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Abstract: In this paper we describe our approach to predator-prey optimisation, a form of particle swarm optimisation 
where new particles called predators are introduced. The objective of predator-prey optimisation is to use predator 
particles to help avoiding premature convergence to sub-optimal solutions in particle swarm optimisers. The swarm 
particles (prey particles) are repelled by predators, which in turn are attracted to the best individuals in the swarm. The 
resulting interactions make total convergence difficult to the swarm, maintaining diversity in the population. First 
results of this new approach on several benchmark functions are presented and the performance of the algorithm is 
compared to the performance of the standard particle swarm optimiser. 
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1 - Introduction 
The particle swarm algorithm has been originally presented by [Kennedy95] as a population based function 

optimiser in the n-dimensional space of real numbers. Bird flock flight simulations initially inspired the algorithm and 
biological inspiration is still present in the current denomination. The swarm or flock metaphor applies to the particle 
swarm optimiser (PSO) in the way particles fly in a somewhat coordinated way through a n-dimensional space (the 
space of parameters of the function being optimised) in search of some desired place (function optimum).  

While being considered a form of evolutionary algorithm, there is no use of genetic operators like mutation or 
recombination, as is the case in other evolutionary paradigms such as evolutionary programming, evolutionary 
strategies or genetic algorithms. Explicit selection is also not present. Instead, in each iteration, the position of every 
particle in the search space is updated accordingly to the particle’s velocity. The velocity of a particle in a given 
iteration is a function of the velocity in the previous iteration, its best previous position in the search space and the best 
previous position in the search place of all of the particle’s neighbours. The behaviour of a particle in the swarm is the 
result of balancing the desire of flying towards the best point in the search place according to its own experience or 
conforming to the swarm knowledge of where the current best point is. For an extensive discussion of the cultural 
model behind the PSO, as well as of the PSO itself and several variants see [Kennedy01]. 

While the PSO has revealed itself capable of competing with other evolutionary techniques, namely the 
standard genetic algorithm (GA), it has been noted [Angeline98] that the original PSO had difficulties controlling the 
balance between exploration (global investigation of the search place) and exploitation (the fine search around a local 
optimum). According to [Angeline98], the PSO, while quickly converging towards an optimum in the first iterations, 
has problems when it comes to reach a near optimal solution. To solve this [Shi98] introduced the use of a linear 
decreasing inertia weight, reminiscent from the temperature parameter in simulated annealing. In [Shi99] results of 
using the PSO with the inertia weight on several benchmark functions are presented and is concluded that, while 
performing significantly better that the original PSO, lacks global search ability at the end of the run. Other approaches 
to this problem include the proposal of hybrid PSO-GA models [Lovbjerg01], which presented some improvements in 
performance but only in one of the test functions. 

We present here a new approach to balancing exploration and exploitation in PSO, by introducing a second 
population of particles, which we call predators. Predators have a different dynamic behaviour from the swarm particles 
(which we call prey).  They are attracted to the best individuals in the swarm, while the other particles are repelled by 
their presence. Controlling the strength and frequency of the interactions between predators and prey, we can influence 
the balance between exploration and exploitation and maintain some diversity in the population, even when it is 
approaching convergence, thus reducing the risk of convergence to local sub-optima. We also present and discuss the 
first experimental results obtained by comparing this model with standard PSO in a set of benchmark functions. 

The remainder of is article is organized in the following way: In the next section we briefly describe the 
standard PSO model. Section 3 is devoted to the description of the predator-prey optimiser (PPO). Description of the 



 

 

experimental setup is made in section 4, while the experimental results are presented and discussed in section 5. Finally, 
section 6 is dedicated to the presentation of some conclusions and objectives for future work. 

 
2 -The Particle Swarm Optimiser 
In particle swarm optimisation a population of point particles “fly” in an n-dimensional real number search 

space, where each dimension corresponds to a parameter in a function being optimised. The position of the particle in 
the search space is represented by a vector X. The velocity of the particle, i.e., its change in position, is represented by a 
vector V. The particle “flies” in the search space by adding the velocity vector to its position vector in order to change 
its position.  

