
Metaphorical mapping consistency via Dynamic Logic
Programming

Jõao Alexandre Leite?; Francisco Ĉamara Pereiray

Amı́lcar Cardosoy; Luı́s Moniz Pereira?
?Centro de Inteligˆencia Artificial (CENTRIA), Departamento de Inform´atica

Universidade Nova de Lisboa, 2825-114 Caparica, Portugal
yCentro de Inform´atica e Sistemas (CISUC), Universidade de Coimbra

Polo II, Pinhal de Marrocos, 3030 Coimbra, Portugal
jleite@di.fct.unl.pt; camara@dei.uc.pt
amilcar@dei.uc.pt; lmp@di.fct.unl.pt

Abstract

In this paper we explore a symbiosis betweenDynamic Logic Programmingand Metaphor to solve the problem of
inconsistency in metaphorical knowledge integration. The problem of solving inconsistencies that may arise when
knowledge from two different domains is combined, given a metaphorical mapping, is crucial, be it at the stage where
we want to evaluate the appropriateness of the mapping function, or at a subsequent stage when we want to reason with
the combined knowledge. We propose, in a formal and rigorous manner, a transformation and its semantics that solves
the problem of inter-domain inconsistencies by employing the principle of inertia to the rules of the source domain. This
work is part of an ongoing larger project,Dr. Divago, whose final goal is to develop a system to perform automatic
creative reasoning.

1 Introduction and Motivation

It is common to surround the wordCreativitywith a mys-
tic aura of no less ethereal concepts like inspiration, gift
and genius. Some, on the other hand, have been inves-
tigating towards our understanding of what is creativity,
or more precisely, what makes us creative in comparison
to other animals. Among these theories, e.g. Guilford
(1967); De Bono (1970), lies the fact that the ability to
associate apparently unrelated concepts, to see similar-
ity where there seems to be difference, to break rules or
ignore constraints where it is not expected to happen, is
recurrently present in situations involving the wordCre-
ativity.

In modelling Computational Creativity, we believe it
is relevant to understand that a creative system must be
able to work in a heterogeneous knowledge base of dif-
ferent domains, in such a way that it can extract and inter-
relate concepts apparently distant and different. Recent
Metaphor Theories (Gentner et al., 1989; Martin, 1990;
Indurkhya, 1992; Veale and Keane, 1993; Barnden, 1997)
seem to be quite promising in fulfilling this goal. These
theories set forth processes to associate concepts accord-
ing to an initial metaphor and yielding an interpretation.
An interpretation consists in a coherent 1-to-1 mapping of
elements between two domains (theSourceand theTar-
get, commonly calledVehicleandTenor) starting from an

initially chosen pair of mapped elements.
Apart from having been deeply studied along the ages,

and notably being a very common process of association
between domains, according to Eco (1984) and Veale and
Keane (1993), Metaphor is deeply embodied in the core
of our cognition, having a constant and vital role in com-
munication (Lakoff and Johnson, 1980).

In what concerns modelling Computational Creativ-
ity, metaphor may play a determinant role, since it can
be used as a device for cross-domain interrelation estab-
lishment. With such a device, a system could be able
to search in domains different from the one directly re-
lated to the task at hand, since there would be counter-
parts for some concepts (e.g. to search for new“musical”
ideas in Visual Arts, to search for new“computational”
concepts in Social Environments, etc.). An example of
work in progress towards such a system isDr. Divago
(Pereira, 1998). In this system, knowledge is represented
at two distinct levels: instancial knowledge in the form of
tree-like structures (e.g. musical structures); ontological
knowledge in the form of concept maps mainly describing
the concepts found in instancial knowledge (e.g. generic
knowledge about music). The role of Metaphor in this
system is to establish correspondences between concept
maps of different domains, thus allowing for transfer of
information contained in instancial knowledge. The use-
fulness of this cross-domain mapping obviously depends

much on the quality of the concept maps involved, this be-
ing the motivation leading to the development ofClouds
(Pereira, 2000), a module now integrated inDr. Divago,
aiming at helping the user in building her own concept
maps by means of machine learning techniques.

In the present work, withinDr. Divago, we want to
extend the generation of cross-domain links such as those
based on the metaphor theory of Veale and Keane (1993),
to cope with the transfer of operational/procedural knowl-
edge from one domain to another. In such cases, particu-
larly when negative information is bought into the arena,
inconsistency is a reality that has to be dealt with, as
shown by the following example:

Example 1 Consider the rule“objects aren’t big when
they are in the background”, extracted fromCloudsin the
domain of Visual Arts, represented in the clausal form as:

not big(X) object(X); background(X): (1)

which, if we were to map it to the music domain according
to the following translation:

big ! long object! motif

background! accompaniment

would correspond to:

not long(X) motif(X); accompaniment(X): (2)

This can easily be proven inconsistent, at least for some
instances (it is not difficult to findaccompaniment motifs
that arelong, eg. isometric motets from ars nova). �

Each metaphorical mapping will lead to the transfer
of a set of rules from theVehicleto theTenorof which:
some are redundant because equivalent rules already ex-
ist there; some, of particular interest to the creative pro-
cess, yield new knowledge to theTenor; some are contra-
dictory with the knowledge already present in theTenor.
Although contradiction is not necessarily evil, this being
more evident in creative processes, we nevertheless have
to detect and deal with it.

