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Abstract
A methodology and experimenta comparison of neuro-fuzzy dructures, namdy linguidic
and zero and firg-order Takagi-Sugeno, are developed. The implementation of the modd is
conducted through the traning of a neuro-fuzzy network, i.e, a neura net architecture
capable of representing a fuzzy sysem. In the firg phase, the dructure of the modd is
obtained by subtractive clustering, which dlows the extraction of a st of relevant rules based
on a st of representative input-output data samples. Membership functions with two-sided
Gaussan functions are proposed and discussed. In the second phase, the modd parameters
are tuned via the training of a neura network. Furthermore, different fuzzy operators are

compared, as well as regular and two-sded Gaussan functions.
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1. INTRODUCTION

The condruction of fuzzy sysems for process modding and prediction or, in generd, for
feature extraction from data is presently carried out in severa ways. From the set of possble
drategies, performing ther training through neurd networks seems to be the most promising
one. This drategy leads to so-cdled neuro-fuzzy sysems The development of neuro-fuzzy
gysems is actudly a subject of great activity. In fact, snce the pioneer works of Zadeh
[Zadeh, 1973] and Mamdani [Mamdani, 1974] many progresses have been made regarding
the development of fuzzy relaions based on experiences of skilled operators or from a set of
observed input-output data [Jamshidi et d,1997]. With the development of neurd networks
and of its traning dgorithms, ther computationa potentidities have been introduced into
fuzzy leaning opeaions leading to neuro-fuzzy sysems Many dructures have been
proposed and some were largely disseminated, among which Jang's ANFIS sructure [Jang,
1993] is probably the most famous. Severd recent developments have improved the
posshilities of neuro-fuzzy sysems. For example Azeem, Hanmandlu and Ahmad [Azeem et
al, 2000] proposed the GANFIS structure, a generdization of Jang's work. Hong and Harris
[Hong and Harris, 2000] researched for new types of bass function for the case of
n-dimensond input spaces in order to overcome the curse of dimendondity problem when n
is large. Zhang and Morris [Zhang and Morris, 1999] proposed a type of recurrent
neuro-fuzzy networks to build long-range prediction modes for nonlinear processes easer to
interpret  than grictly black-box models. P and Pd [Pa and Pa, 1999] propose a
connectionist implementation of the compostiond rule of inference and an architecture for it
that automaticdly finds an “optimd” redion representing a set of fuzzy rules Kim and
Kasabov [Kim and Kabasov, 1999] propose an HyFIS- Hybrid Neurd Fuzzy Inference
Sydem for building and optimizing fuzzy modds providing linguisic meaning; they use a
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two-phase methodology: a rule generation phase from data and a rule tuning phase using

error backpropagation.

In this work, it is presented a methodology carried out in two main phases in the firs one,
dructure learning is performed, i.e, a st of fuzzy rules is obtained by subtractive clustering;
in the second one, the modd parameters (the membership function parameters of the fuzzy
system) are tuned.

Based on the generic methodology referred, an andyss is made regarding some important
issues in fuzzy modding, eg., type of rules (Takagi - Sugeno [Tekagi and Sugeno, 1985] or
linguigtic), type of operators and membership functions. In terms of membership functions,

this sudy is restricted to smple and two-sded Gaussan functions.

The paper is organized as follows. In Section 2 the man issues of fuzzy identification are
introduced. In Section 3 subtractive clustering, used for structure learning, is presented. Then,
the parameter learning drategies used are described in Section 4. The methodologies are
applied to the Mackey-Glass time series, in Section 5. Findly, some conclusions are drawn in

Section 6.

2.FUZZY MODELLING AND IDENTIFICATION

Dynamicd sydem identification deds with the implementation of modds usng experimentd
daa Thus, when a modd is deveoped based on the theory of system identification, its
parameters are tuned according to some criteria, aming to obtan a finad representation
adequate for the modding purposes. In this sense, fuzzy identification is presented as a
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particular case of system identification, in which the model is categorized as afuzzy system.
Thus, without loss of generdity, let us assume a sngle-input sngle-output (SISO) modd,

with oneinput, u, and one output, y, from where N data samples are collected (1):

Z" ={[u®), yD].[u(@),y()]...[u(N), y(N)]} (1)

Usng data collected from the system, the god is to obtain a fuzzy modd, represented by a set

of rules of type R (2):

R:If y(t-DisA, and u(t- d)isB, then y(t)isC, 2

where d represents the systlem time delay and Ay, B and Cj; denote linguistic terms associated

to each input and output. Those terms are defined by ther respective membership functions
My, M M The previous gructure is caled a FARX dructure (Fuzzy Auto Regressve with
exXogenous inputs), as a generdization of the wdl-known ARX dructure. Thus, the sdection

of a set of rules of type (2), as well as the definition of the fuzzy sets A;i, Bji and Cji, constitute

project issues specific to fuzzy systems.

