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 Abstract . 
A methodology for development of linguistically 
interpretable fuzzy models from data is developed. The 
implementation of the model is conducted through the 
training of a neuro-fuzzy network. Structure of the 
model is firstly obtained by subtractive clustering, 
allowing the extraction of a set of relevant rules from 
input-output data. The model parameters are then tuned 
via the training of a neural network through 
backpropagation. Interpretability goals are pursued 
through membership function merging and some 
constrains on the tuning of parameters. The assignment 
of linguistic labels to each of the membership functions 
is then possible. The model obtained for the system 
under analysis can be described, in this way,  by a set of 
linguistic rules, easily interpretable.  
 
Keywords : neuro-fuzzy learning, fuzzy systems,  
clustering, interpretability, transparency. 
 
1. Introduction 
 
Extracting knowledge from data is a very interesting and 
important task in information science and technology. 
Sometimes it is necessary that the resulting models be 
interpretable in order to understand the system under 
study [1][2][3]. Fuzzy modeling founds here its 
maximum potential. but it has associated the difficulty to 
quantify the fuzzy linguistic terms. Neuro-fuzzy 
networks appear as a tool to surpass the limitation. 
 In this paper a methodology is developed carried out 
in two main phases: in the first one a set of fuzzy rules is 
obtained; in the second one the parameters of the 
membership functions of the fuzzy system are tuned. A 
balance between accuracy and interpretability is pursued. 
 Linguistic models are used instead of Takagi-Sugeno 
models. Additionally, parameter learning is constrained 
and similar membership functions are merged, in order 
to ease the assignment of linguistic labels to the final 
fuzzy sets. 
 In Section 2 the main issues of fuzzy structure and 
parameter learning are presented. Subtractive clustering, 
used for structure and parameter learning is presented in 
Section 3 In Section 4, the strategies for implementation 
of interpretable mo dels are developed. The 

methodologies are applied to the Mackey-Glass chaotic 
time series, in Section 5 and finally, some conclusions 
are drawn in Section 6. 
 
2. Structure and parameter learning  
 
Let it be assumed, without loss of generality, a 
single-input single-output (SISO) model, with one input, 
u, and one output, y, from where N data samples are 
collected (1): 

Z u y u y u N y NN = ( ), ( ) , ( ), ( ) ,..., ( ), ( )1 1 2 2m r  (1) 

 Using the data collected, the goal is to derive a fuzzy 
model, represented by a set of rules of type Ri (2): 

R If y t is A and u t d is B then y t is Ci i i i: ( ) ( ) $( )- -1 1 1 1  (2) 

where d represents the system time delay and Aji, Bji and 
Cji denote linguistic terms associated to each input and 
output. Those terms are defined by their respective 
membership functions µ µ µA B Cji ji ji

, , . The previous 

structure is called a FARX structure (Fuzzy Auto 
Regressive with eXogenous inputs) as a generalization 
of the well-known ARX structure. Thus, the selection of 
a set of rules of type (2), as well as the definition of the 
fuzzy sets Aji, Bji and Cji, constitute some project issues 
specific to fuzzy systems. 
 Chiu’s subtractive clustering is initially applied to 
obtain a set of g fuzzy rules [4] composing the model 
structure.  A set of points is defined as possible group 
centers, each of them being interpreted as an energy 
source. In subtractive clustering, the center candidates 
are the data samples themselves.  
After determining a model structure, the model 
parameters, i.e., the centers and standard deviations of 
the Gaussian membership functions, should be tuned. In 
the present work, such task is performed by training a 
fuzzy neural network based on [5] (Figure 1). This 
network is composed by five layers: an input layer, a 
fuzzification layer, a rule layer, an union layer and an 
output or defuzzification layer, sequentially. 
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Figure 1. Neuro-fuzzy network. 