The need to detect and deal with contradiction
in knowledge transfer lead us to consider the recent
paradigm ofDynamic Logic Programming(Alferes et al.,
1998, 2000) as a formal, while at the same time intuitive,
vehicle to a solution.

The paradigm of Dynamic Logic Programming
(DLP), supported by the notion ofLogic Program Up-
dates(Leite, 1997; Leite and Pereira, 1997, 1998; Alferes
et al., 1998, 2000), is simple and quite fundamental. Sup-
pose that we are given a set of theories (encoded as gener-
alized logic programs) representing different states of the
world. Different states may represent different time peri-
ods or different sets of priorities or, in our case, different
domains. Consequently, the individual theories contain
mutually contradictory as well as overlapping informa-
tion. The role ofLogic Program Updatesis to use the

mutual relationships existing between different states to
precisely determine thedeclarativeas well as theproce-
dural semantics of the combined theory, composed of all
individual theories. Cross-domain inconsistencies are de-
tected and solved due to the application of the principle
of inertia to the individual rules of the theories. This prin-
ciple of inertia, applied to the individual rules of a theory,
states that a rule from the initial knowledge should only
persist in time, after an update, if it does not lead to a con-
tradiction by means of a new rule. In our case, the rules
from theVehicle, after the metaphorical mapping, should
only persist if they do not lead to a contradiction by means
of a rule from theTenor.

Going back to the example above, let us suppose that
we learn, in the music domain, the following rule:

long(X) motif(X); accompaniment(X);

isometric motet element(X): (3)

stating that“the accompaniment element of an isometric
motet is long”1. If we were simply to consider the union
of both rules, we would obtain a contradiction for allac-
companiment elements of an isometric motet. If we were
to simply consider rule 3, we would loose valuable in-
formation from rule 2 concerningaccompaniment motifs
not belonging to isometric motets. Our goal is to be able
to conclude that“accompaniment elements of an isomet-
ric motet are long”, and that“accompaniment elements
of non-isometric motets aren’t long”. That is, we would
like to use rule 2 for those instances that do not generate
a contradiction by means of rule 3. This is precisely the
behavior ofLogic Program Updates: to exert inertia on
those rules (in this case obtained by the mapping) that are
not contradicted by rules from the new domain. In Ex-
ample 3, we will return to this problem and show how to
obtain the desired result.

The non-monotonic behavior of DLP, together with its
modular characteristic shows to be quite important when
dealing with metaphors.

This paper presents a symbiosis of the two above men-
tioned theories (DLP andMetaphor) towards the goal of
Computational Creativity. It is being implemented as part
of the above mentionedDr. Divago(Pereira, 1998), where
interesting results are to be expected.

Enjoying the advantages of employing a theoretically
sound formalism to the problem ofMetaphorical Reason-
ing, DLP has also been implemented as a meta-interpreter
(DLP System, 1998) running under the XSB System
(1999), allowing for not only theoretical but also practical
reasoning.

The paper is structured in the following way: in Sect.2
we elaborate onMetaphor Theories; in Sect.3 we intro-
duce the reader to the notions ofLogic Program Updates
and DLP; in Sect.4 we set forth the notion ofMetaphori-
cal Reasoningby means of DLP; in Sect.5 we draw some
properties and illustrate with examples; in Sect.6 we con-
clude and give hints about future developments.

1Also known as Talia

2 Metaphor Theory

Metaphor is a constantly used resource of communica-
tion, be it as an embellishment for discourse or as a nec-
essary device to assess concepts unexplainable in other
ways. Since in any Natural Language, lexicon is not
static or exhaustive, Metaphor has a constructive role in
the evolution of communication. Words or expressions
like “software”, “e-mail” or “search engine” are recent
examples of metaphors that are becoming entries in our
dictionaries. Furthermore, some researchers advocate that
Metaphor is a central device for Learning (Winston, 1980)
and is an irreducible and irreplaceable function at the ba-
sis of our creative faculties (Richards, 1936; Black, 1962).

There seems to be general agreement that metaphor
involves two objects or situations and some kind of trans-
ference from an object or situation to the other. One
object is referred to as thetenor or the target domain,
and the other object as thevehicleor the source domain.
For example, the expression “Your claims areindefensi-
ble” follows the metaphor “Argument is War”(Lakoff and
Johnson, 1980), in which an argument (the tenor) is par-
tially defined, understood, performed and talked about in
terms of a war (thevehicle). Here, we can observe the
Systematicityof Metaphor: it is not limited to a single,
static, association between two concepts (Argument and
War). Instead, other associations emerge dynamically as
one explores further in both domains, i.e., “Argument is
War” is the underlying metaphor for “Heattacked every
weak pointin my argument”, “His criticisms wereright
on target”, “I demolishedhis argument”, “If you use that
strategy, he’ll wipe you out”, and others that appear in
everyday speech.

