
Header for SPIE use

Augmented Reliable Multicast CORBA Event Service – A Multimedia
Middleware

João Orvalho*# and Fernando Boavida#

* - College of Education, Polytechnic Institute of Coimbra
Praca Herois do Ultramar, 3030 COIMBRA - PORTUGAL

Telf.: +351-239-793120, Fax: +351-239-401461, email: orvalho@esec.pt
- CISUC – Centre for Informatics and Systems of the University of Coimbra

Communications and Telematic Services Group
Polo II, 3030 COIMBRA – PORTUGAL

Tel.: +351-239-790000, Fax: +351-239-701266, E-mail: {orvalho, boavida@dei.uc.pt}

ABSTRACT

Continuous distributed interactive media applications require QoS-capable middleware platforms, in order to meet stringent
requirements in terms of losses, bandwidth and jitter. Existing middleware platforms, such as OMG Common Object
Request Broker Architecture (CORBA) do not meet these requirements. The major part of the this paper is dedicated to the
proposal, presentation and discussion of a middleware platform – named Augmented Reliable Multicast CORBA Event
Service, ARMS – developed with the aim to provide quality of service mechanisms for continuous distributed interactive
medium support.

Keywords: QoS Middleware, Reliable Multicast, CORBA Event Service

1. INTRODUCTION

A continuous distributed interactive medium is a medium that can change its state in response to user operations as well to
the passage of time [1]. A multimedia system can be characterized by ‘computer-controlled integrated production,
manipulation, presentation, storage and communication of continuous (time-dependent) or discrete (time-independent)
information’ [2]. A broad variety of applications use this kind of media, such as multi-user virtual reality (VR), distributed
simulations, networked games and computer-supported co-operative work (CSCW) applications. Systems dealing with
multimedia events combine aspects of distributed real-time computing with the need for low latency, reduced jitter, high
throughput, multi-sender/multi-receiver communications over wide area systems and different levels of reliability [3]. These
event-driven systems also require efficient and scalable communications components.
For example, VR applications have specification features concerning interactivity, reliability, continuity, coherence and
strict time constraints that render difficult their traffic characterisation in terms of quality of service (QoS) requirements.
In continuous distributed interactive media there are operations that need to be executed at a specific point in time and in a
correct order for consistency to be achieved. [1] Investigates this problem and proposes a solution by deliberately increasing
the response time in order to decrease the number of short-term inconsistencies, leading to the concept of local lag. Instead
of immediately executing an operation issued by a local user, the operation is delayed for a certain amount of time before it
is executed. The determination of this value is a typical issue of application adaptability.
VR applications are associated with three important functions: scalability, interaction and consistency [3]. The QoS
characteristics that influence the previous functions are reliability, losses and delay jitter. Additionally, those functions are
influenced by application adaptability factors like frequency of events, synchronisation delay, number of participants,
consistency and playout time (display frequency) [3].
Middleware has emerged as a key architectural component in supporting distributed applications. There is a general trend
towards integrating applications using reusable components based on open distributed object computing (DOC) middleware,
such as CORBA [4].
Although DOC middleware is well suited for handling request-response interactions in client/server applications, the
stringent QoS requirements of multimedia applications have historically precluded DOC middleware from being used as
their data transfer mechanism [5]. For instance, inefficient CORBA Internet Inter-ORB Protocol (IIOP) [6] implementations
perform excessive data copying and memory allocation per-request, which increases packet latency [7]. Likewise,
inefficient marshaling/demarshaling in DOC middleware decreases streaming data throughput [8]. Thus, in CORBA there is
no support for multimedia in terms of continuous media interaction or QoS management, and it only supports request/reply
interactivity, which is inappropriate for continuous media [9]. In addition, it is not possible to specify QoS for such

interactions, namely in terms of bounded latency. Also, there is no support for adaptation, as the underlying implementation
in completely closed [9].
Portability over heterogeneous environments is a typical requirement of distributed multimedia systems. Although this
portability can be provided by middleware such as CORBA, there exists a widespread belief in the virtual reality
community that the quality of service offered by CORBA is not suitable for next-generation large distributed interactive
media [10]. However, due to their nature, the CORBA Event Service [11] and the CORBA Notification Service [12] have
some potential to being used for continuous distributed interactive media applications.
The work being described in this paper consists of a middleware platform for continuous distributed interactive media
applications based on some extensions to the CORBA Event Service. The platform - named Augmented Reliable Multicast
CORBA Event Service (ARMS), witch is an intersection platform from middleware, multicast and QoS (Figure 1), that
provides an end-to-end communication framework with QoS-matching capabilities, having in mind VR application
requirements.