V determines the particle’s trajectory and depends on two “urges” for each particle i: flying towards its best 
previous position and flying towards its neighbours’ best previous position. Different neighbourhood definitions have 
been tried [Kennedy99]; here we assume that every particle is a neighbour to every other particle in the swarm. The 
equations for updating the position and velocity for some particle i are the following: 
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In the above formula ϕ1 and ϕ2 are random numbers distributed between 0 and an upper limit and different for 
each dimension in each individual, Pi is the best position particle i has found in the search space and g is the index of 
the best individual in the neighbourhood. The velocity is usually limited in absolute value to a predefined maximum, 
Vmax. The parameter w is the linear decreasing weight, which, during the run, decreases from wmax to wmin. The swarm is 
usually run for a limit number of iterations or until an error criterion is met.  

 

3 -The Predator-Prey Optimiser 
Our motivation for developing the predator-prey model was mainly to introduce a mechanism for creating 

diversity in the swarm at any moment during the run of the algorithm, not depending on the level of convergence 
already achieved. This would allow the “escape” of particles even when convergence of the swarm around a local sub-
optimum had already occurred. A second, and less practical, motive was to maintain the biological metaphor. Other 
mechanisms could perhaps have been used to the same effect, but it seemed more appropriate to introduce a mechanism 
that also has some parallel in nature. The predator-prey model is inspired in the hunt in nature of animals grouped in 
flocks by one or more predators. When chased, animals have more difficulty to stay around their most preferable places 
(better pastures, water sources…) and have to search for other locations, free of predators and perhaps even better. This 
is the effect we want to model in our algorithm, where the metaphorical better pastures are the functions’ local sub-
optima. 

In the present state of development of the predator-prey optimiser, only one predator is used. The predator’s 
objective is to pursue the best individual in the swarm, i.e. the individual that has found the best point in the search 
space corresponding to the function being optimised. The predator update equations are: 
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ϕ4  is another random number distributed between 0 and an upper limit and Xg is the present position of the best 
particle in the swarm. The upper limit on ϕ4 allows us to control how fast the predator “catches” the best individual.  

The influence of the predator on any individual in the swarm is controlled by a “fear” probability Pf , which is 
the probability of a particle changing its velocity in one of the available dimensions due to the presence of the predator.  
The dimension where the change will occur is randomly chosen. For some particle i, if there is no change in the velocity 
in a dimension j the update rules in that dimension still are: 
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But if the predator influences the velocity in dimension j, the rule becomes: 
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The fourth term in the first equation in (4) quantifies the repulsive influence of the predator by modifying the 
velocity adding a value that is a function of the difference between the position of the predator and the particle. d is the 
averaged sum of the absolute values of the distances in each dimension. D(x) is an exponential decreasing distance 
function defined as: 

bxaexD −=)(  

D(x) makes the influence of the predator grow exponentially with proximity. The objective of its use is to 
introduce more perturbation in the swarm when the particles are nearer the predator, which usually happens when 
convergence occurs. When the distance is bigger (e.g. during the initial exploration phase of the swarm, when w is still 
big), he predator’s influence is smaller and usual swarm dynamics take control. The a and b parameter define the form 
of the D function: a represents the maximum amplitude of the predator effect over a prey and b permits to control the 
distance at which the effect is still significant. 

The predator effect was designed to take advantage of the use of w as an inertia parameter in the swarm update 
equations. The idea is to lower the values of w, thus forcing a faster convergence, while relying on the predator to 
maintain population diversity. 