3. STRUCTURE LEARNING

In order to obtain aset of g fuzzy conditiond rules, capable  of representing the system under
sudy, clustering dgorithms are particularly suited, since they permit a scatter partitioning of

the input-output data space, which results in finding only the rdevant rules. Comparing to



orid-based partitioning methods, clugtering dgorithms have the advantage of avoiding the
rue base exploson, i.e, the curse of dimensondity. Some auhors use grid-based
partitioning methods, combined with network pruning. Based on the authors previous work
[Paiva, 1999], it is their opinion that the results are not as good as the ones resulting from
clusering techniques. curse of dimengondity problems ae avoided;, the pruning of the
network can lead to wrong deetion of nodes if the network is not optimized; optimization of
a large dimenson network is very time consuming; after deletion of nodes the network
should be re-optimized.

In this paper, Chiu's subtractive clustering is agpplied [Chiu, 1994]. This scheme possesses
some interesting advanteges, especidly in a neuro-fuzzy identification context. In fact,
ubtractive clugtering is an efficient dgorithm and does not require any optimizetion, being a
good choice for the initidization of the neuro-fuzzy network. Fuzzy c-means and other
optimization-based clugtering dgorithms would lead to a peformance diminishing because
they perform an unnecessary optimization phase prior to network training. Also, progressve
dustering and compatible cluster merging dgorithms are computationdly expensve and
need merics for vaidation of individud clugers [Davé and Krishngpuram, 1997]. Therefore,
despite their potentid, they are too complex for a smple initidization of a fuzzy neurd
network.

Chiu's dgorithm belongs to the cdlass of potentid function methods, being, more precisdy, a
vaiaion of the mountain method (see [Davé and Krishngpuram, 1997]). In this dass of
dgorithms, a st of points are defined as possble group centers, each of them being
interpreted as an energy source. In subtractive clustering the center candidates are the data
samples themsdlves. In this way, the man limitation of the mountain method is overtaken. In
fact, there, the candidates are defined in a grid, leading to curse of dimensiondity problems.

So, let ZV (1) be a set of N data samples, z, 2, ..., zy, defined in a m+n space, where m

5



denotes the number of inputs and n the number of outputs. In order to make the range of
vaues in each dimenson identicd, the data samples are normdized, so that they are limited
by a hypercube.

As it was refeared, it is admitted that each of the samples defines a possible cluster center.

Therefore, the potentia associated to z is (3):

N -a --Z-2
R(Z,ZN):ée |4 ll , a:riz’ i:112’...1N (3)
= a

where r,>0 is radii, a constant which defines the neighborhood radius of each point. Thus,
points z located out of the radius of z will have a reduced influence in its potentid. On the
other hand, the effect of points close to z will grow with their proximity. In this way, points
with a dense neighborhood will have higher associated potentials.

After computing the potentia for each point, the one with the highest potentia is sdected as
the first cluster center.

Next, the potentid of dl the remaining points is reduced. Defining z1© as the first group

center and denoting its potentid as P; , the potentid of the remaining points is reduced as in

(4):

-2 @

P - F?_pl*e'bh'ﬁ*"z’ b ,
b

where the congtant rp,>0 defines the neighborhood radius with senshble reductions in its

potentia.



In this way, points close to the center sdected will have their potentids reduced in a more
ggnificant manner, and so the probability of being chosen as centers diminishes. This
procedure has the advantage of avoiding the concentration of identicd clusters in denser
zones. Therefore, the r, vaue is sdected in order be dightly higher then r,, so as to avoid
closdaly spaced clusters. Typicdly, rp = 1.5r,.

After peforming potentid reduction for dl the candidates, the one with the highest potentid
is sdected as the second cluder, after what the potentia of the remaining points is again

reduced. Genericaly, after determining the r'™" group, the potential is reduced as (5):

2
P- P- p*e'b|4'2r| ®)

I r

The procedure of center sdection and potentid reduction is repeated until the following

stopping criterion (Alg. 1) is reached.

If P >e"PPy’
Accept z* asthe next cluster center and continue
Otherwise,
If P <e®"py”
Reject z," and finish the dgorithm.
Otherwise
Let dmin be the shortest distance between z, and al the centers aready
found

If dmin/ra + P /P 3 1




Accept 7, asthe next cluster center and continue
Otherwise
Reject z and assign it the potential 0.0.
Select the point with higher potential asnew z .
Repeat the test.
End If
End If

End If

Alg. 1. Stopping criterion for subtractive clustering.

In Alg. 1, e*? gpecifies a threshold above which the point is sdected as a center with no
doubts and €™ specifies the threshold below which the point is definitely rejected. The third
case is where the point is characterized by a good trade-off between having a sufficiently
high potentid and being digant enough from the custers determined before. Typicaly,
e"*=0.5 and €*""=0.15.

As it can be understood from the description of the agorithm, the number of clugsters to
obtain is not pre-specified. However, it is important to note that the parameter radii isdirectly
related to the number of clusers found. Thus a smdl radius will lead to a high number of
rules, which, if excessve, may result in overfitting problems. On the other hand, a bigger
radius will leed to a smdler number of clusters, which may originate underfitting, and o,
models with reduced representation accuracy. Therefore, in practice it is necessary to test
seveard vdues for radii and sdect the most adequate according to the results obtained.
However, despite the fact that some radii values should be tested, this parameter gives an

initid hint on the number of clusters necessary [Paiva, 1999]. This conditutes an important



advantage over optimizationbased and other classes of cdudering agorithms, when little
information is known regarding the best number of clusters. Another advantage of subtractive
clustering is that the dgorithm is noise robust, snce outliers do not sgnificantly influence the
choice of centers, due to their low potertid.

