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Abstract- The wide use of fieldbus based distributed
systems in embedded control applications triggered the
research on the problem of transmission network
induced jitter in control variables. In this paper we
introduce a variant of the classical Genetic Algorithm,
which we call Progressive Genetic Algorithm, and show
how it can be used to reduce jitter suffered by periodic
messages. The approach can be applied either in
centrally controlled fieldbuses or in synchronized ones.
The algorithm was tested with two well-known and
widely used benchmarks: the PSA, coming from
automotive industries and the SAE from Automatic
Guided Vehicles. It is shown that it is possible to
eliminate completely jitter if the adequate transmission
rate is available and, if not, a satisfactory reduced jitter
can be obtained.

1 Introduction
Distributed systems are today widely used in control
applications. In these, control tasks such as data acquisition,
control algorithm execution, system identification, actuation,
are often carried on in different nodes of the system. While
in stand alone classical controllers sampling period can
usually be kept as close as possible to the desired value, in
distributed systems this may not be true due to the need to
transmit data over a shared communication medium.
Presently most distributed systems either industrial or
embedded, rely in a serial communications infrastructure
known as fieldbus [Thomesse 98] to interconnect a set of
nodes. Some sort of arbitration is then used to decide, in
each time instant, which information will be transmitted in
the bus [Almeida et al 99]. When periodic variables such as
control parameters are to be transmitted, it is usually
possible to impose an adequate average transmission period.
However, due to the interaction of the different variable
periods and, often, of sporadic or aperiodic traffic, it is
rather difficult to obtain constant time intervals between
successive instances of the same periodic variable. This
variation is called jitter and may be formally defined as:
instantaneous jitter of instance k of periodic parameter i
belonging to  the set of  messages, ji,k , is:

ji,k=tsi,k – (k * Ti + фi)

where tsi,k is the start time of the transmission of the
instance, Ti is the period and фi is the initial phasing at the
start-up of the system. Thus, the instantaneous jitter is the
difference between the expected beginning of transmission
(k * Ti + фi) and actual transmission start tsi,k.
The overall system jitter (OSJ) can be defined as:

OSJ = ji,k
k
∑

i
∑

The problem of jitter in periodic control variables has been
identified recently and its consequences have been studied.
[Hong 95] refers to several scenarios of this problem such as
the case when more than one sample occurs in the same
period which leads to data rejection and when there is no
sample in that interval which is known vacant sampling.
[Stothert and MacLeod 98] demonstrated the degradation of
performance in feedback control loops subject to jitter in the
sampled and in the actuation variables (what they called
read-in and read-out jitter) due to their transmission in a
distributed control system. In [Juanole 99] the effect of jitter
due to message transmission in CAN – Controller Area
Network [Bosch 91] is shown to affect the phase margin of a
control loop. These and other examples demonstrate the
need for further research in jitter minimization as it is
pointed in [Decotignie 99].
In this work, we use genetic algorithms for reduction of
transmission network induced jitter in control variables in a
distributed embedded system. A variant algorithm, which we
called Progressive Genetic Algorithm (proGA), is proposed
and compared with the simple one. It is shown that proGA
enhances the performance of the simple genetic algorithm
for this specific problem. Moreover the variant algorithm is
also well suited for application in a real-time online
optimization device.
This paper is structured as follows:  in the next section we
introduce  the genetic algorithms we used and present how
we model the problem; in section 3 we describe the
experiments we conduct  using two benchmarks from the
automotive industry; finally in section 4 we present some
conclusions and discuss direction for future work.
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2 Progressive Genetic Algorithm

2.1 Genetic Algorithms
Genetic Algorithms (GA) are stochastic search procedures
inspired by the biological principles of natural selection and
genetics (Holland 75) (Back et al. 97). In spite of their
possible variants, GA can be described by the following
general procedure:

Procedure GA
  t=0;
  Intialize P(t);
  Evaluate P(t);
  While stoping_criterion_false  do

t = t+1;
P’(t) = select_from P(t-1);
P’’(t) = use_op_modification P’(t);
Evaluate P’’(t);
P(t) =  merge P’’(t) , P(t-1)