 The notation used is as follows: 
- ai

(p2): activation of the neuron i in layer 2, regarding 
the training pattern p (i denotes an input term: 
“input”); 

- ar
(p3): activation of the neuron r in layer 3, 

regarding the pattern p (r denotes “rule”); 
- as

(p4): activation of the neuron s in layer 4, 
regarding the pattern p (s denotes “S-norm”); 

- ao
(p5) = yo

(p): activation of the neuron o in layer 5, 
i.e., output, regarding the pattern p (o denotes 
“output”); 

- yo
(p): desired activation for neuron o in layer 5, i.e., 

for the network output, regarding pattern p. 
 The input layer simply receives data from the 
external environment and passes them to the next layer.  
 In the second layer, the fuzzification layer, each of 
the cells corresponds to a membership function 
associated to each of the inputs. Since this work assumes 
the goal of obtaining interpretable models, two-sided 
Gaussian functions are proposed to used (Figure 2). The 
activation of each of the neurons in this layer is given by 
(3). 
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Figure 2. Two-sided Gaussian function. 
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(3) 

Here, cijL and σijL represent, respectively, the center and 
standard deviation of the left component of the ith 

membership function related to the jth input. For the right 
component, the index R is used. Such parameters 
constitute the eights of the layer one to layer two links 
(LXj(r) in Figure ). In the same expression, xj

(p) denotes 
the pth pattern associated do input j. 
 As for the neurons in the rule layer, their function 
consists of performing the antecedent conjunction of 
each rule, by means of some T-norm. By experimental 
testing, it was concluded that truncation operators (e.g., 
minimum) lead to better results than algebraic operators 
(e.g., product), when interpretability is desired.  So, 
operator minimum is selected for fuzzy conjunction (4): 

a T norm a ar
p

i

nar
i

p

i

nar
i

p3

1

2

1

2b g b g b ge j e j= - =
= =

min  (4) 

where nar stands for the number of inputs in the 
antecedent of rule r. 
 The fourth layer, called the union layer, is 
responsible for integrating the rules with the same 
consequents, via some S-norm. Once again, truncation 
operators are preferred, namely operator maximum (5).  

a S norm a as
p

r
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r

nrs

r
p4

1

3

1

3b g b g b ge j e j= - =
= =

max  (5) 

 There, nrs stands for the number of rules which have 
the neuron s as consequent. 
 As for the output layer, or defuzzification layer (d, in 
Figure ), the layer four to layer five links (LYo(r) in the 
same figure) define the parameters of the membership 
functions associated to the output linguistic terms. Thus, 
based on these membership functions and on the 
activation of each rule, its neurons should implement a 
defuzzification method suited for  two-sided Gaussian 
functions, as the one presented in [6] (6): 
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(6) 

where cosL and σosL represent the center and standard 
deviation of the left component of the sth membership 
function related to output o.In the previous 
expression,T(Yo) stands for the number of membership 
functions associated to each linguistic output variable Yo. 
The main idea of the defuzzification method proposed is 
to weight the activation of each rule, not only by the 
centers, right and left, but also by their standard 
deviations.  
 Based on the function performed by each neuron, the 
network is trained in batch mode, via the well-known 
backpropagation algorithm.  
 
3. Interpretability and transparency 
 
Fuzzy systems should be linguistically interpretable. 
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However, this issue is often ignored, being given 
prevalent relevance to the approximation capabilities. As 
Nauck and Kruse refer [7], in case interpretability is not 
a major concern, it is important to consider other more 
adequate methods. 
 .The unrestricted parameter learning may lead to a 
highly complex set of membership functions, for which 
it will be difficult to assign linguistic labels. It is 
therefore important to impose adequate restrictions for 
parameter learning, so that interpretability is attained. 
Two-sided Gaussian functions are appealing due to their 
increased flexibility, which permits to control function 
overlapping and improves function distinguishability. 
 Three main criteria for model interpretability are 
defined. The first one, and most important, is related to 
function distinguishability. The others come from human 
cognitive issues: the number of rules and the number of 
membership functions associated to each variable should 
not be excessive. In the present case, these issues are 
monitored in order to obtain a satisfactory trade-off 
between model accuracy and interpretability.   
 