 

4 -The Experimental Setting 
To facilitate comparison and analysis of the results we tested the performance of the predator-prey model in six 

non-linear functions, the first four frequently used as benchmarks in swarm particle literature [Angeline98, Shi99, 
Lovbjerg01, Kennedy01], while f5 and f6 are commonly used as benchmarks for evolutionary algorithms (e.g. 
[Muhlenbein93]). 
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In the functions above, x is a real number, n-dimensional vector and xi is the ith element of that vector. f1 is the 
generalized sphere function, a simple unimodal function; f2 is the generalized Rosenbrock function, a unimodal function 
known to be hard to optimise; f3 is the generalized Rastrigin function,  f4 is the generalized Griewank function, f5  the 
generalized Ackley function, three multimodal functions with many local minima set around the global minima in an 
unimodal macrostructure; and, finally,  f6 which is a multimodal function, designed to be difficult for evolutionary 
algorithms, with the local minima set far away from each other and the global minimum located at the boundary of the 
search space. All these functions are used as minimization problems.  

Two sets of experiences were run with the standard particle swarm optimiser. In one set the linear decreasing 
weight limits were set to wmin=0.4 and wmax=0.9, which are standard values recommended in PSO literature [Shi98]. In 
the second set, the same limits were set to wmin=0.0 and wmax=0.7. to allow comparison of results with the predator-prey 
optimiser results, which also used these values. This weight limits were chosen to implement the objective we 
mentioned before of using the weight limits to force a faster convergence, with the predator-prey effect being expected 
to provide the lacking population diversity and avoid convergence to sub-optima. In all experiments ϕ1 and ϕ2 limits 
were set to 2.0 and Vmax as set to the same value as Xmax. In PPO ϕ3 was set to 1.0 and ϕ4 to 0.1. The a, b, and Pf values 
were, for each function, empirically and after a small set preliminary experiments set to the values presented in Table 1. 
No systematic effort was made to determine optimum values for these parameters. Larger values of a were used for the 
unimodal functions, in the hope that a lucky trajectory could lead the search to near the global optimum, and for the f6 
function since its minima are far apart. b was equally set for all functions to a value of 10.0/Xmax which seemed 
promising after the preliminary experiments. Lower values of Pf were used with the unimodal functions, were it seemed 
that diversity was not as needed as in multimodal ones. 

 



 

 

Table 1: Parameter values for function used in the predator-prey 
experiments. 

Function a b Pf 
f1 2.0Xmax 10.0/Xmax 0.001
f2 2.0Xmax 10.0/Xmax 0.001
f3 0.1Xmax 10.0/Xmax 0.04 
f4 0.1Xmax 10.0/Xmax 0.06 
f5 0.1Xmax 10.0/Xmax 0.04 
f6 2.0Xmax 10.0/Xmax 0.06  

Table 2: Search space and initialization limits for each test 
function. 

Function Search Space Init. Limits 
f1 [-100,100]n [50,100]n 
f2 [-100,100]n [15,30]n 
f3 [-10,10]n [2.56,5.12]n 
f4 [-600,600]n [300,600]n 
f5 [-500,500]n [-500,500]n 
f6 [-30,30]n [10,20]n  

 

For facilitating comparisons with previous works the algorithm was run with three different dimensions for 
each function: 10, 20 and 30.  An iteration limit was set at 1000 for 10 dimensions, 1500 for 20 dimensions and 2000 
for 30 dimensions. A size 20 population was used in all experiments. Care was taken to initialise the population in an 
asymmetric way for all functions except for f6 , which, since its structure is not symmetrical around a local minimum 
situated near the origin, does not benefit from a symmetric initialisation. Table 2 presents the search space and 
initialisation limits for each of the test functions. For each experimental setting 200 runs of the algorithm were 
performed. 

 

5 – Experimental Results 
Table 3 resumes the results obtained in the sets of experiments described in the previous section. For each 

experimental setting we present a 90% confidence interval for the average the best solution found in the limit number of 
iterations, over the 200 runs. The PSO1 column shows the results for the particle swarm optimiser with w decreasing 
from 0.9 to 0.4, the PSO2 shows the results for the same optimiser with w decreasing from 0.5 to 0.0 and the PPO 
column shows the results for the predator-prey optimiser. Figure 1 presents graphs illustrating the evolution of average 
fitness over the run for the six benchmark functions.  While graphs are presented only for the dimension 30 experiments 
they are still representative of the overall behaviour of the optimisers. 

