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Abstract. The CORBA Event Service specification lacks important 
features in terms of quality of service (QoS) characteristics required 
by multimedia information. The main objective of the work described 
in this paper is to augment the standard CORBA Event Service 
specification with a set of extensions, to turn it into an adaptable 
QoS middleware multimedia framework. To meet this, some 
extensions to the CORBA Event Service already developed with the 
aim of providing multicasting and reliability features have been 
enhanced in order to allow the close interaction with multicast 
transport protocols and with QoS monitoring mechanisms. The result 
was a QoS-aware middleware platform that actively adapts the 
quality of service required by the applications to the one that is 
provided by the underlying communication channel. The main 
quality of service features addressed by the platform – and discussed 
in the paper – are the support of sessions with different reliability 
levels, the provision of congestion control mechanisms and the 
capability to suppress jitter. 

1. Introduction 

A continuous distributed interactive medium is a medium that can change its state in 
response to user operations as well to the passage of time [1]. A broad variety of 
applications use this kind of media, such as multi-user virtual reality (VR), distributed 
simulations, networked games and computer-supported co-operative work (CSCW) 
applications. Systems dealing with multimedia events combine aspects of distributed 
real-time computing with the need for low latency, reduced jitter, high throughput, 
multi-sender/multi-receiver communications over wide area systems and different 
levels of reliability [2]. These event-driven systems also require efficient and scalable 
communications components.  
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The work being described in this paper consists of a middleware platform for 
continuous distributed interactive media applications based on some extensions to 
the CORBA Event Service. The platform - named Augmented Reliable Multicast 
CORBA Event Service (ARMS) – provides an end-to-end communication framework 
with QoS-matching capabilities, having in mind VR application requirements. VR 
applications have specification features concerning interactivity, reliability, 
continuity, coherence and strict time constraints that render difficult their traffic 
characterisation in terms of quality of service (QoS) requirements.  

ARMS is focused on VR environments based on VRML models, which deal with 
two different types of information: events and states. Events are time critical and 
described by small amounts of information, as opposed to states that are generally 
non-time-critical and require large amounts of information for their description. 
Therefore, there is the need for different levels of reliability when exchanging event 
and state information: minimal reliability (with loss detection) for events, and full 
reliability for states. In addition, ARMS assumes that there is a common time 
reference, which requires the clocks of all participants to be synchronised by means of 
NTP or GPS clocks.   

In continuous distributed interactive media there are operations that need to be 
executed at a specific point in time and in a correct order for consistency to be 
achieved. [1] investigates this problem and proposes a solution by deliberately 
increasing the response time in order to decrease the number of short-term 
inconsistencies, leading to the concept of local lag. Instead of immediately executing 
an operation issued by a local user, the operation is delayed for a certain amount of 
time before it is executed. The determination of this value is a typical issue of 
application adaptability.  

VR applications are associated with three important functions: scalability, 
interaction and consistency [2]. The QoS characteristics that influence the previous 
functions are reliability, losses and delay jitter. Additionally, those functions are 
influenced by application adaptability factors like frequency of events, 
synchronisation delay, number of participants, consistency and playout time (display 
frequency) [2]. 

The ARMS platform addresses the above-mentioned QoS issues and explores the 
adaptation between the quality of service required by applications and the one that is 
provided by the underlying communication system. This paper presents the main 
approaches taken by ARMS in order to provide QoS adaptability. Section 2 provides 
a general description of the ARMS architecture. As the work presented in this paper 
corresponds to an enhancement of a previous, non-QoS-adaptive platform, section 3 
presents the characteristics of this previous platform. Section 4 provides details 
concerning the approach taken by ARMS in terms of reliability, congestion control 
and jitter. Section 5 describes additional features of the ARMS platform, namely the 
IIOP/IP multicasting gateway service and the federation of event channels. Section 6 
identifies related work. The conclusions and guidelines for further work are presented 
in section 7. 



2. ARMS general characteristics  

Portability over heterogeneous environments is a typical requirement of distributed 
multimedia systems. Although this portability could be provided by middleware such 
as CORBA, there exists a widespread belief in the virtual reality community that the 
quality of service offered by CORBA is not suitable for next-generation large 
distributed interactive media [3]. Also, another obvious deficiency of CORBA is its 
lack of support for interaction styles other than request/reply [4]. However, due to 
their nature, the CORBA Event Service [5] and the CORBA Notification Service [6] 
have some potential be used for continuous distributed interactive media applications.  

Previous research has been focused on limitations of the CORBA Event Service, 
namely multicasting, reliability and bulk data handling [7,8]. The work presented in 
this paper extends it to support adaptive QoS middleware functionalities. 