End_do

The GA starts with a set of candidate solutions called a
population, usually defined randomly. Each element of that
initial population, called an individual, is then evaluated
using a fitness function that gives a measure of the quality of
that element. Each individual is in fact an aggregate of
smaller elements or units, which are called genes. Each gene
can have different values or alleles. The algorithm enters
then a cycle in order to generate a new population. It starts
by probabilistically selecting the fittest individuals. Then
they undergo a modification process, using genetic inspired
operators like crossover or mutation that will eventually
alter the alleles of some genes. Finally, the old and new
populations are combined and the result becomes the next
generation that will in turn be evaluated. The cycle stops
when a certain condition is achieved (for instance, a pre-
defined number of generations). The algorithm just
described generally works with a low-level representation of
each individual called its genotype. Nevertheless, in
complex problems, the fitness function acts upon a high-
level representation of an individual, its phenotype, making
necessary to use decoders from genotypes to phenotypes.
The success of GA algorithms is linked to their ability to
solve difficult problems: problems where the search space is
large and multi-modal. This is the case of the problem
described above where the goal is to minimize the overall
message transmission jitter in a priority-based real-time
communication system. But for a GA to be more efficient
than traditional algorithms it is crucial to incorporate in it
problem-specific knowledge. This is achieved by choosing a
good data structure to represent the chromosome and also by
“tuning” the genetic operators (Michalewicz 99).

2.2 The elements of a simple GA (sGA)
For this particular problem, the genotype will be a vector of
integers where each integer represents the initial offset of

one message. For a message M each integer will be within
the range of [0,PM-1[, where PM is the period of that
message. All the phases for which the previous condition
holds true are said to be feasible.
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Figure 1 -Phases representation

Our crossover operator mimics the one that occurs in natural
sexual reproduction. Crossover uses two individuals of the
population (the progenitors) to generate two new individuals
(the descendants). We use one-point crossover. In this case,
a single random crossover point R is chosen, within the
range of 0 and N (where N is equal to the number of
messages). For the phases between 0 and R, the resulting
descendent is equal to one of the progenitors. For phases
between R+1 and N, it is equal to the other progenitor. A
second descendent is created inverting the order of the
progenitors. In this system, crossover probability is 1. This
means that all the descendents are created with the crossover
operator.
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Figure 2 - One-point crossover
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Figure 3 - Mutation operation

We used simple mutation (see Figure 3 above): we change
probabilistically one individual’s gene. The probability is
3%.
The fitness of each individual is evaluated by running a
simulation of the system operation that calculates the OSJ.
The OSJ is the sum of the partial jitter of each message. The
fittest individuals are those for which this value is smaller.
The simulation process will be described later.
The genetic algorithm stops when a predetermined number
of consecutive descendants are not included in the



population. This happens when they are all worse than every
individual already on the population.
The progenitors are selected proportionally to their fitness.
At each iterative step, one or two of the worst individuals of
the old population may be replaced by one or both of the
generated descendents. In this way, a new population is
generated. This replacement takes place when the fitness of
the later is better than the fitness of the former (steady state
like GA mechanism). This will in principle improve the
average fitness of the population.
The initial population is random generated but constrained
to feasible individuals.

2.3 The Simulator
Three different simulation mechanisms were tested: a simple
time-driven simulator, a hierarchical simulator and an event-
driven simulator. The first used a direct approach to the
problem, updating the system’s state in every tick of the
clock. This was the one with least performance of the three
simulators.
The second one is a hierarchical simulator that addressed the
problem by decomposing the system into simpler sub-
systems. The simulator initially calculated the OSJ for a
simpler system with only the two messages with highest
priority, and then proceeded incrementally adding messages
until the solution for the complete system was obtained.
Although this solution scaled well and achieved more
performance than the simple simulator (albeit an initial
overhead noticeable on smaller systems), it’s memory
requirements grew very rapidly as the system complexity
increased. The best performance was obtained using an
event-driven simulator.
In the third approach, the simulator uses two integer vectors
for holding information about the system’s state. One vector
holds the instants in which each message will be next ready
to transmission. The other vector holds information on the
elapsed transmission time of the messages currently being
transmitted. Message information is ordered by priority: in
position 0, the message with highest, in position 1, the
second highest message, and so on.
 Using information from the first vector it is possible to
determine how long will it take before the next message is
ready. The system’s state held in the second vector can be
updated accordingly.
The simulation stops when an overall system period has
been simulated. This period is equal to the LCF (least
common factor) of the periods of the messages.
The picture bellow shows the simulator’s output for a
message set with periods {4,6,8,12} and transmission times
of {1,2,1,2}. The #’s show actual message transmission and
the ~’s represent the jitter. The time axis’ offset is caused by
the transient state removal, as explained ahead.

