

An Empirical Comparison of Particle Swarm and
Predator Prey Optimisation

Arlindo Silva1,3, Ana Neves1,3, Ernesto Costa2,3

1 Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco,
Av. do Empresário, 6000 Castelo Branco – Portugal

{arlindo, dorian}@est.ipcb.pt
2 Departamento de Engenharia Informática, Universidade de Coimbra,

Pólo II – Pinhal de Marrocos, 3030 Coimbra – Portugal
ernesto@dei.uc.pt

3 Centro de Informática e Sistemas da Universidade de Coimbra,
Pólo II - Pinhal de Marrocos, 3030 Coimbra - Portugal

Abstract. In this paper we present and discuss the results of experimentally
comparing the performance of several variants of the standard swarm particle
optimiser and a new approach to swarm based optimisation. The new algorithm,
which we call predator prey optimiser, combines the ideas of particle swarm op-
timisation with a predator prey inspired strategy, which is used to maintain di-
versity in the swarm and preventing premature convergence to local sub-
optima. This algorithm and the most common variants of the particle swarm
optimisers are tested in a set of multimodal functions commonly used as
benchmark optimisation problems in evolutionary computation.

1 Introduction

The particle swarm algorithm is a new evolutionary algorithm, where the population is
now called a swarm and each individual is called a particle [1]. It was inspired by the
dynamics of social interactions between individuals, being initially influenced by work
in simulation of coordinated flight in flocks of birds. This algorithm, which is fre-
quently called Particle Swarm Optimiser (PSO), has been successfully used as an
alternative to other evolutionary techniques in the optimisation of n-dimensional real
functions.

The PSO is usually considered a form of evolutionary computation, but it does not
make use of mutation or recombination operators and even selection does not exist in
an explicit way. Instead, particles move in a coordinated way through the n-
dimensional search space towards the function optimum. Their movement is influ-
enced not only by each particle own previous experience, but also by a social compul-
sion to move towards the best position found by its neighbours. To implement these
behaviours, each particle is defined by its position and velocity in the search space. In
each iteration, changes resulting from both influences in the particle’s trajectory are
made to its velocity. The particle’s position is then updated accordingly to the calcu-

lated velocity. The PSO, its main variants and the cultural model behind it are exten-
sively discussed in [2].

While the PSO has revealed itself capable of competing with other evolutionary
techniques, namely the standard genetic algorithm (GA), it has been noted [3] that the
original PSO had difficulties controlling the balance between exploration (global
investigation of the search place) and exploitation (the fine search around a local op-
timum). According to [3], the PSO, while quickly converging towards an optimum in
the first iterations, has problems when it comes to reach a near optimal solution. To
solve this, [4] introduced the use of a linear decreasing inertia weight, reminiscent
from the temperature parameter in simulated annealing. In [5] results of using the PSO
with the inertia weight on several benchmark functions are presented and is concluded
that, while performing significantly better that the original PSO, lacks global search
ability at the end of the run. A second approach to controlling convergence in PSO
introduces the use of a constriction coefficient [6].

We present here a new approach to balancing exploration and exploitation in PSO,
by introducing a second population of particles, which we call predators. Predators
have a different dynamic behaviour from the swarm particles (which we call prey).
They are attracted to the best individuals in the swarm, while the other particles are
repelled by their presence. Controlling the strength and frequency of the interactions
between predators and prey, we can influence the balance between exploration and
exploitation and maintain some diversity in the population, even when it is approach-
ing convergence, thus reducing the risk of convergence to local sub-optima. We also
present and discuss the experimental results obtained by comparing this model with
the inertial weight and the constriction coefficient PSO variants in a set of benchmark
functions.

The remainder of is article is organized in the following way: In the next section we
briefly describe the standard PSO model and, in more detail, the new predator-prey
optimiser (PPO). Description of the experimental setup and presentation of the results
obtained is made in section 3. Finally, section 4 is dedicated to the presentation of
some conclusions and objectives for future work.

