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Abstract. In this paper we discuss the polymorphic abilities of a new distrib-
uted representation for genetic programming, called Genetically Programmed
Networks. These are inspired in a common structure in natural complex adap-
tive systems, where system functionality frequently emerges from the combined
functionality of simple computational entities, densely interconnected for in-
formation exchange. A Genetically Programmed Network can be evolved into a
distributed program, a rule based system or a neural network with simple ad-
justments to the evolutionary algorithm. The space of possible network topolo-
gies can also be easily controlled. This allows the fast exploration of various
search spaces thus increasing the possibility of finding a (or a better) solution.
Experimental results are presented to support our claims.

1. Introduction

As artificial agents grow in intelligence and autonomy it becomes harder to design by
hand the controllers to guide those agents. Evolutionary approaches to the synthesis of
autonomous intelligent agents have been proposed mainly in the evolutionary robotics
and artificial life communities. These approaches try to reduce the intervention of the
agent designer by evolving a solution from a population of individuals using the prin-
ciples of natural selection instead of more complex engineering techniques.

Evolutionary approaches to agent synthesis can be divided in three main groups
according with the representation used for the individuals:

 Neural networks [4, 8, 10].

 Rule based systems [6, 7, 9].

 Computer programs [1, 2].

The choice of the most appropriate controller architecture for autonomous agents is
the center of an ongoing discussion [2, 15] which will probably never end. But from it
we can conclude that the use of very specific representations has obvious disadvan-
tages in the fact that when the approach fails to find a solution to a given problem, a



lot of effort is needed to start over, using a new representation and corresponding
approach. Even if a solution is found, it would sometimes be useful to have an easy
way of trying other representation, to see if better solutions could be found in the
corresponding search space.

In this paper we address the way the polymorphy in Genetically Programmed Net-
works (GPN), i.e. the ability to be evolved into individuals with dissimilar structures
and topologies, can be used as a tool for the fast exploration of different search
spaces.

Genetically Programmed Networks were initially presented as a new evolutionary
approach to the synthesis of controllers for autonomous agents and showed promising
results in benchmark problems [16,17,18]. They are the result of our search for an
evolutionary algorithm centered on a polymorphic representation. This search has
been, from the beginning, conditioned by three self-imposed constraints:

 First, the approach should be as independent from the problem as possible to
reduce the designer intervention, thus incorporating the other evolutionary ap-
proaches main advantage.

 Second, it should provide support for the emergence of memory mechanisms,
which we believe are essential for the agent’s autonomy and intelligence. This
aspect of our approach has been discussed in [17].

 Third, the level of polymorphy in the representation should be enough to allow
the evolution of controllers with the most common architectures in previous
approaches, namely neural networks, rule based systems and computer pro-
grams.

These constraints have been fulfilled in GPN while maintaining the flexibility and
simplicity characteristic of evolutionary approaches.

Our representation was inspired in natural complex adaptive systems, which, as
noted in [11], are frequently composed of simple computational entities densely inter-
connected, with the connections allowing the flow of information between entities.
This structure is recurrent in nature, being seen in our brain and immune system as
well as in cities or ecosystems. The same model is also used in several computational
systems, e.g. artificial neural networks and cellular automata.

It seemed to us that the flexibility of the underlying structure could provide us with
a representation capable of sustaining the desired polymorphy. The way memory
mechanisms are implemented in systems with this structure, by allowing delays in the
connections used to transmit information, e.g. recurrent connections in neural net-
works, also suggested an elegant way to of fulfilling our second constraint.

Genetically Programmed Networks are presented in more detail in the second sec-
tion of this paper. The evolutionary algorithm and the control of polymorphy are
discussed in section 3. Section 4 is devoted to the presentation of experimental results
to illustrate the polymorphic abilities of GPN. Finally, in section 5, we summarize our
work and draw some conclusions.



2. Genetically Programmed Networks

We can follow the natural model that served us as inspiration, to describe the repre-
sentation used for Genetically Programmed Networks. We will start by a description
of the GPN genotype, followed by a discussion of its phenotype and the relation be-
tween them.

2.1. GPN Genotype

In GPN entities are represented by programs that completely codify their behavior,
which is simply a set of computations. Entities are usually called nodes in a GPN.

Connections are represented by variables in the program that codifies an entity’s
behavior. When a program accesses one of these variables we say that a connection is
being established between the entity associated with the program and the entity corre-
sponding to the variable. This means we don’t need an explicit representation for
connections, thus avoiding the usual problems with variable length representations
when there is the need to insert or remove a given connection.

