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Abstract

We propose an implementation of the eight Optimality Principles from the framework of Conceptual Blending,
as presented by Fauconnier and Turner (1998). Conceptual Blending explains several cognitive phenomena in
the light of the integration of knowledge from differentmental spacesonto a singlemental space: the Blend.
The Optimality Principles express general pressures that compete in the generation of the Blend.
The work we present now corresponds to the Constraints module of our computational model of Conceptual
Blending, also described in other papers.

1 Introduction

One big challenge for Computational Creativity is
the generation of new concepts and a very interesting
source of inspiration for approaching this issue comes
from the framework of Conceptual Blending, from
Fauconnier and Turner (1998). The Conceptual Blending
(CB) framework establishes cognitive processes and
principles that work in the integrations of knowledge
needed in reasoning. We are developing a model of
computational creativity that takes an approach to CB
as a fundamental pilar. This system has been described
in earlier papers (Pereira and Cardoso (2001), Pereira
and Cardoso (2003)) as well as its first experiments
(Pereira and Cardoso (2002)), being evident the need
for developing the Optimality Principles of Conceptual
Blending as an urgent improvement. These are the
general guidelines that drive the process of blending and
allow the differentiation between a ”good” and a ”bad”
blend. Here, we propose a formal realization for each of
the eight principles.
In the first sections, we give an overview of Conceptual
Blending, so as to provide the reader the motivation
and background for our approaches to the Optimality
Principles. We made some exploratory experiments
which are informally reported in the end of the discussion
of each principle. We finalize this paper with reflections
regarding the creative aspects of this work.

2 Conceptual Blending

Conceptual Blending (CB) was initially proposed by Fau-
connier and Turner (1998) as part of a major framework
concerning cognition and language and had the role of

explaining the integration of knowledge coming from dis-
tinct sources onto a single, independent and coherent unit,
the Blend. A blend is a concept or web of concepts whose
existence and identity, although attached to the pieces of
knowledge that participated in its generation (the inputs),
conquers gradual independence through time and use.
We find examples of blends in many sorts of situations. A
blend can be an effective way to get attention and curios-
ity towards advertising a product (e.g. Sony’s AIBO robot
uses all sorts of Sony products behaving as if it were a real
human) or spreading a message (e.g. the Marlboro cow-
boy with impotence problems). People have been making
blends with creatures from the times of Greek mythol-
ogy (e.g.pegasus) till today (e.g. the pokemons), natural
language discourse (e.g. ”John digested the book”, ”Sue
sneezed the napkin off the table”), poetry (see Freeman
(1999)). It is also claimed to be important inscientific
creativity (Lakoff and Nunez (2000)) and in the elabora-
tion of cognitive instruments(Hutchins (2002)). Many
more examples and situations could be listed and studied
in detail, demonstrating the ubiquity of CB.
It is noticeable that Conceptual Blending and its research
community are growing, and possibly still in its early
stages. It is an elegant proposal for a creative process and
its relationships with language and cognition, but it car-
ries formal vagueness across its several aspects, making
it difficult even to be considered as a theory, in aPoppe-
rian sense. Indeed, if the big hole between the general
model and the specific examples does not show any inco-
herence, it also does not allow falsifiability, leaving very
much undefined the boundary between what is and what
is not a blend. These criticisms intend to motivate work
that, from our point of view, is fundamental. And support
our own motivation for the present project, which is that
of contributing with a formal model and implementation
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Figure 1: The Conceptual Blending Model

based on Conceptual Blending. We hope it can be useful
in shedding some light on the referred issues.
In order to understand the CB framework, we must in-
troduce a fundamental concept: themental space. Ac-
cording to Fauconnier and Turner (1998), mental spaces
are partial structures that proliferate when we think and
talk, allowing a fine-grained partitioning of our discourse
and knowledge structures. For simplifying, let us con-
sider a mental space as a partial selection of knowledge
from a domain, a memory of a situation, an imagined
scenario or entity, essentially a knowledge structure of
inter-related concepts that is explicitly or implicitly nec-
essary for a reasoning. As AI researchers, we see a mental
space representable as asemantic network, aframe, acase
or any other symbolic knowledge structure that gathers a
set of inter-related concepts towards a specific situation.
In its canonical form, Conceptual Blending is described
as involving two input mental spaces that, recurring to a
cross-space mapping between them and a generic space
that has general knowledge relevant for both the input
domains, will generate a third one, called Blend. This
new domain will maintain partial structure from the in-
put domains and have emergent structure of its own. The
process of generation of a blend can be summarized ac-
cording to three general steps (Fauconnier (1997)): Com-
position, where new relations become available that did
not exist in the separate inputs; Completion, when generic
knowledge is projected into the blend, to ”complete” the
emergent structure; and Elaboration, in which cognitive
work is performed in the blend, according to its own

emergent logic. The order of these steps may be changed
and several iterations of the process may be necessary.
There is a set ofgoverning principles, the Optimality
Pressures, that should drive the process of generating a
”good blend”(Fauconnier and Turner (2002)):

• Integration - The blend must constitute a tightly inte-
grated scene that can be manipulated as a unit. More
generally, every space in the blend structure should
have integration.