Figure 1 - ARMS intersection: Middleware, Multicast and QoS

The ARMS platform addresses the above-mentioned QoS issues and explores the adaptation between the quality of service
required by applications and the one that is provided by the underlying communication system. This paper presents the main
approaches taken by ARMS in order to provide QoS adaptability. Section 2 provides a general description of the ARMS
architecture. As the work presented in this paper corresponds to an enhancement of a previous, non-QoS-adaptive platform,
section 3 presents the characteristics of this previous platform. Section 4 provides details concerning the approach taken by
ARMS in terms of reliability, congestion control and jitter. Section 5 describes additional features of the ARMS platform,
namely the IIOP/IP multicasting gateway service and the federation of event channels. Section 6 identifies related work.
The conclusions are presented in section 7.

2. ARMS GENERAL CHARACTERISTICS
ARMS is focused on VR environments based on VRML models, which deal with two different types of information: events
and states. Events are time critical and described by small amounts of information, as opposed to states that are generally
non-time-critical and require large amounts of information for their description. Therefore, there is the need for different
levels of reliability when exchanging event and state information: minimal reliability (with loss detection) for events, and
full reliability for states. In addition, ARMS assumes that there is a common time reference, which requires the clocks of all
participants to be synchronised by means of NTP or GPS clocks. Previous research has been focused on limitations of the
CORBA Event Service, namely multicasting, reliability and bulk data handling [13,14]. The work presented in this paper
extends it to support adaptive QoS middleware functionalities. ARMS offers a set of QoS-related mechanisms for reliability
guarantee, congestion control and jitter control. The QoS management process is supported by object-based monitoring and
adaptation functions (Figure 2). Monitoring is the process of observing the utilisation of resources and/or QoS
characteristics in the system. ARMS has specific objects for loss and jitter monitoring.

ARMS API

Reliable Multicast Protocol

Multicast Interfaces

Adaptive
Application

QoS
Monitor

QoS
Adaptation

Q
oS

 M
an

ag
er

Figure 2 - ARMS architecture

Adaptation mechanisms generally rely on resource control, reconfiguration or change of service [15]. ARMS uses a
resource control paradigm, providing adaptation mechanisms for network congestion, losses and jitter. Placing adaptation
capabilities in the middleware gives applications the ability to concentrate on specific functionalities, to enforce different
adaptation policies and to interact with other components in the system in order to ensure fairness and other global
properties [16].

3. ARMS VERSION 1
The first generation of ARMS offered a set of extensions to the CORBA Event Service specification [13], namely
mechanisms for IP multicast communication, reliability and fragmenting/reassembling of large events.
This service is a pure Java implementation (JDK 1.2 compatible) [17], and so it benefits from all the strengths of Java.
These include portability, security, and robustness. It is, also, ORB-agnostic. It is written to the standard IDL-to-Java
mapping, so it should work with any Java ORB that supports the standard mapping. As in the original specifications made
by OMG CORBA Event Service, suppliers and consumers are decoupled, that is, they don’t know each other’s identities;
thus, the standard Event Service may still be provided by this extended service.
The approach on which the developed work was based is the one called Push model. The objective is to allow the consumer
to be sent the event data as soon as it is produced. The canonical Push Model allows Suppliers of events to initiate the
transfer of event data to Consumers.
The reliable multicast extension can be seen as an alternative way to get the event across to the consumer. This assumption
forces the new service to keep all the standard interfaces with the same functionality (the same methods) that are defined by
OMG, allowing a choice to be made by the supplier/consumer between IIOP and Reliable IP Multicast. The service
implements two kinds if IP multicast interfaces: IP Multicast-Any and IP Multicast-Streams. The IP Multicast-Any deals
with Any Values while IP Multicast-Streams deals directly with byte-stream values, avoiding the overhead caused by
marshalling and de-marshalling of the proprietary Any. The reliable multicast solution is based on the Light-weight Reliable
Multicast Protocol (LRMP) [18], which deals with IP Multicasting and provides the necessary reliability and better
scalability.

4. ARMS VERSION 2
The quality of service provided to multimedia sessions is determined, in general, by packet losses and delay. The second
generation of ARMS acts as a transport level with QoS monitors that provide information on key aspects of QoS provision
such as losses and jitter. Adaptation mechanisms for network congestion (congestion control), losses (reliability sessions)
and jitter (jitter filter) have an important influence on the performance of virtual environment applications.