3.1. Merging of membership functions 
 
 Structure learning by means of clustering techniques 
leads usually to initial membership functions with a high 
similarity degree. That makes the model lack 
transparency and originates an excessive number of 
parameters to adjust. It seems useful to merge functions 
with a high enough similarity degree. 
 In order to perform function merging, directed to rule 
base simplification, it was concluded in [8] that S1 (1) is 
a very adequate similarity measure. There, the similarity 
between two fuzzy sets A and B is given by the result of 
the division of the area of their intersection by the area 
of their union: 

S A B
A B

A B1( , ) =
«
»

 (1) 

where the fuzzy intersection and union are performed, 
respectively, by the operators minimum and maximum. 
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Figure 3. Membership function merging. 

 After detecting the most similar pair of membership 
functions, if their degree of similarity is above some 
threshold, those functions are merged. The new function 
results by averaging the parameters of the original 
functions, i.e., centers and standard deviations, as is 
depicted in Figure 3. There, the original functions are 
represented in dashed lines and the resulting function in 
solid line. The procedure of membership function 

merging, one pair in each iteration, continues until no 
more pairs satisfy the merging threshold.  
 As a result of function merging, the rule base is 
updated. In fact, the rules regarding the fuzzy sets 
merged will then contain the new function obtained.. 
Therefore, the rule base may be simplified in case 
redundant rules are obtained. Besides that, situations of 
inconsistency may result, if rules with the same 
antecedents have different consequents. This may be a 
consequence of deficient structure learning or may 
indicate that the merging threshold should be adjusted. 
 
 
3.2. Restricted Parameter Learning 
 
After rule base simplification through function merging, 
it is essential to guarantee the interpretability is 
maintained during parameter optimization. The 
optimization procedure is monitored so that function 
distinguishability is attained, as follows: 
(i) limit overlapping It is assumed that the overlapping 
degree between two functions is excessive in case the 
supreme of the support of the function to the right, i.e., 
its right “zero”, goes beyond the right zero of the 
function to the right. The same reasoning applies to the 
left component of the functions. Formally, it turns out 
(8): 

3 3
3 3

kR kR iR iR

kL kL jL jL

c c
c c

σ σ
σ σ

+ ≤ +
− ≥ −

 (8) 

where k  refers to some membership function and i and j 
are, respectively, its right and left neighbor functions. In 
case function overlapping does not satisfy the constraints 
presented in (8), the standard deviations of function k  are 
altered in order to keep those conditions. Therefore, the 
right and left components are changed as in (9) and (10), 
respectively: 

σ
σ

kR
iR iR kRc c

=
+ -3

3
 (9) 

σ
σ

kL
jL jL kLc c

=
- -

-
3

3
 (10) 

 
(ii) guaranteed function distance  
Besides overlapping monitoring, it was concluded that 
function distance should also be checked. This procedure 
aims to avoid inclusions, i.e., functions total or almost 
totally “inside” other functions. Furthermore, the fact 
that the functions are not too close also improves model 
interpretability. Thus, the constraint (11) for the minimal 
distance between functions was defined: 

c c

c c
iL kR

kL jR
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α

α
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X X
max min

max min

b g
b g (11) 

whereα ∈ [0;1] denotes the percentage of the domain 
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[Xmin; Xmax] used for calculating the minimal distance 
allowed. In case this condition does not apply, the 
function centers are changed as follows (12): 

c
c c U U

c c c U U

kR
new kR iL

iL
new kR iL

=
+

-
-

= + +
-

2 2

2 2

α max min

max min

b g

b gα

 (12) 

 In this situation, the new centers will be based on the 
average of the right and left original centers of the two 
functions compared, from which their values are altered 
in order to guarantee the distance required. 
 Despite the restrictions imposed, it may turn out that 
the final model is not sufficiently interpretable, as a 
result of the trade-off between interpretability and 
accuracy. Therefore, it is useful to perform function 
merging every x training epochs.  
 
4. Simulation Results 
 
One of the most commonly used case studies in system 
identification consists of the prediction of the 
Mackey-Glass chaotic time series [9], described by 
equation (13).  