• Pattern Completion - Other things being equal, com-
plete elements in the blend by using existing inte-
grated patterns as additional inputs. Other things be-
ing equal, use a completing frame that has relations
that can be the compressed versions of the important
outer-space vital relations between the inputs.

• Topology - For any input space and any element in
that space projected into the blend, it is optimal for
the relations of the element in the blend to match the
relations of its counterpart.

• Maximization of Vital Relations - Other things be-
ing equal, maximize the vital relations in the net-
work. In particular, maximize the vital relations in
the blended space and reflect them in outer-space vi-
tal relations. Turner and Fauconnier identify 15 dif-
ferent vital relations: change, identity, time, space,
cause-effect, part-whole, representation, role, anal-
ogy, disanalogy, property, similarity, category, inten-
tionality and uniqueness.

• Intensification of Vital Relations - Other things being
equal, intensify vital relations.

• Web - Manipulating the blend as a unit must main-
tain the web of appropriate connections to the input
spaces easily and without additional surveillance or
computation.

• Unpacking - The blend alone must enable the under-
stander to unpack the blend to reconstruct the inputs,
the cross-space mapping, the generic space, and the
network of connections between all these spaces

• Relevance - Other things being equal, an element in
the blend should have relevance, including relevance
for establishing links to other spaces and for running
the blend. Conversely, an outer-space relation be-
tween the inputs that is important for the purpose of
the network should have a corresponding compres-
sion in the blend.

As far as we know, there is no work yet towards an
objective study of the optimality pressures, measuring
examples of blends or specifying these principles in
detail. This, we believe, disturbs considerably the
appreciation and application of Conceptual Blending in
scientific research, making a particular motivation for



this work being that of testing and specifying a formal
proposal for the optimality pressures.

3 Basic Notions from our model

We present some basic notions that are necessary to un-
derstand this document. We use a specific type of mental
space, that is static, modeless and non attached to dis-
course, which is closer to the notion ofdomain knowledge
in AI. We call it adomain, comprising a theory and a set
of instances. In this paper, we consider only the theory,
which is represented by aconcept mapthat explains the
structural and causal organization of the domain. A con-
cept map is a semantic network, with binary directed rela-
tions between the concepts1. In CB, there is a set ofvital
relationsthat take a special role in the Blending process.
We also consider these relations, but allow the choice of
a different set of relations. In principle, these vital rela-
tions can be the source for establishingmappingsbetween
the input spaces, fundamental for the projection operation
(two objects mapped to each other can be projected to the
same concept, e.g. horse and bird projected to pegasus).
Each mapping projection consists on a ternary relation
m/3. For example, a mapping algorithm based on ”prop-
erty” could try to map pairs of concepts that make a valid
pair of object/property (e.g. ”m(property, dark, bird)”), a
different one based on analogy could link pairs of analog-
ical counterparts (e.g. ”m(analogy, leg, wing)”). As far
as our research goes, we are only applying an analogical
mapping algorithm that finds a 1-to-1 structure mapping
between the concept maps of the two domains. Knowing
this is a strong limitation, we hope to address other map-
ping algorithms in future developments. Currently, for the
sake of validation and experimentation of the system, we
allow user-definedmappings, so as to allow conclusions
independent from the mapping choice.
Finally, another important notion is that offrames. The
reasoning behind a frame lays on the idea that concepts
within it should be tightly integrated according to a situa-
tion, structure, cause-effect or any other relation that ties
a set of concepts onto one, more abstract or broad, com-
posite concept. We envisage different kinds of frames, in
terms of level of abstraction. The more specific ones cor-
respond to concepts easily identifiable as familiar objects
or situation (which we can see as a kind ofprototypes).
For example, the (very much simplified) frame of ”trans-
port means” corresponds to a set of concepts and relations
that, when connected together, represent something that
has a container and a subpart (e.g. an engine) that serves

1First order logic predicates with arity 2, e.g. isa(bird, aves); pur-
pose(wing, fly))

for locomotion.

frame(transport means(X)) :
have(X, container)∧

carrier(X, people) ←− have(X, Y )∧
purpose(Y, locomotion)∧
drive( , X)

The more abstract frames can consist on top-level deci-
sions or directives that decide the underlying philosophy
of the blend construction. For example, if a blend satis-
fies the ”aframe” frame, it means it maintains the struc-
ture of the input domain1. If it satisfies the ”bprojec-
tion” frame, then the concepts of input space2 all get
projected unchanged to the blend (e.g. ”bird” is projected
to ”bird”, ”wing” is projected to ”wing”). If a blend sat-
isfies ”aframe” and ”bprojection” simultaneously, then it
should2 have the concepts from input space2 organized
according to the structure of input space1. It is more
complex to design these more abstract frames, thus we al-
low the use of programming (inprolog language, inside
curly brackets) within a frame specification. Below we
can see the programming of the ”aframe”.