4.1 Reliability sessions
ARMSv2 supports several reliability levels: Reliable, Reliable-Limited Loss, Loss Allowed, Unreliable with loss notification
and Unreliable.
The first is a typical strong reliability session. Reliable-Limited Loss is a session where limited losses are permitted for some
types of packets and loss notifications will be triggered when this happens. It provides guarantees for congestion control at
sender side and sequence control at the receiver side. Loss Allowed is a session where losses are allowed and accepted for all
types of packets but provides loss notification, congestion control at sender side and sequence control at the receiver side.
Unreliable with loss notification is an unreliable session, where data are not subject to congestion control at the sender side.
However, the ARMS upper level maintains a queue for sequence number control, which allows loss notification. Lastly,
Unreliable is a purely unreliable session. Table 1 summarises the characteristics of the various types of sessions offered by
ARMSv2.

Table 1 – Types of ARMSv2 sessions
 Permitted

Losses
Loss
Notification

Congestion
Control

Sequence
Control

Reliable No Yes Yes Yes
Reliable-
Limited Loss

Yes, for
some data
types

Yes

Yes

Yes

Loss Allowed
Yes

Yes

Yes

Yes

Unreliable
with loss
notification

Yes

Yes

No

Yes

Unreliable Yes No No No

4.2 Congestion control
Currently, different approaches are being discussed to solve QoS and congestion control problems [19]. Complex
distributed applications residing in heterogeneous end-to-end computing environments must be flexible and adapt to QoS
variations in their end-to-end execution [16]. That is, applications must adapt the bandwidth share they are using to the
network congestion state [19]. Usually, there are two distinct levels at which adaptation may take place – the system level
(e.g. operating systems and network protocols) and the application level – with different objectives. In order to balance the
objectives of these approaches, the ARMS middleware closely interacts both with application needs and with multicast
protocols, monitoring network parameters and operating systems resources. In terms of network QoS control mechanisms,
ARMS directly monitors the reliable multicast communication protocol, LRMP, adapting the sender transmission rate to the
network congestion state. The adaptation is based on information carried by NACK packets and on local congestion
information [14] as the sender window size [18]. Based on congestion information gathered from lower communication
objects, ARMS and applications adjust the upper-level sending rate. QoS mechanisms that are based on adapting the sender
transmission rate to the network congestion state don’t work well in large multicast groups and heterogeneous
environments, because poor performance receivers would impose a low transmission quality. To avoid this, several
proposals have been made for hierarchical data distribution [20,21,22]. Nevertheless, in virtual reality environments, data
layering approaches are not appropriated for most data, especially for time critical data such as VRML events. Delay is the
most important QoS factor for this type of data. Layered data mechanisms solve heterogeneity problems but cause
additional delay at the receivers [19]. Thus, to avoid this, ARMS adapts the minimum rate to ensure the fairness of the
adaptive congestion control. Receivers should leave the session when the loss rate is very high and the data rate in not
reduced by the sender. Nevertheless, layered multicast [20] can be useful and will be explored in subsequent stages of the
work.

4.3 Jitter
Variance in end-to-end delay is called delay jitter or, simply, jitter. Critical information such as the case of audio, video and
continuous distributed interactive media (distributed simulations, multi-user virtual reality) should be played back
continuously, which means that there must be some form of jitter compensation.
In addition to components for error control, ARMS provides mechanisms for monitoring and controlling jitter, so that the
original temporal relationships can be recovered. ARMS lower level reliable multicast protocol queue sends ordered packets
(reliable data) to an upper level Jitter Filter Queue. This Jitter Filter Queue is used to absorb delay variations exhibited by
arriving packets. So, this compensation is done by introducing an additional and variable delay, followed by the delivering
of packets to the application level, as opposed to a compensation made at the application level [23].

ARMS allows applications to contract this jitter compensation [the threshold synchronisation] for certain types of data,
namely unreliable data (pure or with loss notification) and reliable data with limited loss. Packets that arrive after a given
threshold are considered to be too late. These can simply be dropped or, alternatively, be marked as late packets and passed
to the application. Applications can ignore these packets or can react by requesting that a special NACK be sent by ARMS.