Figure 4 - System simulation example

The following algorithm is a simplified version of the
simulator’s algorithm, not including transient analysis and
statistic data gathering.

A=vector with current transmission times of messages
B=vector with time remaining befores each message is again ready
for transmission
CM=index of current message being transmitted (-1 = none)
Set A to 0
Set B to initial system phases
Set CM= -1
While (not(StoppingCondition))
Determine time interval before next message is transmitted
(TT=min(B))
Update A:

While(TT>0)
Set CM to the message being transmitted now
(if CM!=-1 it’s the index for the first non-zero value of
vector A, else it is CM)
(if CM=-1 and A hasn’t got any non-zero values, goto
Update B:)
MTM is the remaining transmission time of the
message that is currently being transmitted (CM)
If (MTM-TT<=0), current message has been
transmitted:
Update A so that message CM’s remaing
transmission time is 0
Set CM= -1
Else
Update A so that message CM’s remaing
transmission time is MTM-TT
TT=TT-MTM
Wend

Update B:
TT=min(B);
Subtract TT from every time in B.
For each value in B=0, set it to the corresponding
message’s period

Wend

Normalization
A normalization process was used to ensure that the phase of
the message of greater priority would always be zero.
Because all the phases are relative to the same instant, the
crossover operator is more efficient. Additionally, the search
space is reduced in one dimension.
Transient Analysis
There is an initial transient state in the simulation, which is
caused by the absence of transmission channel use at instant



0. This effect is noticeable because there may be messages
still transmitting when the simulation ends. These messages
“wrap around” the overall system period and can’t be
determined when system simulation begins. Using an initial
transient period in the simulation, in which no statistical data
is gathered, solves this problem. This transient period should
be long enough so that the effects of the “cold” start are
eliminated.
The duration of the transient state is determined as follows.
If the simulation starts at instant 0, then the worst case
happens when all the messages are made ready for
transmission in instant –1 (except for the most priority
message, which always begins at instant 0 because of the
normalization process described above). The worst case
duration of the transient state is determined by simulation of
system execution in this worst case scenario, and it is equal
to the time where the message with least priority ends
transmission for the first time. From this moment forward,
the system’s state will no longer depend on initial
conditions.

2.4 Progressive Genetic Algorithm (proGA)
Execution time of the simulation is dependent on the LCF of
the message set. This fact has lead to the development of a
variant of the standard genetic algorithm, which reduces the
number of messages simultaneously analyzed. The variant,
called Progressive Genetic Algorithm (proGA), increases the
number of analyzed messages in an iterative way until a
solution for the complete set is found. The overall operation
of the algorithm is described bellow:
• First, the problem for the set of the two most priority

messages is solved.
• Next, the problem for the set of three highest priority

messages is solved using the solutions from the previous
step,…

• …, and so on, until the problem for the full set of
messages is solved.

Besides performance issues, an additional advantage of the
proGA is the existence of a partial solution for the problem
prior to completion of the algorithm. The initial solutions for
a small number of messages can be used in an on-line
optimization device that produces best-effort solutions to a
communication scheduler. Since most of the bandwidth is
used by the highest priority messages (considering a RMS4

scheduling mechanism is used), these partial solutions could
be, in most cases, quite near the real optimum solution.
The following changes were made to the original genetic
algorithms.
• The sGA is used to solve the problem for the set of the

two highest priority messages

                                                          
4 Rate Monotonic Scheduling – Scheduling policy where
messages with greater priority are those with smaller
periods. If RMS is used, then it is fairly simple to prove the
schedulability of the system, so it is widely used in real time
communication systems.