Table 3: Confidence intervals at 90% for the average best solutions of each experimental setting over 200 runs. 

Func. Dim. Iter. PSO1 PSO2 PPO 
10 1000 1,15E-20±5,83671E-21 5,21E-73±1,02090E-73 1,43E-34±1,22751E-34 
20 1500 5,00E-12±2,28482E-12 2,12E-41±3,13233E-42 9,90E-26±1,03891E-26 f1 
30 2000 4,13E-08±1,30741E-08 6,22E-25±1,01824E-25 5,32E-21±3,76824E-21 
10 1000 118,83096±34,02262 51,14766±16,44399 39,73008±13,55563 
20 1500 185,02141±43,49773 68,89530±17,55632 67,46585±14,97499 f2 
30 2000 241,34265±52,65796 155,13395±35,23946 163,97916±37,66825 
10 1000 5,27192±0,37085 8,22332±0,60453 0,23928±0,07607 
20 1500 23,24823±1,00934 36,63928±1,78038 3,08763±0,38998 f3 
30 2000 48,58373±1,72605 81,17846±3,01176 10,74409±0,93099 
10 1000 0,09822±0,00668 0,08766±0,00636 0,06428±0,00434 
20 1500 0,02836±0,00387 0,02868±0,00338 0,02189±0,00295 f4 
30 2000 0,01585±0,00252 0,02794±0,01233 0,01334±0,00258 
10 1000 2,564E-11±6,03359E-12 0,06941±0,04307 7,832E-08±1,23948E-08 
20 1500 0,00823±0,01613 0,47375±0,09981 1,84E-06±2,68697E-07 f5 
30 2000 0,21048±0,07028 1,08448±0,14345 1,252E-05±1,71359E-06 
10 1000 411,13915±23,70806 689,12034±31,68839 93,73165±13,81862 
20 1500 1202,35393±47,89437 1991,20137±62,02794 380,48637±25,46739 f6 
30 2000 2305,19333±68,72059 3426,18449±77,36661 724,70529±37,99708 

A first observation that can be made from table 3 concerns the difference in performance between the PSO1 
and the PSO2 optimisers. The only difference between them is that the PSO2 has a “shorter” cooling schedule, with the 
linear decreasing weight varying from 0.5 to 0.0 while in the PSO1 it varies from 9.0 to 0.4 in the same number of 
iterations. This should result in an increased urge to converge in the second optimiser. In terms of performance, what 
can be seen is that the PSO2 performs poorer than the PSO1 in the generality of the experiences involving multimodal 
functions. In figure 1 we can see that the PSO2 converges faster than the PSO1, but gets more frequently caught in local 
minima. Since in the first two functions these local minima don’t exist, the PSO1 easily outperforms the PSO2. 

Since the PPO uses the same cooling schedule as the PSO2, if there is a difference in performance, it must be 
the result of the predator-prey mechanism. Both from table 1 and figure 1 can be concluded that indeed there is a 
difference in performance and that that difference is significantly favourable to the predator-prey optimiser. 



 

 

 

Sphere D30 P20

1E-25

1E-19

1E-13

1E-07

0,1

100000

0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

Fi
tn
es
s

PPO
PSO1
PSO2

Rosenbrock D30 P20

1

100

10000

1000000

100000000

10000000000

0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

Fi
tn
es
s

PPO
PSO1
PSO2

Rastrigin D30 P20

1

10

100

1000

0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

Fi
tn
es
s

PPO
PSO1
PSO2

 

Griewank D30 P20

0,01

0,1

1

10

100

1000

10000

0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

Fi
tn
es
s

PPO
PSO1
PSO2

Ackley D30 P20

0,00001

0,0001

0,001

0,01

0,1

1

10

100

0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

Fi
tn
es
s

PPO
PSO1
PSO2

 

Schwefel D30 P20

100

1000

10000

100000

0 200 400 600 800 1000 1200 1400 1600 1800
Iteration

Fi
tn
es
s

PPO
PSO1
PSO2

Figure 1: Graphs illustrating evolution of average fitness of PPO versus PSO approaches for the six test functions with 
dimension 30. Fitness is presented in logarithmic scale. 