ARMS offers a set of QoS-related mechanisms for reliability guarantee, congestion 
control and jitter control. The QoS management process is supported by object-based 
monitoring and adaptation functions (Figure 1). Monitoring is the process of 
observing the utilisation of resources and/or QoS characteristics in the system. ARMS 
has specific objects for loss and jitter monitoring.  
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Fig. 1. ARMS architecture 

Adaptation mechanisms generally rely on resource control, reconfiguration or change 
of service [9]. ARMS uses a resource control paradigm, providing adaptation 
mechanisms for network congestion, losses and jitter. Placing adaptation capabilities 
in the middleware gives applications the ability to concentrate on specific 



functionalities, to enforce different adaptation policies and to interact with other 
components in the system in order to ensure fairness and other global properties [10]. 

3. Synopsis of ARMS version 1 

The first generation of ARMS offered a set of extensions to the CORBA Event 
Service specification [7], namely mechanisms for IP multicast communication, 
reliability and fragmenting/reassembling of large events (Figure 2). 
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Fig. 2. ARMSv1 high-level view 

This service is a pure Java implementation (JDK 1.2 compatible) [11], and so it 
benefits from all the strengths of Java. These include portability, security, and 
robustness. It is, also, ORB-agnostic. It is written to the standard IDL-to-Java 
mapping, so it should work with any Java ORB that supports the standard mapping. 
As in the original specifications made by OMG CORBA Event Service, suppliers and 
consumers are decoupled, that is, they don’t know each other’s identities; thus, the 
standard Event Service may still be provided by this extended service.  

The approach on which the developed work was based is the one called Push 
model. The objective is to allow the consumer to be sent the event data as soon as it is 
produced. The canonical Push Model allows Suppliers of events to initiate the transfer 
of event data to Consumers.  

The reliable multicast extension can be seen as an alternative way to get the event 
across to the consumer. This assumption forces the new service to keep all the 
standard interfaces with the same functionality (the same methods) that are defined by 
OMG, allowing a choice to be made by the supplier/consumer between IIOP and 
Reliable IP Multicast. The service implements two kinds if IP multicast interfaces: IP 
Multicast-Any and IP Multicast-Streams. The IP Multicast-Any deals with Any 
Values while IP Multicast-Streams deals directly with byte-stream values, avoiding 
the overhead caused by marshalling and de-marshalling of the proprietary Any. The 
reliable multicast solution is based on the Light-weight Reliable Multicast Protocol 



(LRMP) [12], which deals with IP Multicasting and provides the necessary reliability 
and better scalability (Figure 3). 
 

Application

CORBA Event Service
Reliable Multicast

IIOP

TCP/IP

O
R

B
LRMP

IP Multicast
 

Fig. 3. ARMSv1 architecture 

4. ARMS version 2 

The quality of service provided to multimedia sessions is determined, in general, by 
packet losses and delay. The second generation of ARMS acts as a transport level 
with QoS monitors that provide information on key aspects of QoS provision such as 
losses and jitter. Adaptation mechanisms for network congestion (congestion control), 
losses (reliability sessions) and jitter (jitter filter) have an important influence on the 
performance of virtual environment applications. 

4.1 Reliability Sessions 

ARMSv2 supports several reliability levels: Reliable, Reliable-Limited Loss, Loss 
Allowed, Unreliable with loss notification and Unreliable.  

The first is a typical strong reliability session. Reliable-Limited Loss is a session 
where limited losses are permitted for some types of packets and loss notifications 
will be triggered when this happens. It provides guarantees for congestion control at 
sender side and sequence control at the receiver side. Loss Allowed is a session where 
losses are allowed and accepted for all types of packets but provides loss notification, 
congestion control at sender side and sequence control at the receiver side. Unreliable 
with loss notification is an unreliable session, where data are not subject to congestion 
control at the sender side. However, the ARMS upper level maintains a queue for 
sequence number control, which allows loss notification. Lastly, Unreliable is a 
purely unreliable session. Table 1 summarises the characteristics of the various types 
of sessions offered by ARMSv2. 