After gpplying subtractive clustering, each of the clusters obtained will congitute a prototype
for a particular behavior of the sysem under andysis. So, each cluster can be used to define a
fuzzy rule, able to describe the behavior of the sysem in some region of the input-output

space. Typicdly, g fuzzy conditiond rules of type (6) are obtained:

Ruler:

IF (X1 is LX1) AND (X2 isLX2) AND ... AND (Xm is LXm") (6)

THEN (Y1 isLY1®) AND (Y2 isLY2() AND ... AND (Y, isLYn(")

where each of the linguistic terms in the antecedent, LXj, has an associated membership

function defined as follows (7):

« 2
Xi'xj)

: (x.):e_a(

=120 j=12---m (7)

Here, X; denotes a numeric value related to the ™ input dimension and xr,-* isthe j™ coordinate
in the m-dimensiond vector x, . Equation (7) results from the computation of the potentia
associated to each point in the data space. Clearly, expresson (6) is a consequence of usng
linguigtic models, i.e, modds in which the consequents are fuzzy sets. Such consequents

result naturaly from the gpplication of subtractive clustering and are obtained as follows (8):



’0:112’...’n (8)

where y, denotes a numeric vaue regarding the o output dimension and v, is the j
coordinate in the n-dimensiona vector y; .

Obtaining an initid dructure for Takagi-Sugeno modes, in which the terms in the
consequents ae typicdly zero and firg-order linear functions, is performed smilarly.
However, snce the consequents are not fuzzy sets, the initidization procedure just described
applies only to the antecedents. In fact, based on the linear characteristics of the consequents,
their vaues can be easlly obtained by means of linear optimization techniques.

Comparing (7), (8) and the generad equation for Gaussian functions, it becomes clear that the
membership functions consdered belong to the type referred. Thus, regarding the standard

deviation of each function, expression (9) is obtained :

Sy :«/% ©)

Findly, after the parameterization of the Gaussan membership functions, the data used,
normaized previoudy, are redored to ther initid vaues. In the same way, the function

parameters are adjusted to the domains defined for each dimension.
4. PARAMETERS LEARNING

After determining a fuzzy modd dructure, the modd parameters, i.e, the centers and

10



standard deviations of the Gaussan membership functions, should be tuned. Therefore, it is
necessaxry to sdect the type of modd to use In linguistic models, the conditiona rules belong
to type (6). Regading zeroc-order Takagi-Sugeno modds, with constant consequents, the
rules are of type (10). As for first order Takagi-Sugeno models, the rules are of type (11),

where fo(X) isdefined asin (12).

Ruler:

IF (X1 isLX1M) AND (X2 isLX2) AND ... AND (X is LXm®) (10)

THEN (y1= b1r) AND (y2= b2r) AND ... AND (Yn= bnr)

Ruler:

IF (X1 isLX1) AND (X2 isLX2") AND ... AND (X is LXm™) (11)

THEN [y1= f1,(X)] AND [y2 = f2(X)] AND ... AND [yn= fnr(X)]

for( )9 =0, +heX X+ R X

o (12)
ijlA! J=1;2,"',m 0:1,2’...’n; r:]_,zl...’g

As it can be seen, firg order Takagi-Sugeno models are characterized by having more
flexble consequents. Thus, these dructures can be seen as smooth shifters between locd
liner modds which is an advantage comparing to the interpolative properties of both

linguigtic and zero-order models.

The parameters of each of the referred fuzzy dructures are adjusted by means of a fuzzy
neurd network, i.e, a neurd network able to represent the functions of a fuzzy system,

namdy, fuzzification, fuzzy implication and defuzzfication.
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4.1. Neuro-Fuzzy Arquitectures

Bascdly, the nets presented in the following paragraphs are composed by an input layer,
preceding a fuzzification layer and then a rule layer. After the initid layers the next layer is,
in the case of Takagi-Sugeno modds, the find linear output layer. As for fuzzy consequents,
the fourth layer is the union layer, used to integrate rules with the same consequents, and the

lagt oneisthe output layer, responsible for defuzzification.
In order to make the next expressons more readable, the notation used is presented
beforehand:
- m: number of network inputs
- n: number of network outputs
- g: number of fuzzy rules (groups)
-aP?: edtivation of neuron i in layer 2, regarding training pattern p (i denotes an input
term: “input” );
- a,P¥): activation of neuron r in layer 3, regarding pattern p (r denotes “rule” );
- adPY: activation of neuron sin layer 4, regarding pattern p (s denotes“ S-norm” );
-a,™ = y,P: adtivation of neuron o in layer 5, i.e,, output, regarding pattern p (o denotes
“output”);
-yo®: desired activation for neuron o in layer 5, i.e, for the network output, regarding

pattern p; thisis an output sample.

As for Takagi- Sugeno models, the output takes place in the fourth layer, resulting:
- a,PY = y,P: adtivation of neuron o in layer 5, i.e,, output, regarding pattern p (o denotes
“output”);

-voP: desired activation for neuron o in layer 5, i.e, for the network output, regarding
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pattern p.

Takagi-Sugeno models

From the described previoudy, Takagi-Sugeno structures are represented by the architecture
in Figure 1. Naturally, the network presented serves both first and zero-order modes, in
which the consequents will be either first order functions or congtants, repectively.