In the generalized sphere function all optimizers find the optimum very fast, with the PSO2, as expected, being 
the one to converge faster. The increased diversity of the PPO here only serves to delay its convergence, which still is 
almost as fast as that of the PSO2. In the Rosenbrock function, being also a unimodal function, the PSO2 is again the 
first to converge, followed closely by the PPO. As expected, the PPO does not have a better performance than a swarm 
particle optimizer with a “short” cooling schedule in the two unimodal functions. This is easily explained by the very 
purpose of PPO: increasing diversity, while it should constitute a useful mechanism against being caught in local 
minima, does not facilitate convergence in a landscape with only one optimum. 

The Rastrigin function was the first multimodal function in which we tested the PSO and it can be seen that the 
predator-prey approach clearly performs better that both the PPO approaches in the three experimental settings. The 
PSO not only found, on average, fitter individuals at the end of the run, but was also the first to converge, as can be seen 
in figure 1. From figure 1 can also be concluded that, giving the fitness curve of the PPO, the optimiser was likely to 
find even better solutions, if it had more iterations to go, while both PSO approaches seem to have stagnated at the end 
of the run. In the Griewank function the PPO didn’t find significantly better solutions than the PSO1, but is a lot quicker 
to converge. While the PSO2 converges even quicker, the solutions found are on average worse than the ones found by 
both the PSO1 and the PPO2. In the Ackley function, the predator-prey optimiser is again the first to converge and, 
while at 10 dimensions the solutions found are not significantly better that the ones found by the PSO1, at 20 and 30 
dimensions the difference is already significant.  

Those three functions share a common macro-structure, a global optimum surrounded by a multitude of local 
sub-optima arranged in a unimodal way towards the optimum, which clearly benefits the characteristics of the PPO over 
the PSO. The changes in velocity introduced by the predator-prey effect are indeed used, as expected, to “jump” from 



 

 

one minimum to the other, thus allowing the PPO to find better solutions than the standard PSO. And even if better 
solutions are not found, as it happens in the Griewank function, our previous assertion that the predator-prey mechanism 
would allow an increase in convergence pressure, materialized by the changes in the inertia weight limits, is validated 
by the faster convergence of the PPO in the three previous functions.  

The last function has a different macro-structure than the previous three. The sub-optima do not surround the 
global optimum, but are located far in the search space. The optima itself is not situated at, or near, the origin of the 
referential, but at the boundary of the search space. This structure easily gets the swarm based approaches trapped in the 
local minima and it can be seen both from table 3 an figure 1 that the three optimisers perform rather poorly in the 
optimization of this function. But, from the three, the PPO is again the one with the better performance, finding 
significantly better solutions than both the PSO approaches.  

 
6 – Conclusions and Future Work 
We presented a new swarm particle based function optimizer, inspired in the natural relation between predator 

and prey. A predator-prey mechanism was implemented in addition to the standard swarm particle optimiser, obtaining 
a new algorithm that was tested with six benchmark functions against the standard PSO. The experimental results allow 
us to conclude that, while the PPO does not have a better performance than the PSO when it comes to the optimization 
of unimodal functions, the opposite happens when multi-modal ones are being optimized. In the experiments carried out 
the PPO performed significantly better than the standard  PSO in the optimization of four benchmark multimodal 
functions, either by finding, on average, better solutions an the end of the runs, or by finding solutions of similar quality 
but with a higher convergence rate. 

In the experimental work presented here, the parameters of the PPO were empirically defined. One of the next 
steps in our work will be a systematic study of these parameters’ influence in the algorithm’s performance, so that a set 
of heuristics can be defined to help in the choice of the most correct parameters for the optimisation of a given function. 
We are also aiming to develop a multi-predator sub-population version of the predator-prey optimiser.   
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