An interesting and subtle property of a metaphorical
interpretation is that it is directional, i.e., each domain or
object has a different role and its interchange, although
possibly yielding an equally valuable metaphor, will not
lead to the same meaning. For example, if we have the
metaphor “War is Argument”, things turn quite different.
It is somewhat unconventional to talk about a war as be-
ing an argument (then, it would be natural to say “the gen-
eralexposed his claimsquite aggressively” or “thousands
of soldiers perished from thatdiscussion”) because this
metaphor is not so deeply rooted in our common sense
reasoning.

While it is natural of metaphor to be associated with
creative thought and freedom of association, it is con-
strained by deep rules of coherency. Although it is not
expected, in a metaphor, to find a mapping for every sin-
gle concept in a domain, those that are mapped should be
coherent among themselves (this phenomenon is called
Local Coherency in Indurkhya (1992)). Some research
on metaphor interpretation consist precisely in finding
the largest mapping function that avoids inconsistencies.
One example is Veale and Keane’s metaphor interpreta-
tion framework, calledSapper(Veale and Keane, 1993).
It uses a hybrid model of semantic memory that consists

of a connectionist structure in which each unit (or node)
or fixed cluster of units is assigned to a concept, and an
activation-carrying inter-unit linkage is assigned to each
inter-concept relation. Also known as alocalist network,
this organization receives all domain knowledge Sapper
uses to interpret metaphor. It applies 3 operational princi-
ples:

1. Metaphor is a means of learning new conceptual
structure by linking existing diverse schemata in
novel ways. This linkage of domains is achieved by
augmenting the network withconceptual bridges
that link the tenor and vehicle schemata of the
metaphor (Veale, 1995).

2. Metaphor comprehension involvesexplicit struc-
tural changes to the semantic memory network;
these changes, essentially the conceptual bridges of
(1) above, are explicit inasmuch as they are recog-
nizably the trace residue of a novel metaphor, and
as such may be built upon (elaborated) at a later
time (Veale, 1995).

3. A metaphor is a dynamic conceptualagency, which
may continue to grow as more conceptual structure
is acquired regarding either thetenorand thevehi-
cledomains.

In Sapper, metaphor interpretation takes two major
cyclic steps:

1. In the symbolic mode of processing, it searches for
potentially inter-concept relations between the two
different domains (tenor and vehicle). These re-
lations, to which Veale callsdormant bridges, are
obtained from the application of the following two
rules:

� The triangulation rule: “Whenever two con-
cepts share an association with a third con-
cept, this association provides for a plausible
dormant bridge”.

� The squaring rule (second order similarity): If
two concepts share an association with other
two concepts that are connected by an awaken
bridge (as described below), this association
provides for a plausible dormant bridge.

2. The conceptual bridge awakening phase is per-
formed in the connectionist mode of processing,
in which dormant bridges, as laid down in the
symbolic mode, are recognized to representdo-
main crossover pointsbetween thetenorandvehi-
cleschemata, and are thusawakenedor burnt in.

We are adopting these ideas to develop our cross-
domain links generator, which allows to obtain metaphor-
ical program mappings, described later in this paper.

Other works related to metaphor are also meaning-
ful, such as Barnden (1997); Gentner et al. (1989); Martin
(1990).

3 Dynamic Logic Programming

The idea ofdynamic program updates, inspired by Leite
(1997), is simple and quite fundamental. Suppose that
we are given a set of program modulesPs, indexed by
different states of the worlds. Each programPs con-
tains some knowledge that is supposed to be true at the
states. Different states may represent different time pe-
riods or different sets of priorities or, in our case, dif-
ferent domains. Consequently, the individual program
modules may contain mutually contradictory as well as
overlapping information. The role of thedynamic pro-
gram update

L
fPs : s 2 Sg is to use the mutual rela-

tionships existing between different states (and specified
in the form of the ordering relation) to precisely deter-
mine, at any given states, the declarativeas well as
theproceduralsemantics of the combined program, com-
posed of all modules.

Consequently, the notion of adynamic program up-
date supports the important paradigm ofdynamic logic
programming. Given individual and largelyindependent
program modulesPs describing our knowledge at dif-
ferent states of the world (for example, the knowledge
acquired at different times), thedynamic program up-
date

L
fPs : s 2 S g specifies the exact meaning of the

union of these programs. Dynamic programming signif-
icantly facilitates modularization of logic programming
and, thus, modularization of non-monotonic reasoning as
a whole.

In this section we start by recalling the definition of
the so called generalized logic programs and their stable
semantics (Alferes et al., 1998) which extend the stable
semantics of normal logic programs (Gelfond and Lifs-
chitz, 1988). We then recall the definition and semantic
characterization of the update of a generalized logic pro-
gram by means of another such logic programP1 � P2.

Since we have that the notion ofdynamic pro-
gram update

L
f Ps : s 2 Sg over an ordered setP

= f Ps : s 2 Sg of logic programs is a generalization of
the notion of single program updatesP1 � P2, through-
out the remainder of the paper, we will restrict ourselves,
without loss of generality, to the case of single program
updatesP � U .

For a formal and detailed presentation ofdynamic pro-
gram updateanddynamic logic programming, the reader
is referred to Alferes et al. (1998, 2000).