In this dructure, the input layer Imply recaves daa from the externd environment and

passes them to the next layer.

Figure 1. Neuro-fuzzy network: Takagi- Sugeno type consequents.

In the second layer, the fuzzfication layer, each of the cells corresponds to a membership

function asociaied to each of the inputs Defining conventiond Gaussan functions, the
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output of each neuron in this layer isgiven by (13):

ST ) (13)

where ¢; and sj represent, respectively, the center and standard deviation of the it
membership function related to the j input. Such parameters congtitute the weights of layer
one to layer two links LXj” in Figure 1). In the same expression, x®® denotes the p™" pattern
associated do input j.

Alternatively, it is possble to define two-sded Gaussan functions, which are characterized
by their posshility of being asymmetric and containing a plaeau, as a generdizaion of
conventiond functions (Figure 2). Therefore, the possbility of obtaining better results can be

formulated, due to the increased flexibility of the generdized functions.

0 ’
C-3s, ¢ Cr Cgt3sy

Figure 2. Two-sided Gaussan function.

In the case where two-sded Gaussans are used, the activation of each of the neurons in this

layer isgiven by (14).
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Here, cj. and sjj. represent, respectively, the center and standard deviation of the left
component d the i" membership function related to the j™ input. For the right component, the
index R is used. Such parameters condtitute the weights of layer one to layer two links LXj"

in Figure 1). In the same expression, x;”) denotes the p™ pattern associated to input |.

As for the neurons in the rule layer, ther function condsts of performing the antecedent
conjunction of each rule, by means of some Fnorm, eg., product (15) or minimum (16). The

first oneis classfied as an agebraic operator and the second one is a truncation operator.

na, na.
a®=T- norm(a(pz)) =Qa™ (15)
=1 i=1
nar nar
al*? =T- norm(a*?) = min(a(*?) (16)
i=1 i=1

In the previous expressions, na, stands for the number of inputs in the antecedent of ruler.

Regarding the output layer, its task congsts of computing numeric outputs based on the leve
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of activation of each rule. As referred previoudy, in zero-order modds the weights in this
layer denote the rule consequents, defined by congants. Therefore, each output neuron is
activaed as in (17). In the implementation of fird order Takagi-Sugeno models, the net
defines a fuzzy sysem with rules of type (11). In this way, the task of the output neurons is

very smilar to the ones in zero-order models, being defined asin (18).

g. al('p3) >bOr
9((Jp) — aép4) - r—‘lgﬁ (17)
aa’
r=1
a a'(ps) >€eé borjX(Jp) + borog
oo =g = &im o (19
g (0

Fuzzy consequents models

As a bass for deding with fuzzy consequents, Lin defines in his NFCN architecture [Lin,
1995] a fuzzy neurd net composed by five layers, as in Fgure 3. However, the origind
structure is adapted in the present work, so as to dlow different operators and membership
functions.

Comparatively to the network depicted in Figure 1, the firg three layers perform exactly the

same tasks. Obvioudy, the difference resdesin the layers following those.
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Figure 3. Neuro-fuzzy nework: fuzzy consequents.

Thus, the fourth layer, caled the union layer, is respongble for integrating the rules with the
same consequents, via some Snorm, e.g., bounded sum (19) or maximum (20). The first one
is classfied as an adgebraic operator and the second one is a truncation operator. There, nrg

gtands for the number of rules which have neuron s as consequent.

alP=gs- rrljorm(ar( ‘3)) = mingi y ar“ﬁ)g (19)
r=1 [}
-5 ()4 =

As for the output layer, or defuzzfication layer (d, in Figure 3), layer four to layer five links

(LYo"™ in the same figure) define the parameters of the membership functions associated to
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the output linguigtic terms. Thus, based on these membership functions and on the activation
of each rule its neurons should implement a defuzzification method suited to the types of

fuzzy consequents, as the one presented in [Lin, 1995] (21):

[r(vo)
a SSOSaSp
=a" _TT_S,”—) (21)
a s.al

s=1

4)

In (21), Cos ad S s represent the center and standard deviation of the s" membership function
related to output 0. In the case where two-sded Gaussans are used, equation (22) results, as

isdefined in[Pava et d, 1999].

[TC6)
é. 1(Cosl_S osL + CosRS osR) a‘(sp4)

op) = 4P — _s=
yop _ar)p - 1|Tg0|1
4
a ( SosR)aﬁp)

s=1

(22)

In the previous expressonsiT(Yo)i dSands for the number of membership functions
associated to each linguigtic output variadble Y,. The man idea of the defuzzfication method
proposed is to weight the activation of each rule, not only by the centers, right and left, but
aso by ther sandard deviations. Clearly, expresson (22) is equivdent to equation (21) in the
cases where one deals with regular Gaussian functions.

Based on the function performed by each neuron, the linguistic networks are trained in baich
mode, via the wdl-known backpropagation agorithm. Regarding Takagi-Sugeno moddls,
svead dtendives ae goplicable. In fact, the training can be aso conducted through

backpropagation. However, as a consequence of the linearity in the output layer, it is possble
18



to gpply the leest square estimator in matrix form. This Srategy has the advantage of leading
to a dgnificant reduction of the number of epochs required. However, the time necessary for

each epoch will be grester.