We now need a representation for the programs. Instead of using the most usual
representation in evolutionary algorithms, more specifically in classical genetic pro-
gramming (GP) [13], which is an explicit syntactic tree-based representation, we
chose to use a linear representation as suggested in [12]. This allowed us some sav-
ings in computational resources, i.e. memory and processor time, at the cost of a
somewhat more complex implementation. Each program is simply a vector of integer
indexes each one referencing a function, variable or constant in corresponding tables.
As in GP, functions, variables and constants can be chosen from a priori defined sets.
The differences between these sets and the ones used in GP will be discussed later.

We still have a syntactic tree but is no more an explicit one, being instead implic-
itly constructed when the indexes in the chromosome are recursively interpreted as
functions, variables and constants.

The genome of a GPN individual is then nothing more than a sequence of pro-
grams codified as integer vectors. An individual will have n chromosomes, corre-
sponding to n programs, each associated with one of n entities or nodes.

2.2. GPN Phenotype

In terms of phenotype, a GPN individual is a network of interconnected entities or
nodes. Besides nodes and connections a GPN has two other components:

1. Inputs, which allow the GPN to access information about the environment.
The agent, after gathering information with its sensors, is responsible for pre-
senting the GPN inputs with the relevant information, preprocessed or not.

2. Outputs. The final computations of a GPN are copied to a set of outputs so
that the agent can use them to choose an action to perform. The entities whose
final computations are copied to the outputs are called external nodes, while
the other ones are called internal nodes.



As already mentioned, the connections in a GPN are created when a variable corre-
sponding to the output of an entity is accessed by a program associated with other
entity. Following the same principle, connections between inputs and entities are
established when a variable corresponding to an input is used in the entity’s program.
Two types of connection can be created:

1. Forward connections are established from an entity q to an entity p when the
program associated with p uses a variable fq which contains the output of the
entity q in the same iteration. In the same way, a forward connection between
an input m and an entity p is established when a variable im with the value of
input m is used by the program associated with p. Forward connections be-
tween entities correspond to functional relations, since the destination entity
will use the result computed by the origin entity as a partial result in its own
computations.

2. Recurrent connections are established from an entity q to an entity p when
the program associated with p uses a variable rq which contains the value
computed by q in the previous iteration. Recurrent connections result in the
delayed transmission of information, thus permitting the emergence of mem-
ory mechanisms in a GPN, i.e. they allow the formation of temporal relations
between entities. This type of connection is not permitted between an input
and an entity.

A special type of forward connections is assumed to always exist from external nodes
to the GPN outputs. Its function is only to allow the instantaneous flow of the values
computed by the programs associated with external nodes to the correspondent GPN
outputs.

3. The Evolutionary Algorithm

Since a GPN is merely a sequence of programs it seems obvious that a form of ge-
netic programming should constitute the ideal evolutionary algorithm to evolve a
population of GPN individuals. In fact, the algorithm centered on Genetic Pro-
grammed Networks is a new flavor of distributed GP, with several differences from
classical GP to deal with the particularities of our representation.

The most important differences deal with the choice of function and terminal sets
for the programs and the inclusion of a new level of operators.

3.1. Controlling Polymorphy

In opposition to GP the most important aspect in the choice of functions and terminals
is not if they are the most suitable for the problem being solved, but if they allow the
evolution of the type of controller we want.



To better control the polymorphy of our representation the function set is divided
in two other sets:

1. The root set R, which has the functions that are allowed to be chosen as the
root of the program’s syntactic tree.

2. The function set F, which has all the functions that can be included in the
program except at its root.

Internal and external nodes have different root, function and terminal sets, respec-
tively Ri, Fi, Ti and Re, Fe, Te.

Manipulating the terminal sets we can control the topology of the individuals, i.e.
the space of allowed connection patterns that can be explored. Table 1 presents the
terminal sets for three different topologies.

Complete Topology
Ti={ i1, i2, ..., il, r1, r2, ..., rm, rm+1, rm+2, ..., rm+n, ...}
Te={ i1, i2, ..., il, f1, f2, ..., fm, r1, r2, ..., rm, rm+1, rm+2, ..., rm+n, ...}

One Layer Topology
Ti={ i1, i2, ..., il, r1, r2, ..., rm, rm+1, rm+2, ..., rm+n, ...}
Te={ i1, i2, ..., il, r1, r2, ..., rm, rm+1, rm+2, ..., rm+n, ...}

Memory Topology
Ti={ r1, r2, ..., rm, rm+1, rm+2, ..., rm+n, ...}
Te={ i1, i2, ..., il, f1, f2, ..., fm, ...}

Table 1. Terminal sets for three different topologies, assuming a network with l inputs, m
internal nodes and n external nodes.