2 The Optimiser Algorithms

2.1 The Swarm Particle Optimiser

In particle swarm optimisation a population of point particles “fly” in an n-
dimensional real number search space, where each dimension corresponds to a pa-
rameter in a function being optimised. The position of the particle in the search space
is represented by a vector X. The velocity of the particle, i.e., its change in position, is
represented by a vector V. The particle “flies” in the search space by adding the veloc-
ity vector to its position vector in order to change its position.

V determines the particle’s trajectory and depends on two “urges” for each particle
i: flying towards its best previous position and flying towards its neighbours’ best

previous position. Different neighbourhood definitions have been tried [7]; here we
assume that every particle is a neighbour to every other particle in the swarm. The
general equations for updating the position and velocity for some particle i are the
following:





+−=
−−+−−+−=

)()1()(
)))1(())1(()1(()(21

tVtXtX
tXPtXPtwVtV

iii

igiiiiii ϕϕχ (1)

In the above formula χ is the constriction coefficient described in [6], ϕ1 and ϕ2 are
random numbers distributed between 0 and an upper limit and different for each di-
mension in each individual, Pi is the best position particle i has found in the search
space and g is the index of the best individual in the neighbourhood. The velocity is
usually limited in absolute value to a predefined maximum, Vmax. The parameter w is a
linear decreasing weight. The swarm is usually run for a limit number of iterations or
until an error criterion is met.

From (1) we can derive the two most usual ways in which convergence and, as a re-
sult, the balance between exploration and exploitation are controlled. [5] uses χ=1 and
weight w decreasing linearly from wmax to wmin during the execution of the algorithm.
In [6] convergence is guarantied by choosing appropriated values for χ and ϕ=ϕ1+ϕ2.
w is fixed and equal to 1 in this approach.

2.2 The Predator Prey Optimiser

Our motivation for developing the predator-prey model was mainly to introduce a
mechanism for creating diversity in the swarm at any moment during the run of the
algorithm, not depending on the level of convergence already achieved. This would
allow the “escape” of particles even when convergence of the swarm around a local
sub-optimum had already occurred. A second, and less practical, motive was to main-
tain the swarm intelligence principle behind the algorithm. Other mechanisms could
perhaps have been used to the same effect, but it seemed more appropriate to intro-
duce a mechanism that could also be implemented as a distributed behaviour in the
swarm. The predator-prey model is inspired in the hunt of animals grouped in flocks
by one or more predators. When chased, animals have more difficulty to stay around
their most preferable places (better pastures, water sources…) and have to search for
other locations, free of predators and perhaps even better. This is the effect we want to
model in our algorithm, where the metaphorical better pastures are the functions’ local
sub-optima.

In the present state of development of the predator-prey optimiser, only one preda-
tor is used. The predator’s objective is to pursue the best individual in the swarm, i.e.
the individual that has found the best point in the search space corresponding to the
function being optimised. The predator update equations are:





+−=

−−−=

)()1()(
))1()1(()(4

tVtXtX
tXtXtV

ppp

pgp ϕ (2)

ϕ4 is another random number distributed between 0 and an upper limit and Xg is the
present position of the best particle in the swarm. The upper limit on ϕ4 allows us to
control how fast the predator “catches” the best individual.

The influence of the predator on any individual in the swarm is controlled by a
“fear” probability Pf, which is the probability of a particle changing its velocity in one
of the available dimensions due to the presence of the predator. For some particle i, if
there is no change in the velocity in a dimension j the update rules in that dimension
still are:





+−=

−−+−−+−=

)()1()(
))1(())1(()1()(21

tvtxtx
txptxptwvtv

ijijij

ijgjijijijijijij ϕϕ (3)

But if the predator influences the velocity in dimension j, the rule becomes:





+−=

+−−+−−+−=

)()1()(
)())1(())1(()1()(321

tvtxtx
dDtxptxptwvtv

ijijij

ijijgjijijijijijij ϕϕϕ (4)

The fourth term in the first equation in (4) quantifies the repulsive influence of the
predator by modifying the velocity adding a value that is a function of the difference
between the position of the predator and the particle. d is the Euclidean distance be-
tween predator and prey. D(x) is an exponential decreasing distance function:

bxaexD −=)((5)

D(x) makes the influence of the predator grow exponentially with proximity. The
objective of its use is to introduce more perturbation in the swarm when the particles
are nearer the predator, which usually happens when convergence occurs. When the
distance is bigger (e.g. during the initial exploration phase of the swarm, when w is
still big), the predator’s influence is smaller and usual swarm dynamics take control.
The a and b parameters define the form of the D function: a represents the maximum
amplitude of the predator effect over a prey and b allows to control the distance at
which the effect is still significant.

The predator effect was designed to take advantage of the use of w as an inertia pa-
rameter in the swarm update equations. The idea is to lower the values of w, thus forc-
ing a faster convergence, while relying on the predator to maintain population diver-
sity. The constriction coefficient is set to 1.

3 Experimental Results

3.1 The Experimental Setup

We tested the performance of the predator-prey model in four non-linear functions, all
commonly used as benchmarks for evolutionary algorithms (e.g. [8]). The first two are
also frequently used as benchmarks in swarm particle literature [2], [3], [5].

()∑

∑∑

∑ ∏

∑

=

==

= =

=

−+=

++






−









−−=

+






 −
−−=

+−=

n

i
ii

n

i
i

n

i
i

n

i

n

i

i
i

ii

n

i

xxnxf

ex
n

x
n

xf

i
xxxf

xxxf

1
4

11

2
3

1 1

2
2

2

1
1

sin9829.418)(

20)2cos(1exp12.0exp20)(

1
100

cos)100(
4000

1)(

)10)2cos(10()(

π

π

(6)

In the functions above, x is a real number, n-dimensional vector and xi is the ith
element of that vector. f1 is the generalized Rastrigin function, f2 is the generalized
Griewank function and f3 the generalized Ackley function, three multimodal functions
with many local minima set around the global minima in an unimodal macrostructure.
f4 is the Schwefel function which is a multimodal function, designed to be difficult for
evolutionary algorithms, with the local minima set far away from each other and the
global minimum located at the boundary of the search space. All these functions are
used as minimization problems.

In our first set of experiments the predator prey algorithm was used to optimise the
above functions. To implement the objective mentioned before of using the weight
limits to force a faster convergence, with the predator-prey effect being expected to
provide the lacking population diversity and avoid convergence to sub-optima, the
weight limits were set to 0.5 and 0.0, far from the usual 0.9 and 0.4. ϕ1 and ϕ2 were set
to 2. The a, b, and Pf values were, for each function, empirically and after a small set
of preliminary experiments, set to the values presented in table 1. No systematic effort
was made to determine optimum values for these parameters.

Table 1. Search space and initialisation limits for each function, as well as parameter values
used for the predator prey algorithm.

Function Search Space Init. Limits a b Pf
f1 [-10,10]n [2.56,5.12]n 0.1Xmax 10.0/Xmax 0.0005
f2 [-600,600]n [300,600]n 0.1Xmax 10.0/Xmax 0.002
f3 [-30,30]n [10,20]n 2.0Xmax 10.0/Xmax 0.0005
f4 [-500,500]n [-500,500]n 0.1Xmax 10.0/Xmax 0.001

We also ran three sets of experiments with variants of the standard particle swarm

algorithm. PSOa corresponds to the PSO with the constriction coefficient set to one
and a weight w decreasing linearly between 0.9 and 0.4, values recommended in PSO
literature [4]. PSOb is similar to the PSOa but w decreases from 0.5 to 0.0 to allow a
direct comparison with the PPO, which uses the same values. PSOc is a constricted
version, with χ=0.739 and ϕ=4.1, values used in [9]. In all experimental settings Vmax
was set to the same value as Xmax.