5. ADDITIONAL FEATURES OF THE ARMS PLATFORM
In addition to providing QoS adaptation, the ARMS platform has some optimisation features that contribute to its
transparency and scalability. With regard to transparency, the platform provides a gateway service between IIOP and IP
Multicasting. Scalability is supported by the federation of Event Channels.

5.1 Event Channel IIOP/IP Multicasting Gateway Service
ARMS guarantees interoperability between event suppliers and consumers in a way that is independent of the used
communication facilities – standard IIOP or IP multicast. To achieve this, the Event Channel provides a transparent IIOP
gateway. As can easily be understood, the interfaces that are provided by OMG must be maintained by the proposed service
in order to deal with the Any type of data. In this way, interoperability between the proposed service and most of the
commercially available ORBs can be achieved. In order to deal with all the values supported by the Any type, a new object –
Any – was created as an extension of the OMG class, to override the ORBs implementation.
The values to be passed to this service, in order to be sent via multicast, shall be created with the proprietary interfaces of
the service, that provide a set of new methods to deal with the resulting buffers and fill the LRMP data packet with the data
contained in those buffers. So, by creating a method for extracting the sequence of bytes generated by the Any marshalling
operation, the result is a stream of bytes that mean nothing to LRMP. Once they get across to the consumer LRMP object, it
reassembles them to form an Any, and delivers them to the consumer as a valid Any that shall be extracted by the application
interfaces. To provide the interchange of Multicast events and Standard events, two scenarios are considered (Figure 3):

x when the supplier is a MulticastPushSupplier and the consumer is a normal Consumer;
x when the supplier is a normal Supplier and consumer is a MulticastPushConsumer.

IP Mult icast
GroupMult icast

Suppl ier

Event Channel

Mult icast
Consumer

Standard
Suppl ier

Standard
Consumer

Figure 3 – ARMS Gateway service data flow

For the first scenario, and knowing that the model to be dealt with is the Push Model, the event is sent via LRMP, i.e. is sent
to a well known multicast group, and is pushed to Multicast Consumers by one LRMP object that receives events directly.
As the Event Channel holds one ProxyMulticastPushConsumer for all Suppliers, this proxy acts as a normal consumer to
which events are pushed. Each time this proxy is pushed a new event, it invokes the receive method on the Event Channel.
This invokes a receive method on the ConsumerAdmin, that holds references to all ProxyPushSuppliers (standard) and shall
invoke the receive method on all those proxies, that will then invoke the push method on the consumer they are attached to.
The ConsumerAdmin does nothing on the ProxyMulticastPushSupplier, or else events would be sent twice to the multicast
group.
For the second scenario, the supplier calls the push method on its ProxyPushConsumer, that will call receive on the Event
Channel, to get the event to standard consumers, and will also ask for any existent ProxyMulticastPushSuppliers. If there
are any, the proxy shall call the receive method on that proxy. In this way, the event is sent to the multicast group, and all
MulticastPushConsumers receive it. So, the Event Channel is responsible for doing all the necessary IIOP gateway work.

In either scenario, the gateway operation implies changes to the Any Object that is being forwarded. The Event Channel
also takes care of this detail, at the cost of an additional overhead caused by the de-marshalling of the proprietary Any and
subsequent marshalling as an ORB Any, and vice-versa.

5.2 Federation of Event Channels
Distributed transparency of the Event Channel can lead to a less effective configuration. There are scenarios where
consumers and suppliers reside in the same process, host or network and the Event Channel is remote. In these cases, there
is a waste of network resources and unnecessary increase of latency. ARMS Event Channel object uses a configuration
facility to federate Event Channels, allowing an Event Channel to be a consumer of another, remote Event Channel.
Federation of Event Channels leads to the conservation of bandwidth because only a single event will be sent to all the
remote users. Additionally, the average latency is reduced because part of the traffic becomes local. Figure 4 illustrates the
use of the federation of event channels when communication is made via standard IIOP. In Figure 5 federation of event
channels is used in conjunction with the IIOP/IP Multicast Gateway Service. The combination of IIOP/IP Multicasting
Gateway Service with Event Channel federation contributes to the enhancement of the QoS characteristics of the platform,
namely in terms of transparency, latency and scalability.