Table 1. Types of ARMSv2 sessions 

 Permitted  
Losses 

Loss 
Notification 

Congestion 
Control 

Sequence 
Control 

Reliable No Yes Yes Yes 
Reliable-Limited 
Loss 

Yes, for some 
data types 

Yes Yes Yes 

Loss Allowed Yes Yes Yes Yes 
Unreliable with 
loss notification 

Yes Yes No Yes 

Unreliable Yes No No No 

4.2 Congestion Control 

Currently, different approaches are being discussed to solve QoS and congestion 
control problems [13]. Complex distributed applications residing in heterogeneous 
end-to-end computing environments must be flexible and adapt to QoS variations in 
their end-to-end execution [10]. That is, applications must adapt the bandwidth share 
they are using to the network congestion state [13]. Usually, there are two distinct 
levels at which adaptation may take place – the system level (e.g. operating systems 
and network protocols) and the application level – with different objectives. In order 
to balance the objectives of these approaches, the ARMS middleware closely interacts 
both with application needs and with multicast protocols, monitoring network 
parameters and operating systems resources. 

In terms of network QoS control mechanisms, ARMS directly monitors the reliable 
multicast communication protocol, LRMP, adapting the sender transmission rate to 
the network congestion state. The adaptation is based on information carried by 
NACK packets and on local congestion information [8] as the sender window size 
[12]. Based on congestion information gathered from lower communication objects, 
ARMS and applications adjust the upper-level sending rate.  

QoS mechanisms that are based on adapting the sender transmission rate to the 
network congestion state don’t work well in large multicast groups and heterogeneous 
environments, because poor performance receivers would impose a low transmission 
quality. To avoid this, several proposals have been made for hierarchical data 
distribution [14,15,16]. Nevertheless, in virtual reality environments, data layering 
approaches are not appropriated for most data, especially for time critical data such as 
VRML events. Delay is the most important QoS factor for this type of data. Layered 
data mechanisms solve heterogeneity problems but cause additional delay at the 
receivers [13]. Thus, to avoid this, ARMS adapts the minimum rate to ensure the 
fairness of the adaptive congestion control. Receivers should leave the session when 
the loss rate is very high and the data rate in not reduced by the sender. Nevertheless, 
layered multicast [14] can be useful and will be explored in subsequent stages of the 
work. 



4.3 Jitter 

Variance in end-to-end delay is called delay jitter or, simply, jitter. Critical 
information such as the case of audio, video and continuous distributed interactive 
media (distributed simulations, multi-user virtual reality) should be played back 
continuously, which means that there must be some form of jitter compensation. 
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Fig. 4. Components of end-to-end delay 

In addition to components for error control, ARMS provides mechanisms for 
monitoring and controlling jitter (Figures 4 and 5), so that the original temporal 
relationships can be recovered. ARMS lower level reliable multicast protocol queue 
sends ordered packets (reliable data) to an upper level Jitter Filter Queue. This Jitter 
Filter Queue is used to absorb delay variations exhibited by arriving packets. So, this 
compensation is done by introducing an additional and variable delay, followed by the 
delivering of packets to the application level, as opposed to a compensation made at 
the application level [17]. 

ARMS allows applications to contract this jitter compensation [the threshold 
synchronisation] for certain types of data, namely unreliable data (pure or with loss 
notification) and reliable data with limited loss.  Packets that arrive after a given 
threshold are considered to be too late. These can simply be dropped or, alternatively, 
be marked as late packets and passed to the application. Applications can ignore these 
packets or can react by requesting that a special NACK be sent by ARMS. 

Jitter Algorithms  
 
ARMS implements the Filter Jitter with two different algorithms. The choice of which 
algorithm to use is made at configuration time. The first algorithm is described in the 
following paragraphs. 

To recover the original timing properties, the Jitter Filter buffers (Figure 5) the 
packets at the sink until time T + D, where T is a source timestamp and D is the 
bounded maximum end-to-end delay. When networks are unable to guarantee a 
maximum end-to-end delay bound, the receiver continuously updates an estimate of 
the maximum delay in order to calculate the buffering time. One of algorithms that 
can be used to calculate D is based on the RTP specification [18] to estimate the 
statistical variance of RTP data packet inter-arrival time, measured in timestamp units 
and expressed as unsigned integer. At a given instant, D is the maximum of all jitter 
values calculated up to that instant according to the formula: 
 

Ji= Ji-1 + ( |Dif(i-1, i)| – J i-1)/16 



 
where the inter-arrival jitter J is defined to be the mean deviation of the difference Dif 
in packet spacing at the receiver compared to the sender for a pair of packets [18]. 
This is equivalent to the difference in the “relative transit time” for the two packets. 
So, Dif may be calculated as 
 

Dif(i,j) =  (Rj – Ri) – (Sj – Si) = (Rj – Sj) – (Ri – Si) 
 
Si is the reliable multicast protocol timestamp for packet i and Ri is the time of arrival 
in reliable multicast protocol timestamp units for packet i, the same for packet j. Jitter 
is calculated continuously as each packet is received, for each source. Factor 1/16 was 
chosen to reduce measurement noise while converging reasonably quickly [18,19]. 
The code below implements the algorithm, where the estimated jitter can be kept as 
an integer. 
 