• The solutions for the set of N-1 messages are used to
initialise the population used to solve the problem with
the N highest priority messages in the following way:

• Determine the set C of individuals that have maximum
fitness for the set of N-1 messages

• Each individual of the initial population for N messages
is built from a randomly chosen member of C. The
phases of the N-1 highest priority messages will be
equal to those of the chosen individual, while the phase
for the Nth message will be a new, random, integer in
the admissible range [0, PN[.

The complete algorithm is presented below:

N =Vector with description of the two greatest priority
messages
NP=2; //Progression counter
P=Random population of individuals for the two greatest
priority messages
PopSize= Size of population (number of individuals)
Do
   // Solve the problem with the sGA for the message set N,
   using initial population P
   S=FinalPopulation( sGA(N,P) );
   //  Add one more message to the the problem input
   NP=NP+1;
   Add(N, Description of the NPth biggest priority message)
   // Select a breeding pool that includes all the individuals
   in S that have maximum fitness
   BreedingPool=Max(S)
   P=[]; // Clear P
   // Build new population by crossing and mutating from
   breeding pool
   While (Size(P)<PopSize)
         I = ApplyGeneticOperators(BreedingPool);
        Append(I,random-integer-in[0,NPth message period [)
        //Merge individuals
        Merge(P,I );
   Wend
While NP<=NumberOfMessages

3 Experiments
We conducted a series of experiments for assessing the
performance of the proGA versus the sGA. Both algorithms
were tuned similarly:
• Crossover probability: 100%
• Mutation Rate: 3%
• Population Size:200
• Stopping criterion: 200 iterations without improvement

of worst individual of population
Some experiments were additionally restrained to having
solutions with alleles multiple of a base value (10 µs).
Higher base values originate solutions that can be
implemented by timers with smaller resolutions.



We assumed a Controller Area Network (CAN) fieldbus was
being used, with transmission rates of 250 Kbit/s and 125
Kbit/s.

Testing Sets
Two benchmark sets were used as test input for the
algorithms. These benchmarks were developed in the
automotive industries with the purpose of modeling actual
message transmission requirements on automobile vehicles
(PSA - Peugeot Societé Automobile) or Automated Guided
Vehicles (SAE - Society of Automotive Engineering). The
benchmarks specify the system messages’ length (in bytes),
and period of transmission. These benchmarks are normally
used for testing fieldbus architectures, network protocols,
scheduling policies and related experimentation.
The PSA benchmark specifies 12 messages, with periods
ranging from 10 ms to 100 ms. The messages’ length varies
widely, from 1 to 8 bytes. The SAE benchmark includes 53
messages with periods from 5 ms to 1 sec, with a fixed size
of one byte (in a CAN network).
The message sets were manually scheduled with the RMS
scheduling policy. A worst case situation in which all
messages are released simultaneously in the beginning of
system’s operation was considered. This ensures that the set
is still schedulable no mater what initial phasing is imposed
to each of the messages.

Results: proGA vs. sGA
In the following tables, each experience is one independent
run of the algorithm. Improvement is rounded, not truncated.

PSA – 125k
Resolution : 1 µs

sGA ProGA Improvement
(1-(Res
proGA/Res
sGA))

Number of
experiences

20 20

Best OSJ (µs) 12640 12640 0%
Average OSJ (µs) 18626 13947 25%
OSJ Variance 18609324 1431317 92%
Best execution time
(s)

115 93 19%

Average execution
time (s)

222 160 28%

Worst execution
time (s)

337 308 9%

Execution time
variance

4925 3038 38%

PSA – 125k
Resolution : 10 µs

SGA proGA Improvement
(1-(Res
proGA/Res
sGA))

Number of
experiences

20 20

Best OSJ (µs) 12728 12640 1%
Average OSJ (µs) 18529 13365 28%
OSJ Variance 18505900 554941 97%
Best execution time
(s)

104 81 22%

Average execution
time (s)

