0.14799 0.11069 0.06402 0.19160 

cL 0.39628 0.53563 0.73117 0.80466 0.87284 1.08335 1.09021 1.09188 1.34457 

cR 0.39659 0.53869 0.73476 0.80815 0.88113 1.08971 1.09708 1.09832 1.35395 

σL  0.18464 0.16231 0.10678 0.12415 0.16290 0.15945 0.11147 0.18100 0.21765 
x(t+6) 

σR 0.18453 0.16027 0.10587 0.12569 0.15706 0.16103 0.11065 0.18301 0.22208 

Table 3. Method 1: network parameters 
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Rule x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 MF1 MF4 MF6 MF6 MF7 

2 MF2 MF1 MF3 MF5 MF5 

3 MF3 MF2 MF5 MF9 MF9 

4 MF4 MF6 MF8 MF7 MF8 

5 MF5 MF3 MF1 MF3 MF6 

6 MF6 MF7 MF9 MF8 MF3 

7 MF7 MF8 MF7 MF4 MF2 

8 MF8 MF5 MF2 MF2 MF4 

9 MF9 MF9 MF4 MF1 

⇒  

MF1 

Table 4. Method 1: rule base obtained by the proposed method. 

 
 
 
 

 

Method Number of Rules Number of Free 
Parameters 

Error 
index 

1 FC 9 90 0.033 

2 CC 9 153 0.023 

3 FOC 9 189 0.014 

4 Chiu 25 125 0.014 

5 ANFIS 16 104 0.007 

6 ANN with 
backpropagation 

---- 540 0.02 

7 NEFPROX (A) 129 105 0.155 

8 NEFPROX (G) 26 38 0.313 

Table 5. Comparison with methods from other authors. 
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