protected void updateJitter(int timestamp) { 
 int elapsed = NTP.ntp32(lastTimeForData - timestamp); 
 elapsed = NTP.fixedPoint32ToMillis(elapsed); 
 int d; 
 if (transit != 0) 
     d = elapsed - transit; 
 else 
     d = 0; 
 transit = elapsed; 
 if (d < 0) 
     d = -d; 
 jitter += d - ((jitter + 8) >> 4); 
    } 
} 

 
The second jitter algorithm is based on the work of [20], where statistical analysis of 
per-packet delay is used to estimate the maximum delay:  
 

D = d + r * s 
 
where d is the average delay, s is the standard deviation and r is a filter coefficient 
[20]. The algorithm continuously estimates the average delay and standard deviation, 
and is based on the ‘low pass filtering algorithm’ used in TCP for the estimation of 
the acknowledgement delay time [20]. So, for each packet, the transmission delay, t, 
is calculated as the difference between the reception time and the emission timestamp. 
The average delay and standard deviation are the calculated as d= dold + a(t –d) and s= 
sold + b(|t - d| - s), respectively. The constants a and b (a,b <1) are smoothing 
coefficients, with the typical values 1/8 and 1/16, respectively. 
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Fig. 5. Diagram of Data Flow 

5. Additional features of the ARMS platform 

In addition to providing QoS adaptation, the ARMS platform has some optimisation 
features that contribute to its transparency and scalability. With regard to 
transparency, the platform provides a gateway service between IIOP and IP 
Multicasting. Scalability is supported by the federation of Event Channels. 

5.1 Event Channel IIOP/IP Multicasting Gateway Service 

ARMS guarantees interoperability between event suppliers and consumers in a way 
that is independent of the used communication facilities – standard IIOP or IP 
multicast.  To achieve this, the Event Channel provides a transparent IIOP gateway. 



As can easily be understood, the interfaces that are provided by OMG must be 
maintained by the proposed service in order to deal with the Any type of data. In this 
way, interoperability between the proposed service and most of the commercially 
available ORBs can be achieved. In order to deal with all the values supported by the 
Any type, a new object – Any – was created as an extension of the OMG class, to 
override the ORBs implementation. 

The values to be passed to this service, in order to be sent via multicast, shall be 
created with the proprietary interfaces of the service, that provide a set of new 
methods to deal with the resulting buffers and fill the LRMP data packet with the data 
contained in those buffers. So, by creating a method for extracting the sequence of 
bytes generated by the Any marshalling operation, the result is a stream of bytes that 
mean nothing to LRMP. Once they get across to the consumer LRMP object, it 
reassembles them to form an Any, and delivers them to the consumer as a valid Any 
that shall be extracted by the application interfaces. 

To provide the interchange of Multicast events and Standard events, two scenarios 
are considered: 

• when the supplier is a MulticastPushSupplier and the consumer is a 
normal Consumer; 

• when the supplier is a normal Supplier and consumer is a 
MulticastPushConsumer. 

For the first scenario, and knowing that the model to be dealt with is the Push 
Model, the event is sent via LRMP, i.e. is sent to a well known multicast group, and is 
pushed to Multicast Consumers by one LRMP object that receives events directly. As 
the Event Channel holds one ProxyMulticastPushConsumer for all Suppliers, this 
proxy acts as a normal consumer to which  events are pushed. Each time this proxy is 
pushed a new event, it invokes the receive method on the Event Channel. This 
invokes a receive method on the ConsumerAdmin, that holds references to all 
ProxyPushSuppliers (standard) and shall invoke the receive method on all those 
proxies, that will then invoke the push method on the consumer they are attached to. 
The ConsumerAdmin does nothing on the ProxyMulticastPushSupplier, or else events 
would be sent twice to the multicast group.  

For the second scenario, the supplier calls the push method on its 
ProxyPushConsumer, that will call receive on the Event Channel, to get the event to 
standard consumers, and will also ask for any existent ProxyMulticastPushSuppliers. 
If there are any, the proxy shall call the receive method on that proxy. In this way, the 
event is sent to the multicast group, and all MulticastPushConsumers receive it. So, 
the Event Channel is responsible for doing all the necessary IIOP gateway work.  

In either scenario, the gateway operation implies changes to the Any Object that is 
being forwarded. The Event Channel also takes care of this detail, at the cost of an 
additional overhead caused by the de-marshalling of the proprietary Any and 
subsequent marshalling as an ORB Any, and vice-versa. 