frame(aframe(A)) :
aframe(A, Blend) ←−

{stats(domain1, A), current blend(Bl)},∧
{findall(R/X/Y, (rel(A,XA, R, Y A), pro−
jection(Bl, A,XA,X), projection(Bl, A,
Y A, Y )), L)} ∧ op(exists(L))

Basically, ”aframe” searches for all relations of domain
1 (A) and obtains a list (L) containing their projections
to the blend. Theop(exists(L)) condition is anoperator
that, when, interpreted by the frame processor, expands
L into a set of concept map relations (like those in the
”transportmeans” frame). For ”aframe” to be totally sat-
isfied, it is necessary that all relations from input space 1
also exist in the blend.
There are also frames of intermediate level of abstraction,
which aren’t either as specific as ”transportmeans” or as
abstract as ”aframe”. For example, ”newcreature” is con-
cerned with finding a ”creature” (thus having its specific
properties - e.g. being a ”living being”) that didn’t exist
before in either domains or existed but not as a ”creature”
(e.g. a ”flying snout”).
When we say thata framef is satisfied in the blendb,
we mean all its premises are true in the domainb. We
see frames asinformation moldsand building a blend for
a given situation should depend much on the choice of
these structures, either being structures towards which the
blend self-organizes or as pragmatic goals or query spec-
ifiers that the blend is expected to accomplish.

2Depending on the mappings, the concepts considered in aframe and
bprojection may become separate in the inputs (and so there wouldn’t
be any systematic relation between concepts from input spaces 1 and
2), yet this would receive little value in the measures presented in this
paper.



4 Optimality Principles

Following the F&T notion of Optimality Principles, the
pressures that should lead towards stable, integrated new
blends, we propose now a set of measures that should re-
flect as much as possible the rationale behind each princi-
ple. In order to give a clearer idea of its individual effect
in our blending system, we present a brief report of exper-
iments we made. These experiments consisted in running
a parallel search method, a genetic algorithml, to retrieve
blends from the search space. The input domains were the
domains ofhorseandbird (see tables 1 and 2), meaning
that the expected results range from the unchanged copy
of one (or both) of the concepts to a horse-bird (or bird-
horse) which is a combination of selected features from
the input domains. The construction of these domains
was subject to the following constraints: they should be
concept networks in which nodes are concepts and arcs
are relations; the concepts should be connected to the on-
tology in the generic space through an ”isa” relation; the
relations used should be present in the Generalized Upper
Model (GUM) hierarchies (J. Bateman and Fabris (1995))
or be subtypes of them. GUM is a general top-level on-
tology that has two hierarchies (elements and relations)
that comprise abstract relations, properties, spatial rela-
tionships, among others. Although allowing a normaliza-
tion of the concept maps, the constraints in the construc-
tion of the domains don’t avoid,per se, the biasing or
ingenious tailoring. For this reason, in this paper and in
the exploratory experiments we show, we don’t give spe-
cial attention to a qualitativereadingof the results or use
them to demonstrate its validity, instead we are interested
in reporting the effects each measure has on the results
and on the search landscape.

The generic domain (in tables 3 and 4) consists on a
simple general ontology, a set of frames and integrity
constraints. We applied 3 different mappings (figure 2),
all generated by the Mapper module. These mappings
range from being very small (only four mapping corre-
spondence) to large (21 mapping correspondences), from
non-surprising associations (e.g. ”animal” and ”animal”)
to nonsense (e.g. snout and lung). For each mapping, we
tested the seven optimality pressures. Each of these com-
prising 30 runs3.

4.1 Integration

Frames have a natural integration role because they
gather knowledge around abstractions, tightening the
links between concepts. Assuming the setF of frames
that are satisfied in a blend, we define theframe coverage
of a domain to be the set of relations from its concept
map that belong to the set of conditions of one or more
frames inF . The larger the frame coverage of the blend,
the more it is integrated. Yet, a blend that is covered by

3A run is an entire evolutive cycle, from the initial population to the
population in which the algorithm stopped

many frames should be less integrated than a frame with
the same coverage, but with less frames. In other words,
if a single frame covers all the relations of a blend, it
should be valued with the maximal integration, whereas
if it has different frames being satisfied and covering
different sets of relations, it should be considered less
integrated. The intuition behind this is that the unity
around an integrating concept (the frame) reflects the
unity of the domain. The Integration measure we propose
varies according to this idea. It also takes integrity
constraints into account so that, when a frame violates
such a constraint, it is subject to penalty.