3.1 Generalized Logic Programs and their
Stable Models

In order to representnegativeinformation in logic pro-
grams and in their updates, we need more general logic
programs that allow default negationnot A not only in
premises of their clauses but also in their heads. We call
such programsgeneralized logic programs.

It will be convenient tosyntacticallyrepresent gener-
alized logic programs aspropositional Horn theories. In

particular, we will represent default negationnot A as a
standard propositional variable (atom). Suppose thatK is
an arbitrary set of propositional variables whose names do
not begin with a “not”. By the propositional languageL

K

generatedby the setK we mean the languageLwhose set
of propositional variables consists of:

fA : A 2 Kg [fnot A : A 2 Kg:

AtomsA 2 K, are calledobjective atomswhile the atoms
not A are calleddefault atoms. From the definition it fol-
lows that the two sets are disjoint.

By a generalized logic program Pin the language
L
K

we mean a finite or infinite set of propositional Horn
clauses of the form:

L L1; : : : ; Ln

whereL andLi are atoms fromL
K

. If all the atomsL
appearing in heads of clauses ofP are objective atoms,
then we say that the logic programP is normal. Conse-
quently, from a syntactic standpoint, a logic program is
simply viewed as a propositional Horn theory. However,
its semanticssignificantly differs from the semantics of
classical propositional theories and is determined by the
class of stable models defined below.

By a (2-valued)interpretationM of L
K

we mean any
set of atoms fromL

K
that satisfies the condition that for

anyA inK, precisely one of the atomsA ornot A belongs
toM . Given an interpretationM we define:

M+ = fA 2 K : A 2Mg

M� = fnot A : not A 2Mg =
= f not A : A =2Mg:

Definition 1 (Stable models of generalized logic progs.)
We say that a (2-valued) interpretationM of L

K
is a

stable model of a generalized logic program P ifM is the
least model of the Horn theoryP [M�:

M = Least(P [M�)�

Following an established tradition, from now on we
will often be omitting the default (negative) atoms when
describing interpretations and models.

3.2 Program Updates

Suppose thatK is an arbitrary set of propositional vari-
ables, andP andU are two generalized logic programs
in the languageL = L

K
. By bK we denote the following

superset ofK:

bK = K [fA�; AP ; A
�

P
; AU ; A

�

U
: A 2 Kg:

This definition assumes that the original setK of proposi-
tional variables does not contain any of the newly added
symbols of the formA�; AP ; A

�

P
; AU ; A

�

U
so that they

are all disjoint sets of symbols. IfK contains any such

symbols then they have to berenamedbefore the exten-
sion ofK takes place. We denote bybL = L

b

K

the exten-

sion of the languageL = L
K

generated bybK.

Definition 2 (Program Updates) LetP andU be gener-
alized programs in the languageL. We callP the original
program andU the updating program. By the update of
P by U we mean the generalized logic programP � U
, which consists of the following clauses in the extended
languagebL:

(RP) Rewritten original program clauses:

AP B1; : : : ; Bm; C
�

1
; : : : ; C�

n
(4)

A�
P
 B1; : : : ; Bm; C

�

1
; : : : ; C�

n
(5)

for any clause

A B1; : : : ; Bm; not C1; : : : ; not Cn

respectively

not A B1; : : : ; Bm; not C1; : : : ; not Cn

in the original programP . The rewritten clauses
are obtained from the original ones by replacing
atomsA (resp.not A) occurring in their heads by
the atomsAP (resp.A�

P
) and by replacing negative

premisesnot C byC�:

(RU) Rewritten updating program clauses:

AU B1; : : : ; Bm; C
�

1
; : : : ; C�

n
(6)

A�
U
 B1; : : : ; Bm; C

�

1
; : : : ; C�

n
(7)

for any clause

A B1; : : : ; Bm; not C1; : : : ; not Cn

respectively

not A B1; : : : ; Bm; not C1; : : : ; not Cn

in the updating programU . The rewritten clauses
are obtained from the original ones by replacing
atomsA (resp.not A) occurring in their heads by
the atomsAU (resp.A�

U
) and by replacing negative

premisesnot C byC�:

(UR) Update rules:

A AU A� A�
U

(8)

for all objective atomsA 2 K. The update rules
state that an atomA must be true (resp. false) in
P � U if it is true (resp. false) in the updating
programU .

(IR) Inheritance rules:

A AP ;not A
�

U
A� A�

P
;not AU (9)

for all objective atomsA 2 K. The inheritance
rules say that an atomA (resp. A�) in P � U is
inherited (by inertia) from the original programP
provided it is not rejected (i.e., forced to be false) by
the updating programU . More precisely, an atom
A is true (resp. false) inP � U if it is true (resp.
false) in the original programP; provided it is not
made false (resp. true) by the updating programU .

(DR) Default rules:

A� not AP ;not AU not A A�

(10)

for all objective atomsA 2 K. The first default
rule states that an atomA in P � U is false if it
is neither true in the original programP nor in the
updating programU . The second says that if an
atom is false then it can be assumed to be false by
default. It ensures thatA andA� cannot both be
true. �

3.3 Semantic Characterization of Program
Updates

Follows a semantic characterization of update programs
P � U by describing their stable models. This character-
ization shows precisely how the semantics of the update
programP � U depends on the syntax and semantics of
the programsP andU .