5.2 Federation of Event Channels 

Distributed transparency of the Event Channel can lead to a less effective 
configuration. There are scenarios where consumers and suppliers reside in the same 



process, host or network and the Event Channel is remote. In these cases, there is a 
waste of network resources and unnecessary increase of latency. ARMS Event 
Channel object uses a configuration facility to federate Event Channels, allowing an 
Event Channel to be a consumer of another, remote Event Channel. Federation of 
Event Channels leads to the conservation of bandwidth because only a single event 
will be sent to all the remote users. Additionally, the average latency is reduced 
because part of the traffic becomes local. Figure 6 illustrates the use of the federation 
of event channels when communication is made via standard IIOP. In Figure 7 
federation of event channels is used in conjunction with the IIOP/IP Multicast 
Gateway Service. 

The combination of IIOP/IP Multicasting Gateway Service with Event Channel 
federation contributes to the enhancement of the QoS characteristics of the platform, 
namely in terms of transparency, latency and scalability. 
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Fig. 6. Federated Event Channel configuration: standard IIOP 
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Fig. 7. Federated Event Channel configuration with IIOP/IP Multicasting Gateway Service 

6. Related work 

 Several approaches exist that try to explore QoS issues in distributed object 
environments. 



OrbixTalk [21,22], which is a commercial IONA implementation of the CORBA 
Event Service specification normalised by OMG [5] written in C++, uses IP 
multicasting and a reliability mechanism based on negative acknowledgements, in 
order to provide delivery confirmation of each information object. Because the 
CORBA Event Service specification does not address issues for real-time 
applications, the QoS behaviour is not acceptable for many application domains. 

OMG Notification Service [6] is a superset of the CORBA Event Service 
specification. It adds some interfaces, which deal with filtering, security, federation 
and QoS. However, this specification does not address implementation issues. 

TAO's Real Time Events Service [3] it's a powerful implementation of CORBA 
Event Service and Notification Service specifications in C++. Nevertheless, it lacks 
some QoS characterisitcs, such as reliability. However, OMG CORBA Messaging 
specification [23] defines several levels of reliability for one-way calls, which are 
being added to the TAO features to complement this service. This group has been 
developing considerable work on real-time extensions to CORBA, which enable end-
to-end QoS specification and enforcement. 

Other CORBA projects, such as QuO [24], implement models for distributed 
object application, defining, controlling, monitoring and adapting to changes in QoS 
parameters. The QuO project proposes various extensions to standard CORBA 
components and services, in order to support adaptation, delegation and renegotiation 
services to shield QoS variations. The development has a great focus on remote 
method invocation to remote objects. 

ARMS is complementary to the above-mentioned approaches, since it is based on 
the integration of CORBA middleware and underlying services – such as multicasting 
– while the referred approaches are concentrated on the CORBA object model. 

7. Conclusions and guidelines for further work 

Quality of service requirements of continuous distributed interactive media 
applications encompasses several aspects that are not readily available in standard 
distributed object platforms. The need for different levels of reliability, congestion 
control mechanisms and jitter suppression strategies is apparent in applications such 
as virtual reality, CSCW and distributed interactive simulations. 

Middleware platforms can play an important role in quality of service provision, 
offering flexible mechanisms that adapt the quality of service provided by the 
underlying communication channel to the quality of service required by applications, 
according to an established service contract.  

This paper presented the main implementation options of the ARMS middleware 
platform, which builds on a set of extensions to the CORBA Event Service, providing 
native multicast communication, various reliability levels, congestion control and 
jitter suppression, with the aim to achieve QoS adaptability. The platform has been 
implemented at the Laboratory of Communications and Telematics of CISUC, where 
it is operational and currently being subject to extensive evaluation.  

The first set of tests made to the platform was aimed at the verification of the 
platform operational status. The basic mechanisms for reliability, congestion control 



and jitter proved to be operational. The following tests will try to quantify the 
usefulness and effectiveness of these mechanisms. These will provide valuable 
information concerning the adequacy of placing QoS adaptation mechanisms in the 
middleware, as opposed to strategies that place them at application level. 

Additional lines of research will explore the use of Forward Error Correction 
(FEC) mechanisms in order to provide some degree of reliability to time critical 
information, and the use of event filtering based on IP multicast groups in order to 
improve scalability. This latter functionality will be developed in a centralised 
service, which will map different event types to different IP multicast groups. 

In heterogeneous environments, layered multicast can be useful. This will also be 
explored in subsequent stages of the ARMS platform, namely by dynamically 
assigning receivers to multicast groups with different QoS levels, according to the 
required quality of service. 
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