In a complete topology every possible connection is allowed. This is the most
flexible topology, but corresponds to the larger search space, since is the one that
includes more terminals. In a one layer topology, forward connections are not allowed
from internal nodes to external nodes. This topology is less flexible than a complete
one, but produces the GPN with fastest execution, since all programs can be ran con-
currently. Finally, a memory topology allows recurrent connections only to internal
nodes, which act as a memory layer. This is the topology with the smallest search
space, but is also the least flexible.

Manipulating the function and root sets, we can control the architecture of the GPN
being evolved. When no particular restrictions are made, all function and root sets are
equal and we say that distributed programs are being evolved. To evolve rule based
systems an if-than-else function is the only member of the root sets, and its not al-
lowed in the function sets. This way all evolved programs will be if-than-else rules.
To evolve neural networks more significant changes are needed. Every terminal gains
an associated randomly generated weight, the root sets can only have a transfer or
activation function and the function sets only members are an add and a subtract
function. Each evolved program is no more than the sum of weighted terminals
passed trough the activation function.

These examples maintained equal root and function sets for internal and external
nodes. The networks evolved when this is true are called homogeneous networks. If
the sets are chosen differently for internal and external nodes, we can evolve hetero-



geneous GPN, e.g. neural networks with different activation functions in the internal
and external nodes, and even hybrid controllers, e.g. neurons in the internal nodes and
rules in the external nodes.

Distributed Program
Fi=Fe=Ri=Re={...}

Rule Based System
Ri=Re={if-then-else}
Fi=Fe={...}

Neural Network
Ri=Re={transf}
Fi=Fe={add, subtract}

Table 2. Function and root sets for three different architectures, assuming a network with l
inputs, m internal nodes and n external nodes.

We used these examples since they correspond to the most common architectures
in other evolutionary approaches, but it is obvious that with further manipulations
other architectures (and topologies) could be used.

The functions and terminals that are not architecture or topology related are chosen
to allow the computations that take place in the nodes and do not directly depend on
the problem. Functions or terminals with side effects, common in GP, are not allowed
in our approach, since they are highly problem dependent.

3.2. Operators

At program level we maintained the use of the three most important operators in GP,
namely fitness proportional reproduction, tree crossover and tree mutation. A new
level of GPN operators had to be introduced to control the program operators’ appli-
cation strategies. In the experiments whose results we present here, three of these
operators are used:

1. GPN reproduction: when a GPN is selected for fitness proportional reproduc-
tion, all the programs of the new individual are copied from the corresponding
node in its parent.

2. GPN mutation: when a GPN is selected for mutation, the resulting offspring
will be obtained by applying program mutation to every program in the parent
individual.

3. GPN crossover: when two GPN are selected for crossover, the two resulting
offspring will be obtained by applying program crossover to every pair of cor-
responding programs in the parents.

Other strategies are obviously possible, e.g. instead of always applying program
crossover to each pair of programs, it could be applied with some chosen probability.



3.3. Evolving Genetically Programmed Networks

The evolutionary algorithm is an obvious instance of the generic evolutionary algo-
rithm and similar to GP. After the creation of an initial population by randomly gen-
erating m×n programs, where m is the population size and n is the number of nodes in
an individual, the main evolutionary cycle begins:

 All individuals are evaluated by being allowed to control the agent in the given
task.

 A temporary population is constituted by selecting individuals with replace-
ment from the population using a tournament selection strategy.

 GPN crossover is applied to 85% of the temporary population, GPN reproduc-
tion to 10% and GPN mutation to the remaining 5%, obtaining a new popula-
tion of offspring.

 The population is completely substituted by the new population and a new cy-
cle begins.

The cycle ends when some stopping condition is satisfied, usually when a solution is
found or a limit generation is reached.

4. Experimental Results

To test the polymorphic abilities of Genetically Programmed Networks, we chose a
benchmark problem with a fitness landscape considered hard for traditional GP. This
is the well known “Ant in the Santa Fé Trail” problem, which had its first variant
“Ant in the John Muir Trail” proposed by Collins [5]. In the version most used in GP
an artificial ant has to follow a discontinuous trail of food pellets in a toroidal cellular
world. The ant has only one sensor that informs it of the presence or not of food in the
next cell and can choose from three actions: move forward, turn left while remaining
in the same cell, turn right while remaining in the same cell. The ant can use a maxi-
mum of 400 actions to complete the trail.

Since Koza [13] applied GP to this problem for the first time, that it has been con-
sidered a GP hard problem, not because it is difficult to find a solution, but because
GP compares poorly to other search procedures in the effort it needs to find one. This
effort is the measure we use here for comparison and equals the number of individuals
that must be evaluated so that a solution is found with a probability of 99% [13].