Event Channel

ORB

Event Channel

Domain A Domain B

Standard
Supplier Standard

Supplier

Standard
Consumer

Standard
Consumer

Standard
Consumer

Standard
Consumer

Figure 4 – Federated Event Channel configuration: standard IIOP

IP Multicast
Group

Event Channel

Multicast
Consumer

Multicast
Supplier

ORB

Multicast
Consumer

IP Multicast
Group

Multicast
Consumer

Multicast
Supplier

Multicast
Consumer

Event Channel

Domain A Domain B

Figure 5 – Federated Event Channel configuration with IIOP/IP Multicasting Gateway Service

6. RELATED WORK

 Several approaches exist that try to explore QoS issues in distributed object environments. OrbixTalk [24,25], which is a
commercial IONA implementation of the CORBA Event Service specification normalised by OMG [11] written in C++,
uses IP multicasting and a reliability mechanism based on negative acknowledgements, in order to provide delivery
confirmation of each information object. Because the CORBA Event Service specification does not address issues for real-
time applications, the QoS behaviour is not acceptable for many application domains.
OMG Notification Service [12] is a superset of the CORBA Event Service specification. It adds some interfaces, which deal
with filtering, security, federation and QoS. However, this specification does not address implementation issues.
TAO's Real Time Events Service [10] it's a powerful implementation of CORBA Event Service and Notification Service
specifications in C++. Nevertheless, it lacks some QoS characterisitcs, such as reliability. However, OMG CORBA
Messaging specification [26] defines several levels of reliability for one-way calls, which are being added to the TAO

features to complement this service. This group has been developing considerable work on real-time extensions to CORBA,
which enable end-to-end QoS specification and enforcement.
Other CORBA projects, such as QuO [27], implement models for distributed object application, defining, controlling,
monitoring and adapting to changes in QoS parameters. The QuO project proposes various extensions to standard CORBA
components and services, in order to support adaptation, delegation and renegotiation services to shield QoS variations. The
development has a great focus on remote method invocation to remote objects.
ARMS is complementary to the above-mentioned approaches, since it is based on the integration of CORBA middleware
and underlying services – such as multicasting – while the referred approaches are concentrated on the CORBA object
model.

7. CONCLUSIONS
Quality of service requirements of continuous distributed interactive media applications encompasses several aspects that
are not readily available in standard distributed object platforms. The need for different levels of reliability, congestion
control mechanisms and jitter suppression strategies is apparent in applications such as virtual reality, CSCW and
distributed interactive simulations.
Middleware platforms can play an important role in quality of service provision, offering flexible mechanisms that adapt the
quality of service provided by the underlying communication channel to the quality of service required by applications,
according to an established service contract.
This paper presented the main implementation options of the ARMS middleware platform, which builds on a set of
extensions to the CORBA Event Service, providing native multicast communication, various reliability levels, congestion
control and jitter suppression, with the aim to achieve QoS adaptability. The platform has been implemented at the
Laboratory of Communications and Telematics of CISUC, where it is operational and currently being subject to extensive
evaluation.
The first set of tests made to the platform was aimed at the verification of the platform operational status. The basic
mechanisms for reliability, congestion control and jitter proved to be operational. The following tests will try to quantify the
usefulness and effectiveness of these mechanisms. These will provide valuable information concerning the adequacy of
placing QoS adaptation mechanisms in the middleware, as opposed to strategies that place them at application level.

8. ACKNOWLEDGEMENT
This work was partially financed by the Portuguese Foundation for Science and Technology, FCT and PRODEP.

9. REFERENCES
1. “Consistency in Continuous Distributed Interactive media”, Martin Mauve, Technical Report TR-9-99, Reihe Informatik, Department for

Mathematics and Computer Science, University of Mannheim, November 1999.
2. “Human perception of jitter and media synchronization”, IEEE J. Select. Areas Commun., vol. 14, pp. 61-72, January 1996.
3. “Quality of Service Management in Distributed Interactive Virtual Environment”, Dimitrios Makrakis, Abdelhakim Hafid, Farid Nait-Abdesselem,

Anastasios Kasiolas, Lijia Qin, Progress Report of DIVE project.
4. http://www.mcrlab.uottawa.ca/research/QoS_DIVE_Report.html
5. Object Management Group,The Common Object Request Broker: Architecture and Specification. Object, Management Group, 2.3 edition. 1999
6. Design and Performance of an Object-Oriented Framework for High-Performance Electronic Medical Imaging. Pyarali, I., Harrison, T. H., and