Let P andU be fixedgeneralized logic programs in
the languageL. Since the update programP � U is de-
fined in the extended languagebL, we begin by first show-
ing how interpretations of the languageL can be extended
to interpretations of the extended languagebL.

Definition 3 (Extended Interpretation) For any inter-
pretationM of L we denote bycM its extension to an in-
terpretation of the extended languagebL defined, for any
atomA 2 K, by the following rules:

A� 2 cM iff not A 2M

AP 2 cM iff 9A Body 2 P^M j= Body

A�
P
2 cM iff 9not A Body 2 P^M j= Body

AU 2 cM iff 9A Body 2 U^M j= Body

A�
U
2 cM iff 9not A Body 2 U^M j= Body:�

We will also need the following definition:

Definition 4 For any modelM of the programU in the
languageL define:

Defaults[M] =
fnot A : M j= :Body;8(A Body) 2 P [Ug;

Rejected[M] =
fA Body 2 P : 9 (not A Body0) 2 U
and M j= Body0g

[

fnot A Body 2 P : 9 (A Body0) 2 U
and M j= Body0g; �

The setDefaults[M] contains default negations
not A of all unsupportedatomsA, i.e., atoms that have
the property that the body of every clause fromP [U
with the headA is false inM . Consequently, negation
not A of these unsupported atomsA can be assumed by
default. The setRejected[M] � P represents the set of
clauses of the original programP that are rejected(or
contradicted) by the update programU and the interpre-
tationM .

Now we are able to describe the semantics of the up-
date programP � U by providing a complete characteri-
zation of its stable models.

Theorem 1 (Stable models of update programs)An
interpretationN of the languagebL = L

b

K

is a stable
model of the updateP � U if and only if N is the
extensionN = cM of a modelM of U that satisfies the
condition:

M = Least(P [U �Rejected[M] [Defaults[M])�

4 Metaphorical Reasoning and DLP

In this section, we will show how the ideas behindDy-
namic Logic Programmingcan be used in the context of
Metaphorical Reasoning.

As we have seen before, a metaphorical framework
can be seen as consisting of two theories (tenor andve-
hicle), defined in two different languages, together with a
function mapping part of the language of thevehicleinto
the language of thetenor. For simplicity we will con-
sider that the mapping function is defined for all elements
of thevehiclelanguage. Although this is usually not the
case, we could, without loss of generality, extend the lan-
guage of thetenor with those unmapped elements from
the language of thevehicle, and extend the mapping func-
tion accordingly.

The two theories will be represented by generalized
logic programs. The mapping function between the two
languages will allow the construction of a function map-
ping theories of one language into theories of the other
language. Formally we have:

Definition 5 (Metaphorical Program Mapping) Let
K1 and K2 be two arbitrary set of propositional vari-
ables whose names do not begin with a “not”. Let
 1;2:K1 ! K2 be a function, mapping elements fromK1
into elements ofK2. LetL1 (resp. L2) be the language
obtained fromK1 (resp.K2). LetP1 (resp.P2) be the set
of generalized logic programs in the languageL1 (resp.
L2). We define the metaphorical program mapping as
the function	1;2:P1 ! P2 such that for everyP1 2 P1,
	1;2(P1) is obtained by replacing every objective atom
A (resp. default atomnot A) appearing in a rule ofP1
by 1;2(A) (resp.not 1;2(A)). �

Example 2 LetK1 be:

fbig; object; backgroundg

andK2 be:�
long;motif; accompaniment;

isometric motet element

�

corresponding to the example from the introduction. Let
P1 be2:

not big(X) object(X); background(X):

andP2 be

long(X) motif(X); accompaniment(X);

isometric motet element(X):

Let 1;2:K1 ! K2 be defined by:

 1;2(big) = long

 1;2(object) = motif

 1;2(background) = accompaniment

If we apply	1;2 to P1 we obtain	1;2(P1):

not long(X) motif(X); accompaniment(X):�

Now that we have a process to transform a theory in
one language (vehicle) into a corresponding theory in the
language of thetenor (possibly extended with new ele-
ments), we need a way to combine this transformed the-
ory with the theory representing thetenorto obtain a final
theory.

This final theory will consist of thetenor theory to-
gether with those rules from the transformedvehiclethe-
ory that are not contradicted by the rules from thetenor.
This can be seen as a process of accommodation where
the rules from the transformedvehicleare combined with
those from thetenor, provided they do not generate con-
tradictions. This process is essentially equivalent to the
inertia exerted on the rules of the initial program during
an update. With this in mind, the definition of Metaphor-
ical Program Update is:

Definition 6 (Metaphorical Program Update) Let K1
andK2 be two arbitrary set of propositional variables
whose names do not begin with a “not”. Let L1 andL2
be the languages obtained fromK1 andK2 respectively.
Let P1 andP2 be two generalized logic programs in the
languagesL1 andL2 respectively. Let 1;2 be a func-
tion mapping elements fromK1 into elements ofK2. The
metaphorical program update ofP1 byP2 given 1;2, de-
noted byP1 � P2 is given by	1;2(P1)� P2. �

Example 3 With P1, P2 and 1;2 as in the previous ex-
ample, the programP1 � P2 is:

long(X)�
P1
 motif(X); accompaniment(X):

long(X)P2 motif(X); accompaniment(X);

isometric motet element(X):

2Where, as usual, rules with variables stand for the set of their ground
instantiations.