4.2. Training M ethodologies

Based on the function performed by each neuron, the network is trained in batch mode
through backpropagation. The training of the fuzzy neurd network darts by defining a
criterion for error minimization. The sum squared error (SSE) is used. In this way, the tota
network error E (23), is defined as the sum of squared errors  E(" (24), computed for each

training pettern p.

E=§ E® (23)
p=L
0 2
e =15 (- ) e

where, 9(") stands for the p™ network output pattern for the o output variable, y(p) represents

(0] (o]

the corresponding real output sample and no denotes the number of network outputs.

In this way, every pattern is subjected to a forward pass, where sgnds flow from the input

layer until the output layer, where the error for that specific pattern is calculated.

Next, darting from the output layer, a backward pass tekes place, in which the network
paraneters ae adjused towards eror minimization. The minimization procedure is

conducted iteratively viathe gradient descent method, as follows (25):
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(p)
1E” (25)

where w denotes, genericdly, any adjustable network parameter, or weight, and g represents
the network learning rate. Typicdly, the eror derivative redive to the weght is cdculated

by the chain rule as follows (26):

ﬂE(p) _ﬂE(p) y‘ﬂa(p)
iw ga® qw (%)

In the previous expression, a® stands for the activation d any neuron in the network. In the

output layer, a® is equivalent to some network output, 7.

As for the delta Sgnds that need to be backpropagated, their vaue for an output neuron is
computed as in (27). For a neuron in layer L, its deta vadue is computed via the chain rule,
based on the deta signd of the following layer, Li+1 (28). In (28), nLi+1 denotes the number of

neuronsin layer L.

_ ﬂE(p)
d(p) - _ ﬂa(p) (27)
v = P B gEY By AR ek (28)
R S - TRt G
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Fuzzy consequent models

Regarding the five-layered linguigic network (Figure 3), the network training equations were
generdized from [Lin, 1995], in order to dlow the integration of two-sded Gaussian
functions, as well as agebraic and truncation operators for conjunction and digunction.

In this way, in regular Gaussans, the centers associated to the output layer are tuned via

equations (29) e (30):

d(p5) — ygp) } 9(()p) (29)

Tc, ° Tl (30)

k=1

In case two-sided Gaussans are used, equation (30) isreplaced by (31):

(31)

The previous equation is related to the left Sde of the Gaussan function (which will be used
throughout this paper). As for the right Sded, the expressions are exactly the same, except for

the subscript L, which is subgtituted by R

Regarding the standard deviations, their tuning is performed as in (32) for regular Gaussans

and (33) for two-sded Gaussans.
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ﬂEO - d P “ k=1 k=1
0 2 (32
1S o driv)| U
~ 2 (p4) -
e a S okak u
g g
g g
ﬂE(p) (p5) Cos_as(p4) a (S o TS okR) a1(<p4) B a(sp4) a (Cokl_s ot F GRS okR)aIE’M)
0 —_ Po) 5 k=1 k=1
fis osL dO éT gYo)l (04) Uz (33)
(f-‘a (SokL+SokR)ak l;'
B g

In the fourth layer there are no parameters to adjust. However, the ddta sgnd must be
cdculated, in order to backpropagate it to the inner layers. This signa is computed based on

the same sgnd in the fallowing layer, as dated before, resulting in (34) and (35) for regular

and two-sded Gaussians, respectively.

Ir (o)l [Tl
- 7a% drie) o (34
= (p4) -
éa Sad U
8 k=1 8]
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As for the third layer, once again there are no parameters to adjust. So, the only task to

performisto caculate the ddta sgnas. Genericaly, it comes (36):

(36)

where no, stands for the number of consequents defined for ruler.

In the origind vergon [Lin, 1995], the digunction is performed by means of bounded-sum,
which is not continuoudy differentidble. In order to overcome that problem, smple sum is

used, resulting (37):

fla” _
e =1 37)

In case the Snorm is performed by maximum, some care must be taken while caculaing the

derivative. In this case, it is necessary to save the index associated to the neuron that

23



originated the maximum. Thus, the derivative regarding that dement (the “winne™) will be 1,

being O for the “loosers’ (38):

(38)

In the second layer, there are again parameters to adjust. Their tuning is conducted based on

equations (39) e (40), for the centers, and (41) e (42), for the widths:

ﬂE(p) ﬁri (p3) ﬂaT(p3) oﬂa1(p2)

—= ‘ e (39)
fic; grﬂ TP g TS,
2, i_j2
85 G
W - B2 0
Tew s
e _ & o9 T2 093"
=gdd oy — (41)
s grzl Tlaf™ & TIsy;
., i) - Cling
13" _ - G e 25 (42)
S iiL S i?L

where nr; represents the number of rules that have neuron i as antecedent and j stands for the
input variable associated with the i™ membership function.
In this case, centers are tuned in exactly the same manner, both for regular and two-sided

Gaussans. The only difference is that two-s ded Gaussians have two centers to adapt.
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As in layer 3, it is necessary to choose an operator to implement the Fnorm. In the origind

verson [Lin, 1995], minimum is usd (43):

ﬂaT(p3) _i- 1 ’aT(P3) = aT(F)?)