Schmidt, D. C. , USENIX Computing Systems, 9(4). 1996
7. Optimizing a CORBA IIOP Protocol Engine for Minimal Footprint Multimedia Systems. Gokhale, A. and Schmidt, D. C. Journal on Selected Areas

in Communications special issue on Service Enabling Platforms for Networked Multimedia Systems, 17(9). 1999
8. Measuring and Optimizing CORBA Latency and Scalability OverHigh-speed Networks, Gokhale, A. and Schmidt, D. C.,Transactions on Computing,

47(4). 1998
9. Measuring the Performance of Communication Middleware on High-Speed Networks, Gokhale, A. and Schmidt, D. C., In Proceedings of

SIGCOMM ’96, pages 306–317, Stanford, CA. ACM. 1996
10. “Supporting Multimedia in Distributed Object Environments”, D. G. Waddington and D. Hutchinson, Internal report number MPG-99-17, 1999.
11. "Applying a Scalable CORBA Event Service to Large-scale Distributed Interactive Simulations", Carlos O'Ryan, David L. Levine, Douglas C.

Schmidt, J. Russel Noseworthy, Proceedings of the "5Th Workshop on Object-oriented Real-time Dependable Systems", Montery, CA, November
1999.

12. “CORBA services: Common Object Services Specification”, Object Management Group-OMG, Document formal/97-07-04, ed., July 1997.
13. “Notification Service Specification”, Object Management Group-OMG, Document telecom/99-07-01, ed., July 1999.
14. “A Platform for the Study of Reliable Multicasting Extensions to CORBA Event Service”, João Orvalho, Luis Figuiredo, T. Andrade and Fernando

Boavida, Proceedings of IDMS’99, Toulouse, France, October 12-15, 1999.
15. “Evaluating Light-weight Reliable Multicast Protocol Extensions to the CORBA Event Service”, João Orvalho, Luís Figueiredo and Fernando

Boavida, , in the Proceedings of EDOC’99 – 3rd International Enterprise Distributed Object Computing Conference, University of Mannheim,
Germany, September 27-30, 1999.

16. “A General Model for QoS Adaptation”, D. G. Waddington and D. Hutchinson, Proceedings of Sixth International Workshop on Quality of Service
(IWQoS’98), pag.275-277, Napa, California, USA, May 18-20 1998.

17. “A Control-Based Middleware Framework for Quality-of-Service Adaptations”, Baochum Li and Klara Nahrstedt, IEEE Journal On Selected Areas
In Communications, Vol. 17, Nº 9, September 1999.

18. JavaSoft, www.javasoft.com
19. Tie Liao: “Light-weight Reliable Multicast Protocol Specification”, Internet-Draft: draft-liao-lrmp-00.txt, 13 October 1998.
20. “The Loss-Delay Based Adjustment Algorithm: A TCP-Friendly Adaptation Scheme”, Dorgham Sisalem and Henning Schulzrinne, In Proceedings

of Network and Operating Systems Support for Digital Audio and Video (NOSSDAV’98), Cambridge, UK, 1998.
21. “TCP-like Congestion Control for Layered Multicast Data Transfer”, L. Vicisano, L. Rizzo, and J. Crowcroft, In Proceedings of INFOCOM’98, San

Francisco, USA, March 1998.
22. “Receiver-driven layered multicast”, S. McCanne, V. Jacobson, and M. Vertteli, In Proceedings of SIGCOMM Symposium on Communication

Architecture and Implementation of High Performance Communication Systems (HPCS’97), Chalkidiki, Greece, June 1997.
23. “Thin Streams: An Architecture for multicasting layered video”, L. Wu, R. Sharma, and B. Smith, In Proceedings of Network and Operating Systems

Support for Digital Audio and Video (NOSSDAV’97), St. Louis, USA, May 1997.
24. “Delay and Synchronization Control Middleware to Support Real-Time Multimedia Services over Wireless PCS Networks”, H. Liu and M. El Zarki,

IEEE Journal On Selected Areas In Communications, Vol. 17, Nº 9, September 1999.
25. OrbixTalk da Iona, www.iona.com/
26. "Reliable CORBA Event Channels"X. Défago, P. Felber, R. Guerraoui, EPFL, Computer Science Department, Technical Report 97/229, May 1997.
27. “CORBA Messaging Specification”, Object Management Group-OMG, Document orbos/98-05-05, ed., May 1998.
28. "QuO's Runtime Support for Quality of Service in Distributed Objects", Vanegas R, Zinky JA, Loyall JP, Karr DA, Schantz RE, Bakken DE..

Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware'98), The Lake
District, England, 15-18 September 1998.