&( )
. ( )

( )
. ( )x t

x t
x t

x t=
-

+ -
-

02
1

0110
τ
τ

 (13) 

 The time series does not show a clear periodic 
behavior and it is also very sensible to initial conditions. 
 The problem consists of predicting future values of 
the series.  
 The application of the technique described previously 
is carried out based on identification data from the 
“IEEE Neural Network Council, Standards Committee, 
Working Group on Data Modelling Benchmarks”, which 
are also used in the analysis of several other 
methodologies. So, in order to obtain a numeric solution 
the fourth order Runge-Kutta method was applied. For 
integration, it was assumed x(t)=0, t<0, and a time 
interval of 0.1. The initial condition x(0)=1.2 and the 
parameter τ=17 were also defined. In this case, [x(t-18), 
x(t-12), x(t-6), x(t)] are used to predict x(t+6). Based on 
the parameterization described, data was obtained in the 
interval t ∈ [0; 2000], after what 1000 input-output pairs 
were selected from t ∈ [118; 1117]. The data collected 
are depicted in Figure . 
 Using the samples obtained, the chaotic time series 
was modeled, according to the procedures described in 
the previous sections. Thus, the parameter ra was 
assigned the value 0.5, resulting 9 fuzzy rules. Next, the 
network, with four inputs and one output, was trained, 
defining 0.65 for the merging threshold and x = 200. 
 So, after 800 epochs the RMS (Root Mean Square) 
error was 0.0228 for training data and 0.0239 for test 
data. As for the number of membership functions for the 
variables x(t-18), x(t-12), x(t-6), x(t) and x(t+6), it 

resulted, respectively, 5, 4, 5, 4 and 5, leading to 92 
adjustable parameters.  
 In Figure  the results obtained for test data are 
depicted. It can be seen that they are satisfactory.  
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Figure 4 Chaotic time series: identification data.  
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Figure 5. Chaotic series: output prediction. 

 
 As for membership functions, the results obtained are 
presented in Figure . As can be seen, it is not too 
difficult to assign linguistic terms to each of the 
membership functions. In the same figure, the labels VS, 
S, M, B and VB denote, respectively, the linguistic terms 
“very small”, “small”, “medium”, “big” and “very big”. 
Thus, the fundamental dynamics of the chaotic time 
series are interpreted according to Table . 
 
5. Conclusions 
 
 In this paper a neuro-fuzzy methodology for the 
implementation of real interpretable fuzzy models is 
described. By the application of subtractive clustering, 
an initial structure for the fuzzy model was obtained, 
which is used for the initialization of a fuzzy neural 
network. However, adjusting membership function 
parameters without any constraints leads usually to 
complex overlapping between functions, which limits 
interpretability. Therefore, a learning scheme to allow 
the development of interpretable fuzzy models is 
proposed. The methodology presented is based on 
similar membership function merging and on constrains 
regarding parameter tuning, in order to improve function 
distinguishability in terms of distance and overlapping. 
The approach described is applied to the prediction of 
the Mackey-Glass chaotic time series, resulting a 
satisfactory trade-off between model accuracy and 
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interpretability. However, it is important to point out that 
the results are not always acceptable. In fact, as 
complexity grows, the constraints imposed may lead to 
inaccurate models, which, consequently, are of no use. 
Clearly, it can be said that interpretability bounds 
accuracy and vice-versa. 
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Figure 6. Membership functions obtained. 

 

Rule x(t-18) x(t-12) x(t-6) x(t) x(t+6) 

1 M VB B VB B 

2 B VB M S S 

3 S M M VB VB 

4 M M VS VB B 

5 S B S VS M 

6 S VB VB B M 

7 S VS S B B 

8 VS VS M B B 

9 VB VB VB B 

⇒  

VS 

Table 1. Linguistic description of the series. 

 Comparing to NEXPROX [7] (Table), the results 
obtained are clearly better. 
  

Method Nr. 
Rules 

Nr.  
Param.  

RMSE 

Paiva and Dourado 9 92 0.0239 

NEFPROX (A) 129 105 0.0332 

NEFPROX (G) 26 38 0.0671 

Table 2. Chaotic series: comparison with other 
techniques. 
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