Definition 4.1 For a framef with a setC of conditions
Bi

⋃¬Bi, a blend b, with a concept mapCMb, a
blendoid4 CMB+ , the concept map of the blendoid and
V I, the set of integrity constraints5 that are violated in
the frame, theintegrationvalue,If is defined by:

If = (
#C

#CMb
× (1− ι)#V I)× (1 +

#CMb

#CMB+
)/2

beingι an penalty factor between 0 and 1, a value that pe-
nalizes a frame for each violation to integrity constraints.
An integrity constraint is violated if its premises are
true. In the context of the integration measure of frame
f above,f violates integrityi if the conditionsCi of i
are verified andCi

⋂
C 6= Ø. In other words,f needs to

violatei in order to be integrated.
We would like to clarify the above formula further more:
the first factor represents the ratio of coverage ofb w.r.t.
f ; the second factor means that each integrity constraint
violation implies an exponential discount; the third factor
serves the purpose of maximizing the size of the blend (if
two frames have the same ratio of coverage, the one that
contains more relations should have higher integration);
the division by 2 aims to normalize the result between 0
and 1.
While the value for a single frame integration is described
above, the integration measure of a domain w.r.t. a set
of frames is not necessarily straightforward. At a first
sight, it is appealing to just sum the values of integration
of all frames, or of the union of them. Or even their in-
tersection. But this would lead to wrong results, because
a set of frames could not be reduced to a single frame
from the point of view of integration. In this measure, we
want to stimulate unity, coverage and take into account
the strength of each frame individually. In terms of unity,
we argue that the set of relations that make the ”core” of
all the frames that are satisfied, i.e. the intersection of
the setsC of conditions of all frames, should be highly
valued. On the other side, the coverage of this ”core”
will be smaller than the overall coverage (or equal, if

4The concept map that contains all the possible relations the blend
may have

5Rules withfalseconclusion as in table 3



the frames have equivalentC sets), which leads us to
take into account the disjoint sets of relations of the
frames. Finally, the integration of each individual frame
(as defined above) should also be present in the overall
measure. These last two issues (the overall coverage
and the integration of individual frames) are subject to
a disintegration factor because they reflect the existent
of different, not totally intersected, frames. We propose
this factor,α, to be a configurable value from the interval
[1, 0]. It is now time to present our proposal for the
IntegrationMeasure of a blend:

Definition 4.2 For a set of framesfi ∈ Fb, with Fb be-
ing the set of the frames that have their conditions (Ci)
satisfied in the blendb

Integration = I⋂i

0
Ci

+ α× Uncoverage×
i∑
0

Ifi

TheUncoverage value consists on the ratio of rela-
tions that do not belong to the intersection of all frames
w.r.t. the total number of relations considered in the
frames:

Uncoverage =
#

⋃i
0 Ci −#

⋂i
0 Ci

#
⋃i

0 Ci

We think the integration measure is a fundamental
brick of the blending process. It leads the choice of the
blend to somethingrecognizableas a whole, fitting pat-
terns that help to determine and understand what anew
concept is.
Experiments:An immediate conclusion about the effect
of Integration is that frames behave asattractor points in
the search space. Moreover, the frames with a larger cov-
erage tend to be preferred, although when too large (like
aprojectionor aframe) they are dropped away. The evo-
lution is directed to a compromise of coverage and satis-
fiability. More specifically, when it satisfies a frame like
pw basedexplanation, the resulting Integration value is a
local maximum or a point in its neighborhood (because
sometimes other, related, frames were also found) and
”jumping” to another area of the search space becomes
difficult.
Another conclusion to take concerns to the observation
that the complexity of the search space landscape grows
with mapping size. In fact, when we have a mapping of
size 2, the algorithm only finds two different solutions and
the better rated (possibly a global maximum) is achieved
in 77% of the runs, but with a mapping of size 5, it returns
six different blends, being the best choice retrieved only
43% of the times. To confirm this conclusion, the map-
ping of size 21 lead the algorithm to 16 different maxima,
being the best one found only 7% of the times. A good
compensation for this apparent loss of control is that the
returned values are clearly higher (0.68, for the best) than
in the small mappings (0.22), meaning that with big map-
pings there are many more possibilities to find integrated

blends.
The resulting concept maps consist on exactly the rela-
tions that are covered by the satisfied frame or combina-
tion of them, more specifically there were two frames that
were very persistent:pw basedexplanationandpurpose-
ful subpart. In some blends, the former was present mul-
tiple times (e.g. a part-whole explanation of a horse, with
part-whole explanations of its subparts) and both were
plenty of times combined.

4.2 Topology

The Topology optimality pressure bringsinertia to the
blending process. It is the constraint that drives against
change in the concepts because, in order to maintain
the same topological configuration as in the inputs, the
blend should maintain exactly the same neighborhood
relationships between every concept, ending up being a
projected copy of the inputs. Inreal blends, this pressure
is normally one that is disrespected without big loss in the
value of the blend. This is due to theimaginationcontext
that normally involves blends, i.e., novel associations are
more tolerable.
In our Topology measure, we follow the principle that, if
a pair of concepts,x andy, is associated in the blend by a
relationr, then the same relation must exist in the inputs
between the elements from whichx and y were pro-
jected. We say thatr(x, y) is topologically correct. Thus,
the value of Topology corresponds to the ratio of topo-
logically correct relations in the concept map of the blend.