W j0 41 ®

In the previous equation, the same artifice used in (38) was performed, since those operators
ae not continuous. Alternatively, product, which is continuoudy differentiable, can be used.

Inthis case, it comes (44):

ﬂa$D3) :%a'ng) ,kl i (44)

=
£
o
~
D
x~
il
M8

Usudly, minimum and maximum operaors, referred in this section, are cdled truncation
operators, whereas sum and product are caled algebraic operators. Algebraic operators have
some advantages. Namey, they lead to smoother output surfaces and permit the direct
application of gradient descent without the artifices used with truncation operators.

Tuning the paameters without any condraints, can lead to inconssent membership
functions. In fact, it makes no sense to have nether negative standard deviations nor
two-sded Gaussan functions with right and left centers exchanged. Therefore, after adjusting
the parameters the integrity of the membership functions must be verified and guaranteed.
Thus, in case centers in two-sded Gaussans get exchanged, it was decided to atribute them
their mean vaue. As for sandard deviations, in case they become negative, they are given a

“amdl” vadue, which is quantified as 1% of the domain amplitude. Formaly, it results (45).
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where the domain intervad IS [Xmin, Xmax]. HOwever, it is important to note tha, with the
condraints imposed, the true gradient is not followed any longer. Ingtead, an gpproximétion is

performed.

Takagi-Sugeno models

Regarding Tekagi-Sugeno fuzzy modds, zero or fird-order, several dternatives are
goplicable.

In a fird dternative, the network can be trained via backpropagation. In this way, the only
differences comparaively to fuzzy consequents modds regard parameter tuning in the linear
output layer and calculating the delta Signd's necessary to therule layer.

However, since the output layer is linear, the least squares estimator can be gpplied in matrix

form. In thisway, matrix equation (46) is obtained:

Y'=F" B (46)

In (46), B denotes a (m+1)%” n matrix with parametersto identify, defined as follows (47):
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In (47), each column in matrix B represents one modd output. Each of those columns has
(m+1)y parameters associated. The same matrix can be divided in g sets of m+1 lines
(separated by dashed lines). Each of those sets contains the parameters defined for the
consequents of each rule. Thus, the tota number of parameters for Takagi-Sugeno modds

will be (n+1)xgx. In zero-order models, each rule will have a unique parameter, bop, and so
meatrix Bwill beg” n.
Sl in equaion (46), Y represents an n” N marix containing rea output data, and F is a

(m+1)" N matrix, defined in (48), where xi(p) is the p pattern received by input i. For zero-

order modds, vector X isreducedto X(P =1.
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Typicdly, equation (46) can be solved in asingle step, as follows (49):
B=(F'F) FT» (49)

This requires matrix F'F to be podtive definite. By its congruction, that matrix is aways
postive semi-definite. However, in case it is dngular, that requirement is not followed any
longer. In this case, an infinite number of solutions will result. Therefore, data collection
must be caried out very caefully, so that the samples obtained are informative enough, in
order to avoid the problem referred.

In (49), cdculaing the inverse can be computationdly heavy. Therefore, the recursive

verson of the least square estimator (RLS) is preferred (50):
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B(p) = B(p- 1) + P(p)F g{(p) i \?(p)gT
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(50)

P(p)=P(p-1)-

Here, F® stands for the p™ columnin matrix F and Y® e Y(? are n" 1 vectors that denote,
respectively, read and model output.

The method described has the advantage of guaranteeing the optimum solution, for fixed
parameters in the second layer. Therefore, it is usud to use it in a hybrid scheme [Jang,
1993]. In this scheme, the network performs a forward pass, until the rule layer. At this point,
matrix F is determined. Next, the optima parameters for matrix B are obtained through RLS
and the modding eror is cdculated. In the second phase, the network performs
backpropagation, and the second layer parameters are tuned as described previoudy, based on
the ddtasgnd relative to the rule layer.

This scheme, which is used in this work, dlows a ggnificant reduction of the number of
training epochs. However, it is important to note that the computing time for each epoch is
notorioudy higher than the pure gpplication of backpropagation to the training of the
network.

In order to reduce the network convergence time, an adaptive learning rate is used, both for
fuzzy consequents modds and Takagi-Sugeno models. Thus, if the error is reduced for nuMyey
consecutive epochs, the learning rate is increased by a factor mi®. In case error grows for
numi,c consecutive epochs or oscillates for numys: consecutive epochs, the learning rate is
reduced by a factor of mf®". As for the stopping criterion, training finishes when the Root

Mean Squared Error (RMSE) reaches some satisfactory threshold, stabilizes or overtraining

happens.
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5.A COMPARATIVE STUDY: SSMULATION RESULTS

One of the most commonly used case dudies in sysem identification congsts of the
prediction of the Mackey-Glass chaotic time series [Mackey and Glass, 1977], described by

equation (51):

_ 0.2x(t-1)

x() 1+ x9t-t)

- 0.1(1) (51)

It does not show a clear periodic behavior and it is dso very sendble to initid conditions.
The problem conssts of predicting future values of the series.