Langdon [14] discusses the difficulties GP finds in this problem in terms of its fit-
ness landscape and presents some results on the effort needed by several GP an non
GP approaches to find a solution. We summarize these results in Table 3 where it can
be seen that all GP based approaches need significantly more effort that simple hill
climbing. The best results obtained by an evolutionary approach, also shown in Table
3, are the ones presented in [3] and use a form of evolutionary programming. But
even these are only marginally better than the ones obtained with hill climbing.



Approach Effort
Genetic Programming [14] 450,000
Sub-Tree Mutation [14] 426,000
Parallel Distributed GP [14] 336,000
Hill Climbing [14] 186,000
Evolutionary Programming [3] 136,000
Distributed Program / Complete Topology 88,800
Distributed Program / One Layer Topology 84,000
Distributed Program / Memory Topology 81,700
Rule System / Complete Topology 125,000
Rule System / One Layer Topology 134,400
Rule System / Memory Topology 85,000
Neural Network / Complete Topology 60,000
Neural Network / One Layer Topology 53,300
Neural Network / Memory Topology 39,000
Heterogeneous Neural Network / Complete Topology 42,300
Heterogeneous Neural Network / One Layer Topology 44,000
Heterogeneous Neural Network / Memory Topology 51,700
Rule System – Neural Network Hybrid / Complete Topology 81,000
Rule System – Neural Network Hybrid / One Layer Topology 96,000
Rule System – Neural Network Hybrid / Memory Topology 43,500
Distrib. Program. – Neural Network Hybrid / Complete Topology 150,000
Distrib. Program. – Neural Network Hybrid / One Layer Topology 96,000
Distrib. Program. – Neural Network Hybrid / Memory Topology 86,400

Table 3. Effort needed by several GP, non GP and GPN based approaches to solve the ant
problem.

We hoped that by applying GPN to this problem we could find architecture / topol-
ogy pairs corresponding to search spaces more friendly to genetic search. To verify
this, we made 18 groups of 200 experiences corresponding to 18 architecture / topol-
ogy pairs, including some hybrid forms. The experiments and results in terms of effort
are summarized in Table 3. All the evolved GPN had two inputs, with values 10 when
food was ahead and 01 otherwise. We used 6 internal nodes and 3 external nodes
connected to 3 outputs. The output with the largest value decided which action to
perform. The program size was limited to 64 so that the maximum of 9×64 instruc-
tions would allow a fair comparison with the other approaches, which usually have a
500 instructions limit. The evolution of distributed programs used root and function
sets with the functions and, or, not, equal, greater and if-than-else. To evolve rule
systems the if-than-else function was removed from the function sets and made the
only member of the root sets. Neural networks were evolved as described before.

From Table 3 we can see that our best approach, a neural network / memory com-
bination, needed only to evaluate 39,000 individuals to find a solution with 99%
probability, which is roughly one third of the best non GPN approach and less than
one fourth of the effort needed by hill climbing. All other combinations found solu-



tions with less effort than the needed by hill climbing and only one pair performed
worst that the best non GPN approach. This shows the aptitude of our representation
and methodology to solve this particular problem. It also shows that our claims to-
wards the polymorphy of GPN can hold and that that polymorph can really be a useful
tool in finding more friendly fitness landscapes to search, when dealing with hard
problems.

While most combinations obtained good results it can be seen that the neural net-
work architecture and the memory topology are usually associated with the better
ones. While this was unexpected for the architecture, since we didn’t had any clue on
which should perform better, we cannot say the same for the topology since it is the
one that uses less terminals while still allowing the emergence of the memory mecha-
nisms needed to solve the problem. But it must be noted that other problems could
possible need the flexibility of the complete topology or the faster execution of one
layer GPN.

5. Conclusions

The usefulness of a polymorphic, problem independent representation for the evolu-
tionary synthesis of controllers for autonomous agents was discussed. We proposed
such a representation, called Genetically Programmed Networks, inspired in the
structure of natural complex adaptive systems. We claimed that GPN could be used to
evolve neural networks, distributed programs and rule-based systems with several
topologies, and even hybrids of the listed architectures.

To support our claims, we presented the results of evolving GPN with 18 different
pairs architecture / topology to solve a GP hard problem. The results show that GPN
could be used to find instances of the general GPN representation corresponding to
search spaces where our algorithm needed much less effort to find a solution than
previous approaches.

We hope these results can be extended to other problems, allowing for the quick
exploration of many promising search spaces, so that new or better solutions can be
found, or at least that known solutions can be found faster.
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