A� A�
P1
;not AP2

A� A�
P2

A� not AP1
;not AP2

A AP2

A AP1
;not A�

P2
not A A�

where A is a proposition fromK2 and rules forA
stand for their ground instances. Note that if we were
to simply join the two programs, i.e.	1;2(P1) [P2,
the two rules would produce a contradiction forX :
isometric motet element(X). If we, on the other hand,
perform a metaphorical program update ofP1 byP2, this
contradiction no longer exists. FromP1�P2, we are able
to concludelong(X) for�

X : isometric motet element(X);motif(X);
accompaniment(X)

�

andnot long(X); otherwise, as intended. �

We go on by describing the semantics of the
metaphorical program updateP1 � P2 by providing a
complete characterization of its stable models.. This will
be done by means of a fixed-point equation defining the
set of rules from the transformedvehiclethat are rejected
by thetenor, yielding the set of rules from the transformed
vehiclethat carry over to the final theory due to inertia.

Proposition 2 (Stable models ofP1 � P2) An interpre-
tation N of the languagebL2 is a stable model of the
metaphorical program updateP1 � P2 if and only ifN
is the extensionN = cM of a modelM ofP2 that satisfies
the condition:

M = Least(1;2(P1) [P2 �Rejected[M] [

[Defaults[M])

whereRejected[M] andDefaults[M] are as in Def.4,
replacingP with 	1;2(P1). �

The setDefaults[M] contains default negations
not A of all unsupportedatomsA, i.e., atoms that have
the property that the body of every clause from	1;2(P1)[
P2 with the headA is false inM . Consequently, negation
not A of these unsupported atomsA can be assumed by
default. The setRejected[M] �	1;2(P1) represents the
set of transformed clauses of thevehicleprogramP1 that
are rejected(or contradicted) by thetenor programP2
and the interpretationM .

5 Examples and Properties

In this section we will present a more elaborate example,
based on the running example, and discuss some impor-
tant characteristics of metaphorical program updates. We
end the section with some considerations about the pos-
sible sources of contradiction within the presented frame-
work.

Example 4 Consider the following generalized logic
program, representing some knowledge about the domain
of Visual Arts3, P1:

not big(X) object(X); background(X): (r1)

tension(X) unbalanced(X): (r2)

contrast(X;Y) colour(X); colour(Y);

high value difference(X;Y): (r3)

Now consider another generalized logic program, repre-
senting some knowledge about the domain of Music,P2:

long(X) motif(X); accompaniment(X);

isometric motet element(X): (r4)

tension(X) dissonant(X): (r5)

Let the metaphorical mapping be defined by the function
 1;2:K1 ! K2 such that:

 1;2(big) = long

 1;2(object) = motif

 1;2(background) = accompaniment

 1;2(tension) = tension

 1;2(unbalanced) = dissonant

 1;2(colour) = note

 1;2(high value difference) = large interval

 1;2(contrast) = contrast

If we apply	1;2 to P1 we obtain	1;2(P1):

not long(X) motif(X); accompaniment(X):
(r6)

tension(X) dissonant(X): (r7)

contrast(X;Y) note(X); note(Y);

large interval(X;Y): (r8)

Looking at the rules from	1;2(P1) and those fromP2, we
can intuitively distinguish several paradigmatic cases:

� rule r6 will be a valid rule for those instances that
are not covered by rule r4 as explained during the
running example;

� rule r7 will not add anything to the metaphorical
update for it is the same as rule r5. This represents
those cases where the translated rules from theve-
hicleare already present in thetenor;

� rule r8 will bring not only new relations but also
new concepts to thetenor. This represents the most
interesting case with respect to creative reasoning.

3The languages in which the programs are written are left implicit.

The programP1 � P2 is:

long(X)�
P1
 motive(X); accompaniment(X):

(11)

tension(X)P1 dissonant(X): (12)

contrast(X;Y)P1 note(X); note(Y);

large interval(X;Y): (13)

long(X)P2 motif(X); accompaniment(X);

isometric motet element(X):
(14)

tension(X)P2 dissonant(X): (15)

plus the correspondingUR, IR and DR. Note that rules
(11) through (15), alone, are meaningless because they
only have auxiliary literals (L�

P1
; LP2 ; :::) as their con-

clusions and there are no rules for the literals in their
premisses. It is throughUR, IR andDR that we are able
to determine the semantics ofP1 � P2 with respect to the
relevant literals. In the semantics ofP1 � P2 we have:

long(X) for�
X : isometric motet element(X);
motif(X); accompaniment(X)

�

not long(X) for�
X : not isometric motet element(X);

motif(X); accompaniment(X)

�

contrast(X;Y) for�
X;Y : note(X); note(Y);
large interval(X;Y)