The gpplication of the techniques described previoudy is carried out based on identification
data from the “IEEE Neural Network Council, Standards Committee, Working Group on
Data Modelling Benchmarks’, which ae ads used in the andyss of severd other
methodologies So, in order to obtain a numeric solution, the fourth order Runge-Kutta
method was applied. For integration, it was assumed X(t)=0, t<0, and a time interva of 0.1.
The nitid condition x(0)=1.2 and the t parameter ¢=17) were adso defined. In this case, [X(t-
18), x(t-12), x(t-6), x(t)] are used to predict x(t+6). Based on the parameterization described,
data was obtained in the interval t T [0; 2000]. Then, 1000 input-output pairs were selected
from interva t T [118; 1117]. The data collected is depicted in Figure 4. This data set was
divided in order to get the traning and vdidaion suits firda and las 500 samples,
respectively.

Using the samples obtained, the chaotic time series was modeled, according to the procedures

described in the previous sections. The parameter r, was assigned the vaue 0.5, resulting 9
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fuzzy rules. Next, the network, with four inputs and one output, was trained.

1.4

0 100 200 300
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700

800

900

1000

Figure 4. Chaotic time series identification data.

After the application of the set of methodologies described, the results in Table 2 were

obtained, where FC, CC and FOC denote respectively fuzzy, constant and first order

consequents. The agorithms described were programmed in C++ and the experiments were

conducted on a PC under Microsoft Windows O NT, running a 266 MHz on a Pentium ||

processor, with 64MB RAM.

1 FC 2-sded 180 Algebraic 2000 0.27s| 0.0070 | 0.0076
2 . ¢ . Truncation . 0.24s| 0.0111 | 0.0121
3 . Regular 90 Algebrac . 0.26s | 0.0066 | 0.0071
4 CC 2-Sded 153 Algebraic 1500 0.54s| 0.0047 | 0.0050
5 “ “ “ Truncation “ 0.52s| 0.0097 | 0.0108
6 “ Regular 81 Algebraic “ 0.53s| 0.0050 | 0.0052
7 FOC 2-Sded 189 Algebrac 300 4.1s | 0.0025 | 0.0030
8 “ “ “ Truncation “ 4.3s | 0.0038 | 0.0043
9 . Regular 147 Algebraic . 4.0s | 0.0030 | 0.0033

Table 2. Chaotic series: training results.
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The results presented dlow some conclusons to be drawn. Using regular Gaussan functions
presents some advantages in case fuzzy consequents ae utilized. In fact, the higher
complexity that results from the use of two-sded Gaussian functions does not originate a
dggnificant gain in terms of mode accuracy, and S0 regular Gaussans are preferable. As for
fuzzy operators, algebraic operators lead to much better results than truncation operators.
Models with congtant consequents alow better results than linguistic modes but first order
models are the most accurate and need a condderable lower number of training epochs.
However, linear optimization leads to high processng time, which may be problematic for
red-time learning, unless code optimization is peformed. As a consequence, zero order
models appear to have a satisfactory trade-off between accuracy and computer efficiency.
Figure 6 depicts the output for red and test data, regarding method 1. That figure shows the
high prediction accuracy of the modd, which is not the best one achieved in the smulations.
In Fgure 5, the results for method 9 (first-order consequents, regular Gaussian functions and
agebraic operators) are presented, where red output data can hardly be distinguished from
the model output.

Despite the fact that only one experiment is presented, the authors tested the methodology in
many commonly used benchmark problems (Box-Jenkins gas furnace, Narendra's

benchmarks, etc.), getting consistent conclusions, which could be generaized.
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Figure5. Chaotic series: output prediction in afirst-order Takagi-Sugeno modd with

agebraic operators and two-sided Gaussians.
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Figure 6. Chaotic series. output prediction in alinguistic modd with agebraic operators and

regular Gaussans.

One interesting point regarding method 1 (fuzzy consequents) is that, though it is cdled a
linguistic model, it is hard to assgn linguidtic labes to its membership functions, as can be

seen in Fgure 7 (the parameters for the membership functions in that figure are presented in

33



Table 3, where MF stands for membership function). In fact, the membership functions are
grongly overlgpped, which makes it very hard to labd them. Thus, the functions are labeed
as MF1, MF2, ..., MF9, and the rule base obtained (Table 4) is nat very intdligible, in terms

of human cognition. This problem of interpretability (or transparency) is being object of

research by the authors.
X(t-18) X(t-12)

1
0.8
0.6
0.4
0.2

=0 %5 ~ 1 15 2 0

: : 002040608 1121416

002040608 112 1416

Figure 7. Method 1: membership functions obtained.

Comparison with other methods

This example has been treated before by other methods. Table 5 shows the comparison data.

The firgt three lines refer to the results of the present work; lines 4 to 6 are extracted from
[Chiu, 1994]; lines 7 and 8 are adapted from [Nauck and Kruse, 1999]. From there, it can be
concluded that neura networks trained by backpropageation require a dgnificantly higher
number of adjustable parameters than other methods, based on fuzzy systems. Moreover,

fuzzy sysems require fewer training epochs. Also, the fact that in the present work al the
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model parameters of firg-order TS model are adapted (this does not happen in other
methods) alows the number of rules to be reduced, without losng model precison, and as a
consequence the number of rules is ggnificantly reduced. In other methods, eg., [Chiu,
1994], the consequents are optimized by means of the least square estimator, but the
antecedents are not changed. Thus, the mode obtaned is not fully optimized and,
consequently, more rules are necessary to achieve the same modd accuracy. If regular
Gaussan functions would be used (leading to a smal degradation of model accuracy), the
number of free parameters would be reduced dgnificantly, as can be seen in Table 2, by
comparing lines 7 and 9. The ANHIS results are superior, but a the cost of a higher number

of rules.