All experiments were run with functions having 50 dimensions, an iteration limit of
5000 and a population size of 20 particles. Care was taken to initialise the population

in an asymmetric way for all functions except for f4, which, since its structure is not
symmetrical around a local minimum situated near the origin, does not benefit from a
symmetric initialisation. Table 1 presents the search space and initialisation limits for
each of the test functions. For each experimental setting 100 runs of the algorithm
were performed.

3.2 Results and Discussion

Table 2 presents the results obtained in the sets of experiments described in the previ-
ous section. For each experimental setting we present a 90% confidence interval for
the average best solution found in the limit number of iterations, over the 100 runs.
Figure 1 presents graphs illustrating the evolution of average fitness over the run for
the four benchmark functions.

Table 2. Confidence intervals at 90% for the average best solutions of each experimental
setting over 100 runs.

F PPO PSOa PSOb PSOc
f1 5.9357±0.8802 105.8131±4.8350 197.0707±8.1454 282.1091±11.7559
f2 0.0080±0.0022 0.0136±0.0033 0.0372±0.0145 0.1810±0.0657
f3 9.1955E-09±2.0367E-09 0.3460±0.1255 2.0451±0.1918 8.0508±0.5647
f4 797.6098±57.9868 4167.4452±134.8793 6213.0122±156.4541 8242.2676±178.2687

We start by comparing the performances of the three PSO based approaches. It is
easy to see from table 2 that the particle swarm optimiser (PSOa) with weight varying
from 0.9 to 0.4 is the one that performs better in all experimental settings. From figure
1 can be concluded that this may be caused by the faster convergence of the two other
variants in the initial iterations, which causes a decrease in diversity resulting in early
sob-optimal convergence for the PSOb and PSOc. It is interesting to compare these
results with the ones in [9] where PSOc performed better than PSOa in different ex-
perimental settings: of the four functions used only two were common with ours, the
functions were optimised in 30 dimensions and, more importantly, the result of each
run was the number of iterations the algorithm took to find a solution within a prede-
fined error form the global optimum. Since the error criterion was rather loose, the
faster convergence of the PSOc made it perform better than the PSOa in those condi-
tions. But, from our experiments, it seems that when we ask for finer convergence the
weight decreasing version of the PSO easily outperforms the constricted version.

In a function to function qualitative analysis, and since the global optimums all
have 0.0 fitness, we can say that the PSOa performed well in f2 and f3, not very good
in the Rastrigin function and rather poorly in f6 where escaping local minima is harder
than in the other functions, since local optima are far apart in the search space. We can
add from figure 1 that the PSOa fitness curves seems stabilized at the iteration limit
(the same happens with PSOb and PSOc) and doesn’t seem probable that an increment
in fitness would result from a higher iteration limit.

Rastrigin D50 P20

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration

Fi
tn

es
s

PPO
PSOa
PSOb
PSOc

Griewank D50 P20

1,00E-03

1,00E-02

1,00E-01

1,00E+00

1,00E+01

1,00E+02

1,00E+03

1,00E+04

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration

Fi
tn

es
s

PPO
PSOa
PSOb
PSOc

Ackley D50 P20

1,00E-09

1,00E-07

1,00E-05

1,00E-03

1,00E-01

1,00E+01

1,00E+03

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration

Fi
tn

es
s

PPO
PSOa
PSOb
PSOc

Schwefel D50 P20

1,00E+02

1,00E+03

1,00E+04

1,00E+05

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Iteration

Fi
tn

es
s

PPO
PSOa
PSOb
PSOc

Fig. 1. Graphs illustrating evolution of average fitness of PPO versus PSO approaches for the
four test functions. Fitness is presented in logarithmic scale.