�

tension(X) for

fX : dissonant(X)g �

We believe it is interesting to draw the reader’s at-
tention to some properties emerging from the definition
of metaphorical program updates, and their relation to
known metaphor theory characteristics. The first one
is related to the very basic intuition whereby metaphors
bring new knowledge into the target domain. In fact, it is
easy to see that in general we have that4:

SM(P1 � P2) 6= SM(P2) (16)

SM(P1) 6= SM(P2 � P1) (17)

The second and very important characteristic is that of
directionality which, as explained before, means that each
domain has a different role and its interchange, although
possibly yielding an equally valuable metaphor, will not
lead to the same meaning. If we have a bijective mapping

4Where bySM(P) we mean the set of stable models of the program
P , restricted to the relevant language (L1 orL2 depending on the case).

function 1;2 such that 2;1 = �1
1;2

, then, in general, we
have that

SM(P1 � P2) 6= SM(1;2(P2 � P1)) (18)

If we consider, for example,P1 to represent a set of
rules from the domain of Painting, andP2 to represent a
set of rules from the domain of Music, we could have an
informal interpretation of the above properties reading as:

� a painter that becomes a musician would compose
music different from that of a musician (16);

� a painter would paint differently from a musician
that became a painter (17);

� a painter that becomes a musician would compose
music different from that of a musician that be-
comes a painter (if he was to map his painting rules
to music composition rules) (18).

It would be easy to check all these properties in the
previous example.

In what contradiction is concerned, it is important to
mention that the metaphorical program update(P1 � P2)
only detects and deals with inconsistencies arising from
rules from different domains. Other sources of inconsis-
tencies can exist:P1 can be contradictory, and so can be
P2; even in cases whereP1 andP2 are not contradictory,
P1�P2 can be so, this happening when the contradiction
is ‘latent’ in one of the domains, and is‘brought alive’by
the metaphorical update, such as in the following exam-
ple:

Example 5 Consider the following programP1:

not hot(X) blue(X)

hot(X) red(X)

the metaphorical mapping 1;2:

 1;2(blue) = blues

 1;2(red) = jazz

 1;2(hot) = hot

and the programP2

jazz(Miles) blues(Miles)

the metaphorical program updateP1 � P2 is contradic-
tory because bothhot(Miles) andnot hot(Miles) are
derivable. �

Nevertheless, be they important or not for our pur-
poses, all contradictions can be detected by inspecting the
truth value of the literalsA�; AP ; A

�

P
; AU ; A

�

U
; etc. of

the programP1 � P2, and dealt with either by the se-
mantics ofP1�P2 itself or by other known contradiction
removal techniques, e.g. Alferes et al. (1995).

6 Conclusions and Future Work

Being Metaphor a common device for communication
that uses interrelationships between different domains to
assess new enriched mixed concepts, it is, as we believe,
a powerful source for modellingCreativity. The ability to
search for solutions in distant domains, apparently unre-
lated to the actual problem, is determinant for our creative
abilities (Guilford, 1967; De Bono, 1970). Metaphor the-
ories, such as Veale and Keane (1993), can be used as
cross-domain bridge establishment methods, fundamen-
tal for knowledge integration within different domains.

In this paper we have explored the application of
Dynamic Logic Programmingto the problem of knowl-
edge integration in metaphorical reasoning. The problem
of resolving inconsistencies that may arise when knowl-
edge from two different domains is combined, given a
metaphorical mapping, is crucial, be it at the stage where
we want to evaluate the appropriateness of the mapping
function, or at a subsequent stage when we want to rea-
son with the combined knowledge.

Quite interestingly, this combined knowledge be-
comes a new third domain which is not a crude sum of
the original ones, but a blend of concepts and relation-
ships among them which, in some cases, can yield poten-
tially creative outcomes, much in the line of Turner and
Fauconnier (1995).

We have proposed, in a formal and rigorous manner, a
transformation that, by employing the principle of inertia
on the rules of thevehicle, solves the problem of inter-
domain inconsistencies. We have also characterized the
models of the combined theory, all of this by means of the
notions ofDynamic Logic Programming. Since DLP has
also been implemented as a meta-interpreter (DLP Sys-
tem, 1998) running under XSB System (1999), this allows
for not only theoretical but also practical reasoning.

This work is part of an ongoing larger project,Dr. Di-
vago, whose final goal is to develop a system to perform
automatic creative metaphorical reasoning.

In what future work is concerned, besides the inte-
gration of this framework withinDr. Divago, we are ex-
ploring some changes in the inertia rules to allow more
flexibility and expressiveness, namely by permitting pre-
dominance of thevehicle over the tenor, among other
possibilities. We are also exploring the development of
this framework to enable for several distinct simultane-
ous metaphors, possibly with some preference relations
amongst themselves. The mappings associated with these
metaphors could be represented by generalized logic pro-
grams and the preferences could be refined by a combina-
tion of Updateswith Preferencessuch as in Alferes and
Pereira (2000).

Acknowledgements

We would like to thank Miguel Ferrand for his sugges-
tions. The work of J. A. Leite was partially supported by

PRAXIS XXI scholarship no. BD/13514/97. The work
of J. A. Leite and L. M. Pereira was partially supported
by PRAXIS XXI project MENTAL.