235 171 27%

Worst execution
time (s)

392 311 21%

Execution time
variance

6198 3694 40%

SAE  – 250k
Resolution : 1 µs

SGA proGA Improvement
(1-(Res
proGA/Res
sGA))

Number of
experiences

20 20

Best OSJ (µs) 1497 0 100%
Average OSJ (µs) 5547 68 99%
OSJ Variance 17480887 5132 100%
Best execution time
(s)

1171 298 75%

Average execution
time (s)

1797 540 70%

Worst execution
time (s)

2627 937 64%

Execution time
variance

177948 31856 82%

SAE  – 250k
Resolution : 10 µs

SGA proGA Improvement
(1-(Res
proGA/Res
sGA)))

Number of
experiences

20 20

Best OSJ (µs) 468 0 100%
Average OSJ (µs) 4663 178 96%
OSJ Variance 10684342 94820 99%
Best execution time
(s)

1063 435 59%

Average execution
time (s)

1892 739 61%

Worst execution
time (s)

2712 1132 58%

Execution time
variance

162816 36933 77%



Results Analysis
The best solution given by the proGA is always better than
or equal to the solution from the simple GA. The average
OSJ is largely improved in all the experiences, from 25% in
the worst case (PSA-125k-1µs) up to the best improvement
of 99% in (SAE-250k-1µs). There is also a very significant
decrease in the variance of the results. These improvements
may be explained by the following factors:
• The proGA progressively identifies zones of the search

space that are more likely to have good solutions for the
problem, and directs the search towards those zones.
This results in increased time-efficiency of the
algorithm.

• The result of the sGA is more dependent on the random
initial population than the proGA’s result. In fact, no
matter what the initial population is, the proGA tends
towards “good” zones of the search space soon enough.

Concerning the speed of the algorithm, the proGA is
more efficient than the simple GA. Improvements range
from 27% for the PSA benchmark, up to 70% in the SAE
benchmark. Improvement in this benchmark is superior
because it is more complex than the PSA, having a greater
number of messages and bigger system period. The proGA
scales better than the sGA, and thus offers increased
improvement. Thus, it can be seen that the additional
overhead introduced by the proGA is largely compensated
by the superior convergence speed for an optimal solution.

The timer resolutions of 1 µs and 10 µs seem to offer
reasonably similar optimal solutions. In fact, additional
testing showed that resolution could be lowered to 100µs
without significant impact on the quality of the solutions (in
some cases, degradation only occurred at 1000µs
resolutions).
Progressive Phase Optimization
Figure 5 below shows the evolution of the number of
optimized phases during execution of the proGA. The
algorithm was tuned as described above.
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Figure 5 – Progressive phase optimization

It can be seen that most of the execution time is spent
optimizing the least priority messages. These tend to have
little impact on the OSJ, and so it is possible to develop an
on-line optimization device that offers near-optimal best-
effort solutions.

4 Conclusions and Future Work

In this paper we studied techniques for reduction of network
induced jitter in message transmission, using genetic
algorithms.
Two variant methods were analysed; a simple steady-state
based GA and a new approach we called proGA
(progressive GA). This new approach was developed to
provide adequate performance and on-line optimisation
capabilities. Additionally, we also studied the effects of
variation of timer resolution on minimum overall system
jitter.
The experimental results show that there is a significant
increase in the quality of the solution when the proGA is
used instead of the simple GA. The variant GA is also more
efficient, offering considerable improvements on execution
speed.
Although the technique imposes a relatively high
computational overhead, at least considering the usual
processors available in these type of systems, it is possible to
apply it incrementally. The initial solutions for a small (5,6)
number of messages are usually obtained rather quickly,
making it feasible to develop an on-line optimization device
that produces best-effort solutions to a communication
scheduler. An adequate system or co-processor can then
work on-line on messages phasing promoting a continuous
reduction of jitter along system operation. This opens
additional interesting possibilities for the on-line admission
of new real-time messages.
We have also found out that the timer resolution can be
decreased from maximum resolution without significant loss
of quality of the solution. This means that on-line
optimization can be made with simpler devices with lower
frequencies.
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