Definition 4.3 For a setTC ⊆ CMb of topologically
correctrelations, defined as

TC = {r(x, y) : r(x, y) ∈ CM1 ∪ CM2)}
whereCM1 and CM2 correspond to the concept maps
of inputs 1 and 2, respectively6. The topology measure is
calculated by the ratio:

Topology =
#TC

#CMb

Intuitively, this measure represents the amount of re-
lations from the inputs that got projected onto the topo-
logically equivalent position in the blend. At the mo-
ment, the only way to violate topology is by having a pair
of concepts projected to the same one (e.g. ”horse” and
”bird” projected to ”horse”), bringing a new relation ex-
clusive to one the domains (e.g. ability(bird, fly) projects
to ability(horse, fly)). Topology thus decreases as fusion
or transfer projections are made.
Experiments:In all the experiments with Topology, the
final results were valued 100%, meaning that this con-
straint is easily fully accomplished, independently of the

6In other words,TC is the intersection of the concepts maps of the
blend and the input spaces



mapping. An interesting fact is that there is a multitude
of solutions in thesearch landscapeof Topology, showed
by the amount of different final results in each mapping.
Intuitively, and observing the short duration of each run,
this means that, wherever the search starts, there is always
a Topology optimal point in the neighborhood.
Topology is more an inertia than a transformation force
because it values knowledge that remains the same. In
our horse-birds, this pressure projects wings, beaks and
claws (i.e. concepts from the bird domain) to the blend
but isolates them unless there is strong evidence to con-
nect to horses, legs and snouts (i.e. concepts from the
horse domain).

4.3 Pattern Completion

The Pattern Completion pressure brings the influence of
patterns being them present in theinputsor come from the
genericspace. Sometimes a concept (or a set of concepts)
may seem incomplete but making sense when ”matched
against” a pattern.
At present, in the context of this work, a pattern is de-
scribed by a frame, i.e. we don’t distinguish these two
concepts, and therefore pattern completion is basically
frame completion. Here, as in the definition of this prin-
ciple, the completing knowledge becomes available from
”outside”, not as a result of projection. This means the
act of completing a frame consists on asserting the truth
of the ungrounded premises, a process that happens only
after a sufficient number of premises is true. We call this
theevidence threshold. An interesting approach in Pattern
Completion we would like to consider is that ofabduc-
tion. I.e., if the conclusions are satisfied, why not derive
the premises?
The evidence thresholde of a framefi with regard to a
blendb is calculated according to the following.

e(fi, b) =
#Sati
#Ci

× (1− ι)#V I

whereSati contains the conditions of eachfi that are sat-
isfied inb, ι is the integrity constraint violation factor and
V I the set of violated integrity constraints.
As in the integration pressure, we have the problem of
taking into account multiple frames. This time, given that
we are evaluating possible completion of subsets of rela-
tions, instead of sets of relations that are actually verified
in the domain, it is difficult to find such a linear rationale
(e.g. would two patterns each with individual completion
x value higher than three having each slightly less than
x?). As a result, we propose to find the union of the pat-
terns and then estimate its own evidence threshold:

Definition 4.4 The Pattern Completion measure of a
blendb with regard to a setF with n frames is calculated
by

PatternCompletion = e(∪n
0fi, b)

This measure has a very important role in increasing the
potential of the blend, for it brings the ”seeds” that may
be used in the Completion and Elaboration phases.
Experiments:The first conclusion to take from the ex-
periments with Pattern Completion is that the size of the
resulting concept maps tend to grow as the evolution pro-
gresses, although there is no linear correlation found.
This has a simple interpretation, given that this measure
stimulates the appearance of patterns (frames) that are
only partially completed. In doing so, it drives the blend
to partially complete (i.e., instantiate partially its condi-
tions) the highest possible number of frames, leading, in
each case, to several sets of relations that fit into those
frames without satisfying them (e.g. wings are projected,
they serve to fly, but they are not attached to anything).
In which respects to thesearch landscape, it seems to be
very rich in local maxima. This fact is not unexpected,
considering the discussion of the previous paragraphs, the
number of different frames available (9) and all their dif-
ferent combinations. The most constant results came from
mapping 2, with 13% of the best result obtained and 20%
of the second best. An interesting remark is that the re-
sulting local maxima always fall within a very strict range
of values (of maximum amplitude 0.11).

4.4 Maximization of Vital Relations

For the maximization of vital relations, we estimate the
impact of the vital relations to the blend calculated by
the ratio of vital relations w.r.t. the whole set of possible
vital relations the blendoid. The blendoid is the largest
possible blend that can be obtained from a given mapping
and is calculated by projecting to it every concept (i.e.,
there is no selective projection) regardless of integrity
constraint violation or any other constraint. Since it
has the largest set of potential relations, it also has the
maximum possible of vital relations.