References

J. J. Alferes and C. V. Dam´asio and L. M. Pereira,A Logic
Programming System for Non-monotonic Reasoning,
Journal of Automated Reasoning (14):93-147, 1995

J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusinski
and T. C. Przymusinski.Dynamic Logic Programming.
In A. Cohn, L. Schubert and S. Shapiro (eds.), Procs.
of the Sixth International Conference on Principles of
Knowledge Representation and Reasoning (KR’98),
Trento, Italy, pages 98-109. Morgan Kaufmann, June
1998.

J. J. Alferes, J. A. Leite, L. M. Pereira, H. Przymusin-
ski and T. C. Przymusinski.Dynamic Updates of Non-
Monotonic Knowledge Bases. To appear in The Journal
of Logic Programming, 2000.

J. J. Alferes and L. M. Pereira.Updates plus Preferences.
Technical Report, Dept. de Inform´atica, New Univer-
sity of Lisbon, Portugal, 2000

Barnden, J. A.An AI system for metaphorical reason-
ing about mental states in discourse. In J-P. Koenig
(Ed.), Conceptual Structure, Discourse and Language
II, Stanford, Ca. 1997.

M. Black. Models and Metaphor: studies in language
and philosophy. Ithaca, NY: Cornell University Press,
1962.

Edward De Bono.Lateral Thinking: Creativity Step by
Step. Harper & Row, New York. 1970.

The DLP System, available from cen-
tria.di.fct.unl.pt/˜jja/updates.

Umberto Eco.Semiotics and the Philosophy of Language.
London: Macmillan Press. 1984.

Turner, M. and G. Fauconnier. (1995).Conceptual Inte-
gration and Formal Expression, Journal of Metaphor
and Symbolic Activity 10(3).

Gentner, D., Falkenheiner, B. and Skorstad, J. Metaphor:
The Good, The Bad and The Ugly. In Y. Wiks(Ed.),
Theoretical Issues in Natural Language Processing.
Hillsdale, NJ: Lawrence Erlbaum Associates. 1989.

J. P. Guilford.The Nature of Human Intelligence. New
York: McGraw-Hill.1967.

M. Gelfond and V. Lifschitz.The stable model seman-
tics for logic programming.In R. Kowalski and K. A.
Bowen. editors. 5th International Logic Programming
Conference, pages 1070-1080. MIT Press, 1988.

M. Gelfond and V. Lifschitz.Classsical negation in logic
programs and disjunctive databases. New Generation
Computing, 9:365-385, 1991.

B. Indurkhya.Metaphor and Cognition, Kluwer Aca-
demic Publishers, Dordrecht, 1992.

G. Lakoff and M. Johnson.Metaphors We Live By. Chi-
gaco, Illinois: University of Chicago Press. 1980.

João A. Leite.Logic Program Updates. M.Sc. Disserta-
tion, Universidade Nova de Lisboa, Portugal, 1997.

J. A. Leite and L. M. Pereira.Generalizing updates:
from models to programs. In J.Dix, L.M. Pereira and
T.C.Przymusinski (eds), Selected extended papers from
the LPKR’97: ILPS’97 workshop on Logic Program-
ming and Knowledge Representation, pages 224-246,
Springer-Verlag, LNAI 1471, 1998

J. A. Leite and L. M. Pereira.Iterated Logic Program
Updates. In J. Jaffar (ed.), Procs. of the 1998 Joint In-
ternational Conference and Symposium on Logic Pro-
gramming, Manchester, England, pages 265-278. MIT
Press, June 1998.

Martin, J.H.A computational model of metaphor inter-
pretation. Academic Press, 1990.

Francisco C. Pereira,Modelling Divergent Production: a
multi domain approach. In Procs. of the Thirteenth Eu-
ropean Conference of Artificial Intelligence, ECAI’98,
Brighton, UK, 1998.

Francisco C. Pereira,Construç̃ao Interactiva de Mapas
Conceptuais, M.Sc. Dissertation, University of Coim-
bra, Portugal, 2000

Richards, I. A. (1936).The Philosophy of Rhetoric. NY:
Oxford University Press, 1936.

Tony Veale (1995).Metaphor, Memory and Meaning:
Symbolic and Connectionist Issues in Metaphor Com-
prehension.PhD thesis submitted to Trinity College
Dublin, 1995

Tony Veale. ’Just in Time’ Analogical Mapping, An
Iterative-Deepening Approach to Structure-Mapping
In Procs. of the Thirteenth European Conference of Ar-
tificial Intelligence, ECAI’98, Brighton, UK, 1998.

T. Veale and M. Keane.A Connectionist Model of Seman-
tic Memory for Metaphor Interpretation, presented at
the 1993 Workshop on Neural Architectures and Dis-
tributed AI.1993.

P. H. Winston.Learning and Reasoning by Analogy.
Communications of the Association for Computing
Machinery, 23(12), 1980.

The XSB Group. The XSB logic programming
system, version 2.0, 1999. Available from
http://www.cs.sunysb.edu/˜sbprolog .