The experimental results using the predator prey approach allow us to conclude that
the PPO performed significantly better (according to t-tests with p<0.05 criterium)
than the best PSO approach (PSOa). As we were expecting, the extra diversity intro-
duced by the predator prey mechanism allowed us to use a shorter “cooling schedule”
for the linear decreasing weight which resulted, as can be seen in figure 1, in an initial
convergence as fast for the PPO as for the PSOb and PSOc. But, while these two algo-
rithms get easily caught in local minima, with their fitness curves stabilising very early
in the runs, the PPO keeps getting better solutions until the iteration limit is reached,
with exception of f2. The final results presented in table 2 show that the predator prey
mechanism allowed the PPO to find solutions, on average, orders of magnitude better
for f1, f2 and f4. For f2 the solutions are still significantly better in the statistic sense but
the difference is not as meaningful as for the other functions. We can conclude that, in
the experimental setup we used, the PPO seems to have three advantages over the best
PSO tested: significantly better solutions are found, the algorithm converges faster
and, since better solutions are still being found at the end of the runs, the PPO can
effectively escape local sub-optima. These results apparently support our claim that
the predator prey mechanism can constitute an effective way of avoiding premature
convergence to local sub-optima in particle swarm based optimisers.

4 Conclusions and Future Work

We presented a new swarm particle based function optimiser, inspired in the natural
relation between predator and prey. A predator-prey mechanism was implemented in

addition to the standard swarm particle optimiser, obtaining a new algorithm that was
tested in four benchmark functions against three variants of the standard PSO. The
experimental results allow us to conclude that the PPO performed significantly better
than the standard PSO in the optimisation of four benchmark multimodal functions,
either by finding, on average, better solutions an the end of the runs, or by finding
solutions of similar quality but with a higher convergence rate.

As for the main direction of our future work with the predator prey optimiser, it
will probably lead to the development a multi-predator sub-population version of the
algorithm.

Acknowledgements

This work was partially financed by the Portuguese Ministry of Science and Technol-
ogy under the Program POSI.

References

1. Kennedy, J. and Eberhart, R. C., “Particle swarm optimisation”, Proc. IEEE International
Conference on Neural Networks. Piscataway, NJ, pp. 1942-1948, 1995.
2. Kennedy, J., Eberhart, R. C., and Shi, Y., “Swarm intelligence”, Morgan Kaufmann Pub-

lishers, San Francisco. 2001
3. Angeline, P. J., “Evolutionary optimisation versus particle swarm optimisation: philosophy
and performance differences”, The Seventh Annual Conf. on Evolutionary Programming. 1998.
4. Shi, Y. and Eberhart, R. C., “Parameter selection in particle swarm optimisation” Evolu-

tionary Programming VII: Proc. EP 98. New York, pp. 591-600, 1998.
5. Shi, Y. and Eberhart, R. C., “Empirical study of particle swarm optimisation”, Proceedings

of the 1999 Congress on Evolutionary Computation. Piscataway, NJ, pp. 1945-1950, 1999.
6. Clerc, M. and Kennedy, J.. “The particle swarm-explosion, stability, and convergence in a

multidimensional complex space”. IEEE Transactions on Evolutionary Computation, Vol. 6,
No. 1, pp. 58-73. 2002.

7. Kennedy, J., “Small worlds and mega-minds: effects of neighborhood topology on particle
swarm performance”, Proc. Congress on Evolutionary Computation 1999. Piscataway, NJ,
pp. 1931-1938, 1999.

8. Muhlenbein, H., & Schlierkamp-Voosen, D.. “Predictive models for the breeder genetic
algorithm: I. Continuous parameter optimisation.” Evolutionary Computation, 1 (1), 25-49.

9. Eberhart, R. C. and Shi, Y. “Comparing inertia weigthts and constriction factors in particle
swarm optimization”. Proc. CEC 2000 pp. 84-88. San Diego, CA, 2000.