Definition 4.5 LetΥ be a set ofvital relations. From the
concept map of the blendb, we may obtain the set of vital
relations in b,BV R:

BV R = {r(x, y) : r(x, y) ∈ CMb ∧ r ∈ Υ}

From the blendoid (the largest possible blend),B+, we
haveBV R+:

BV R+ = {r(x, y) : r(x, y) ∈ CM+
B ∧ r ∈ Υ}

Finally, the Maximization of Vital Relations measure is
calculated by the ratio

Maximization V R =
#BV R

#BV R+

Experiments:The influence of Maximization of Vital Re-
lations in the results is straightforward, given that its high-
est value (1) reflects the presence, in the blend, of all the



vital relations that exist in the inputs, independently of the
projections of the concepts or non-vital relations (which
becomenoisein the sense that these appear randomly and
making no difference to the value of the measure, yet con-
fusing the ”reading” of the concept map). As the evolu-
tion goes on in each run, the value grows until reaching
the maximum reasonably early. For each set of 30 runs,
it reached the value1 a minimum of 93% of the times,
and the remaining achieved at least a value of 0.95. As
in Topology, the search space of Maximization of Vital
Relations is verysimplesince there is a global maximum
in the neighborhood of (almost) every point. On the other
hand, since there is control onnoise, the resulting concept
maps show unity only in the subset of vital relations.

4.5 Intensification of Vital Relations

Intensification of Vital Relations is the principle that max-
imizes the concentration around a specific vital relation.
I.e., while the Maximization of Vital Relations favors the
creation in the blend of vital relations in general as op-
posed to ”regular” relations, Intensification is based on fo-
cussing a specific vital relation. The former relates ”new”
vital relations with ”new” relations in the blend; the lat-
ter relates vital relations with themselves. Thus, we need
a notion of ”intensity” of a vital relation. For such, we
argue that a vital relation is considered more ”intense”
when there is more evidence of its strength. This evidence
should be dependent on the kind of vital relation we are
dealing with. For example, an ”analogy” vital relation be-
tween two concepts is stronger when there is also a sys-
tematical association between the neighborhood concepts
(the systematicity principle). In fact, systematicity is the
only ”intensity” heuristic we have now and its calculation
(Intanalogy) is straightforward. For a mapping (of sizen)

Intanalogy =
#analogical transfers

n

where ananalogical transferconsists on a projection of
a conceptx from input space1 to y in the blend (wherey
is the analogical counterpart ofx in the input space2).
Considering several different ”intensity” heuristics, the
evaluation of this pressure takes the point of view that a
blend that applies only one vital relation, with intensity
x, should have higher measure than a blend withn vital
relations, each with intensityx/n (the sum would thus ne
x). So we want to favor ”concentration” of vital relations.

Definition 4.6 Let υi ∈ Υ be a vital relation and the set
V RBυi , of the instances of vital relationυi in the blend,
defined byV RBυi = {υi(x, y) : υi(x, y) ∈ CMb}
Assuming a valueIntυi of intensity of the vital relation
υi, the measure of Intensification of Vital Relations is cal-
culated by:

Intensification V R =
∑n

0 Int2υi

(
∑n

0 Intυi)2
, n = #Υ

Intensification is thus higher when there is more
”concentration” (e.g. IntV1 = 2, IntV2 = 2
⇒ Intensification = 8/16; IntV1 = 4 ⇒
Intensification = 1).
Experiments:The behavior of Intensification of Vital Re-
lations is similar to that of Maximization in the sense that
the search landscape is not very complex. From wherever
the search starts, there is a high probability (of at least
70%, in the worst case) of finding the maximum value in
the neighborhood. It is important to point, though, that
we are only applying one heuristic (analogical transfer),
and so the results couldn’t be different. Given this fact,
we must say that we cannot claim or discuss much about
this Intensification of V.R. proposal unless we find other
heuristics and mapping procedures other than analogy.

4.6 Unpacking

Unpacking is the ability to reconstruct the whole pro-
cess starting from the blend. In our view, such achieve-
ment underlies the ability to reconstruct the input spaces,
specifically. I.e., the reconstruction of the input spaces
from the blend demands the assessment of the cross-space
mappings, the generic space and other connections. Thus,
what we are proposing is that Unpacking can be reduced
to the ability to reconstruct the inputs. This is so because
there is no way to properly reconstruct the inputs with-
out a reconstruction of the cross-space mappings, generic
space and the connections between spaces.
Unpacking should take the point of view of the ”blend
reader”, i.e., someone or something that is not aware of
the process of generation, thus not having access to the
actual projections. Being such, this ”reader” will look for
patterns that point to the ”original” concepts. Once again
we use the idea offrames, more specifically thedefin-
ing frameof a concept, which comprises its immediately
surrounding concepts and relations. For example, if the
concept ”wing” were projected ontox in blend, the defin-
ing frame with regard to the ”bird” domain would consist
on purpose(x, fly), conditional(x, fly), quantity(x, 2)and
pw(x, bird). The more of these relations are found in the
blend, the more likely it is that the ”reader” will find easy
to understand the relationship betweenx and ”wing”.