6. CONCLUSIONS

In this paper a comparative andyss of different fuzzy dructures and parameterizations is
performed. By the gpplication of subtractive clugtering an initid Sructure for the fuzzy mode
is obtained, which is used for the initidization of a fuzzy neurd network. Next, the
parameters are adjusted through the training of the network, according to the dructure
defined, i.e, linguigtic, zero order or first order Takagi-Sugeno. Algebraic and truncation
operators are used, as well as regular and two-dded Gaussan functions. The techniques
described are gplied to the Mackey-Glass time series, having been concluded that first order
models are the most accurate. However, zero order models presert the best trade-off between
modd accuracy and computer efficiency. In terms of fuzzy operaors, algebrac operators
leed to more precise modds. As for membership functions, it was concluded that the
additiond complexity of two-sided Gaussans did not originate a sgnificant gain. So, regular
Gaussan functions are preferable.
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MF1 MF2 ‘ MF3  MF4 ‘ MF5 MF6 ‘ MF7 = MF8 MF9

c, [0458%0 | 057942 | 073123 [ 090927 | 094710 | 109923 | 113540 | 113788 | 1.23283
cr [ 051762 | 060231 | 073124 | 091222 | 096767 | 110719 | 113541 | 118007 | 1.28358
X(t-18)
s, | 015626 | 021683 | 017104 | 016290 | 015573 | 007965 | 0.16155 | 018267 | 0.13798
sp | 022855 | 023605 | 024308 | 016850 | 015877 | 014930 | 013472 | 014538 | 0.15774
P —S—S—S;"8™§y§
c, [045925 | 070339 | 074875 | 081388 | 093538 | 101849 | 115110 | 116626 | 1.18986
crk [053720 | 076558 | 0.75697 | 083325 | 093538 | 106013 | 115110 | 116627 | 1.20855
X(t-12)
s, |o015982 | 017073 | 012746 | 013132 | 014550 | 010050 | 007397 | 009911 | 0.15912
sp | 015850 | 011472 | 014399 | 020298 | 013431 | 010582 | 013079 | 010362 | 0.19192
P ————§—S—S—§—§—§—§m—r
c, |070946 | 072054 | 075930 | 0.75956 | 0.86176 | 0.97492 | 098703 | 105702 | 1.19090
crk [071303 | 081760 | 084009 | 075956 | 112831 | 097531 | 098705 | 116716 | 1.21067
X(t-6)
s, | 010654 | 018578 | 022580 | 019969 | 0.30088 | 016496 | 0.17036 | 019722 | 0.20099
sp | 026867 | 022552 | 027750 | 017792 | 022936 | 015089 | 0.19838 | 019709 | 0.13985
P ———§—§—S—§—_
c. | 055795 | 062578 | 072673 | 086851 | 095754 | 096978 | 1.01331 | 105637 | 112134
cr [058266 | 065020 | 0.77437 | 096156 | 101022 | 098347 | 1.04280 | 105638 | 1.23770
X(t)
s, | 016476 | 014495 | 016442 | 013607 | 023340 | 015556 | 0.33283 | 002425 | 0.17506
sg | 019925 | 014922 | 020002 | 015158 | 017186 | 014799 | 011069 | 006402 | 0.19160
P ——§—§$38yy”™$y
c, [039%628 | 053563 | 073117 | 080466 | 0.87284 | 1.08335 | 1.09021 | 109188 | 1.34457
cr [039659 | 053869 | 073476 | 080815 | 088113 | 108971 | 1.09708 | 1.09832 | 1.35395
X(t+6)
s, |o18464 | 016231 | 010678 | 012415 | 016290 | 015945 | 011147 | 018100 | 021765
sp | 018453 | 016027 | 010587 | 012569 | 015706 | 016103 | 011065 | 018301 | 0.22208

Table 3. Method 1: network parameters
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Rule | x(t18) | x(t12) | x(t-6) x(t) X(t+6) |
1 MF1 MF4 MF6 MF6 MF7

2 MF2 MF1 MF3 MF5 MF5

3 MF3 MF2 MF5 MF9 MF9

4 MF4 MF6 MF8 MF7 MF8

5 MF5 MF3 MF1 MF3 MF6

6 MF6 MF7 MF9 MF8 MF3

7 MF7 MF8 MF7 MF4 MF2

8 MF8 MF5 MF2 MF2 MF4

9 MF9 MF9 MF4 MF1 MF1

Table 4. Method 1: rule base obtained by the proposed method.

M ethod Number of Rules Number of Free Error
Parameters index

1 |FC 90 0.033
2 | CC 153 0.023
3 | FOC 189 0.014
4 | Chiu 25 125 0.014
5 [ ANFIS 16 104 0.007
6 QaNcll:lp\:gg;gati on >40 0.02
NEFPROX (A) 129 105 0.155
NEFPROX (G) 26 38 0.313

Table 5. Comparison with methods from other authors.
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