Definition 4.7 Given a blendb and an input spaced,
the conceptx (which is the projection of the elementxd

of input spaced to theb), has a defining framefx,d in d
consisting on

fx,d = C0, C1 . . . Cn −→ true

where Ci ∈ {r(x, y) : r(xd, y) ∈ CMd}.
Assuming thatk is the number of conditions (Ci) of

fx,d that are satisfied in the blend, the unpacking value of
x with regard tod (represented asξ(x, d)) is

ξ(x, d) =
k

n



We calculate thetotal estimated unpacking valueof x
as being the average of the unpacking values with regard
to the input spaces. Thus, having input spaces1 and2, we
have

ξ(x) =
ξ(x, 1) + ξ(x, 2)

2
Definition 4.8 LetX be the set ofn concepts of the blend
b, generated from input spaces1 and2. The Unpacking
value ofb is calculated by

Unpacking =
∑n

i=0 ξ(xi)
n

, xi ∈ X

Experiments:The results of the Unpacking measure show
that it has a notorious side effect on the size of the blend,
it drives it to very small sets (between 0 and 5) of rela-
tions. The interpretation here is straightforward: the ratio
of unpackableconcepts is highly penalized in bigger sets
because of the projected relations that come as side effect
of the projection of (unpackableor not) concepts. These
relationsconfusethe unpacking algorithm so that it leads
the evolution to gradually select the smaller results.
The maxima points also correspond to the value1, but it
seems, from the experiments, that there is a very limited
set of such individuals, achieved in the majority (at least
93% for each mapping) of the experiments.

4.7 Web

The Web principle concerns to being able to ”run” the
blend without cutting the connections to the inputs. In
our opinion, this is not an independent principle, being
co-related to those of Topology and Unpacking because
the former brings a straightforward way to ”maintain the
web of appropriate connections to the input spaces eas-
ily and without additional surveillance or computation”
and the latter measures exactly the work needed to recon-
struct the inputs from the blend. It is not to say that Web
is the same as Topology or Unpacking, what we are argu-
ing is that, on one side, Topology provides a pressure to
maintain the most fundamental connection to the input:
the same structure; on the other side, Unpacking evalu-
ates the easiness of reestablishing the links to the inputs.
These two values combined in a weighted sum yield, we
propose, an estimation of the strength of the web of con-
nections to the inputs:

Web = α× Topology + β × Unpacking

with α+β = 1. Since this is not an independent variable,
making independent experiments with the Web measure
would not add any valuable conclusion. In a subsequent
publication, we plan to focus on correlation of measures,
where we may explore the behavior of this measure.

4.8 Relevance

The notion of ”relevance” or ”good reason” for a blend is
tied to the context and goal of the blending generation.

A blend, or a part of it, may be more or less relevant
dependent of what it is for. Once again, frames take a
fundamental role as being ”context” specifiers, (i.e., the
set of constraints within a frame describe the context
upon which the frame is fulfilled). Therefore, having a
set of goal frames, which could be selected from any of
the existent domains or specified externally, a blend gets
the maximum Relevance value if it is able to satisfy all of
them.
An aspect of the goal frames is that they allow the
application of queries. For example, if we want to find
a concept that ”flies”, we could build a goal frame with
the relationability(x, fly). The blends that satisfy this
frame would have high relevance.

Definition 4.9 Assuming a set of goal frames,Fg, the set
Fb of the satisfied frames of blendb and the valuePCNF

for the pattern completion of a set of framesF in blend
b, as described in section 4.3, we have

Relevance =
#(Fg ∩ Fb) + #Fu × PCNFu

#Fg

whereFu, the set of unsatisfied goal frames, consists on
Fu = Fg − Fb.
Experiments:The first part of the test on Relevance fo-
cussed on making a single relation query. In this case,
we asked for ”something that flies” (ability(, fly)). The
results were straightforward in any mapping, accomplish-
ing the maximum value (1) in 100% of the runs, although
the resulting concept maps did not reveal necessarily any
overallqualityor unity. In other words, the evolution took
only two steps: when no individual has a relation ”abil-
ity( , fly)”, therefore with value 0; when a relation ”abil-
ity( ,fly)” is found, yielding a value 1, independently of
the rest of the concept map.
The second part of the test on Relevance, by adding a
frame (ability explanation) to the query, revealed similar
conclusions. There was no sufficient knowledge in any of
the input domains to satisfy this new frame completely,
so the algorithm searched for the maximum satisfaction
and reached it 100% of times in every mapping. So the
landscapeseems to have one single global and no local
maxima, reflecting the integration of the two parts of the
query. If there were separate frames, it is expectable the
existence of local maxima. Intuitively, thesearch land-
scapesof Integration and Relevance seem to be similar.

5 Discussion and further work

A first conclusion we took from this work says that the
eight optimality principles can be reduced to seven (since
Web is not independent). Even more, given the power
of language we use in frames, some of the principles
can be coded within a frame, namely Topology and
Unpacking, and accomplished via a query measured by



Relevance. This reduces our number to five. Yet, we
don’t know whether this reduction reflects a lack in the
CB framework or in our interpretation of it.
We have already stated that the main motivation of
our system is to generate new concepts out of previous
knowledge. An interesting study to follow, and which
has already been made (Pereira and Cardoso (2003)),
concerns the necessary parameters that lead to specific
concepts (e.g. a pegasus) and how do the changing on
these bring different concepts (other creatures). Such
experiments provide a bigger insight on the creative
potential of our system. Perhaps a more important study,
in the sense that it brings a validation to our model, is
the application of literature examples from CB (Coulson
(2000)) and Conceptual Combination (Costello and
Keane (2000)), observing the effects of the application of
optimality constraints presented in this paper as well as
frames.
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ear ↔ wing
snout ↔ bird

eye ↔ lung
mouth ↔ feathers

2 ↔ 2
hear ↔ fly

1

mouth ↔ beak
snout ↔ bird

eye ↔ lung
ear ↔ feathers
eat ↔ eat

2

vegetablefood ↔ vegetable
food ↔ food

horse ↔ bird
equidean ↔ aves

animal ↔ animal
humansetting ↔ house

wilderness ↔ wilderness
ruminant ↔ oviparous

run ↔ fly
cargo ↔ pet
neigh ↔ chirp
snout ↔ lung
mane ↔ feathers

tail ↔ beak
leg ↔ eye

hoof ↔ wing
4 ↔ 2

eye ↔ leg
ear ↔ claw

hear ↔ catch
grass ↔ grass

3

Figure 2: The three mappings

isa(horse,equinae) pw(leg, horse) purpose(horse, food)
isa(equinae,mammal) purpose(leg, stand) sound(horse, neigh)
existence(horse, farm) pw(hoof, leg) purpose(mouth, eat)
existence(horse, wilderness) purpose(horse, traction) purpose(ear, hear)
pw(snout, horse) eat(horse, grass) color(mane, dark)
pw(mane, horse) ability(horse, run) size(mane, long)
pw(tail, horse) carrier(horse, human) material(mane, hair)
quantity(hoof, 4) quantity(leg, 4)
pw(eye, snout) quantity(eye, 2)
pw(ear, snout) quantity(ear, 2)
pw(mouth,snout) purpose(eye, see)
motion process(horse,walk) ride(human, horse)
taxonomicq(horse, ruminant) purpose(horse, cargo)

Table 1: The domain theory ofhorse



isa(bird,aves) existence(bird, house) isa(parrot, bird)
isa(aves,oviparous) purpose(bird, pet) isa(nest, container)
lay(oviparous, egg) existence(bird, wilderness) roleplaying(bird, freedom)
purpose(bird, food) purpose(eye, see) ability(parrot, speak)
smallerthan(bird, human) purpose(beak, chirp) purpose(claw, catch)
pw(lung, bird) motionprocess(bird, fly) purpose(wing, fly)
purpose(lung, breathe) quantity(eye, 2) pw(claw, leg)
isa(paradisebird, bird) quantity(wing, 2) pw(beak, bird)
isa(owl, bird) quantity(claw, 2) pw(eye, bird)
ability(bird, fly) pw(wing, bird) quantity(leg, 2)
pw(feathers, bird) conditional(wing, fly) pw(leg, bird)
purpose(beak, eat) sound(bird, chirp) purpose(leg, stand)
pw(straw, nest)

Table 2: The domain theory ofbird

isa(entity,something) isa(mammal, animal) isa(house, humansetting)
isa(situation,something) isa(animal, livingentity) isa(setting,spacelocation)
isa(state,situation) isa(oviparous, animal) isa(spacelocation,spatialentity)
isa(process,situation) isa(behavior, property) isa(physicalentity,spatialentity)
isa(temporalentity,entity) isa(humansetting, setting) isa(physicalobject,physicalentity)
isa(spatialentity,entity) isa(bird, existence, wilderness) isa(propertymeasure,informationentity)
isa(informationentity,entity) isa(wilderness, setting) isa(imaginaryspatialentity,spatialentity)
isa(human, primate) isa(farm, humansetting) isa(property,informationentity)
isa(primate, mammal) isa(equinae, mammal) isa(livingentity,physicalentity)

...

shape(X, Y),shape(X,Z), Y6= Z → false
quantity(X, Y), quantity(X,Z), Y6= Z → false
behavior(X, friendly), behavior(X, dangerous)→ false
actor(X, ), not isaN(X, action)→ false
pw(A,A)→ false

Table 3: The generic space concept map and integrity constraints

Frame name Conditions
aframe The blend contains the same relational structure of input 1
aprojection The blend contains the same concepts of input 1
bframe The blend contains the same relational structure of input 2
bprojection The blend contains the same concepts of input 2
pw basedexplanation Set of part-whole relations associated to a concept
transportmeans Features expected in a generic transport means
purposefulsubpart Set of relations that justify the existence of a subpart

of a concept
new ability A concept has an ability relation not existent in any of

the inputs
new creature A concept is a living thing that did not exist (or wasn’t

such) in any of the inputs
new feature A concept has a feature relation not existent in any of

the inputs
ability explanation A concept has an ability and it is explained by several

features (what does the ability, what is it for, any conditions necessary)

Table 4: Frames of the generic space


