
Building Agents with Memory: An Approach using Genetically Pro-
grammed Networks

Arlindo Silva1

Center for Informatic and Systems of
the University of Coimbra

Polo II – Pinhal de Marrocos
3030 Coimbra - Portugal

arlindo@dei.uc.pt

Ana Neves1

Center for Informatic and Systems of
the University of Coimbra

Polo II – Pinhal de Marrocos
3030 Coimbra - Portugal

dorian@dei.uc.pt

Ernesto Costa2

Center for Informatic and Systems of
the University of Coimbra

Polo II – Pinhal de Marrocos
3030 Coimbra - Portugal

ernesto@dei.uc.pt

1 Escola Superior de Tecnologia, Instituto Politécnico de Castelo Branco, Av. do Empresário,
6000 Castelo Branco – Portugal

2 Departamento de Engenharia Informática, Universidade de Coimbra, Polo II – Pinhal de Marrocos,
3030 Coimbra – Portugal

Abstract- To achieve a high degree of autonomy, an
agent usually needs some kind of memory mechanism. In
this article we present a new approach to the evolution
of agents with memory, based on the use of Genetically
Programmed Networks. These are connectionist struc-
tures where each node has an associated program,
evolved using genetic programming. Genetically Pro-
grammed Networks can easily be evolved into agents
with very different architectures. We present experimen-
tal results from evolving Genetically Programmed Net-
works as neural networks, distributed programs and
rule-based systems capable of solving problems where
the use of memory by the agent is essential. Comparisons
are made between the performance of these solutions
and the performance of solutions obtained by other
evolutionary strategies used to evolve agents with mem-
ory

1 Introduction

Autonomous agents need memory to encode the state infor-
mation needed to efficiently solve complex problems. In
most of the approaches where some form of genetic pro-
gramming is used to evolve agents capable of solving prob-
lems where memory is essential, memory is implicitly im-
plemented by the program structure. The state of the agent is
represented not by some explicit memory construct but as
the emergent result of executing a sequence of instructions
[Koza92]. Explicit memory can be implemented using in-
dexed memory [Teller94]. The agent’s state is stored in a
sequence of memory cells, which the evolved program can
read and write. [Trenaman98] proposes a form of concurrent
genetic programming where state information can be en-
coded by the exchanging of processor control between
threads executed concurrently. Each thread corresponds to a
genetically evolved program. [Angeline97] Multiple Inter-

acting Programs (MIP) implement memory in a way similar
to Genetically Programmed Networks (GPN): a MIP is a set
of equations evolved using evolutionary programming (10
different forms of mutation). Each equation is associated
with a node of a network (which can be seen as a generali-
sation of neural networks) and memory is implemented by
creating recurrent connections between nodes.

In this article we propose Genetically Programmed Net-
works as an alternative process to evolve agents with mem-
ory. Based on results obtained using GPN to solve two
benchmark problems, the Ant Problem and the Tartarus
Problem, we defend that evolving GPN can be more effi-
cient than other evolutionary approaches previously used to
evolve agents with memory. We also demonstrate that a
GPN is a polymorphic structure, by evolving solutions with
very different architectures for the same problem. More spe-
cifically, we use GPN to evolve distributed programs, rule
based systems and neural networks all capable of solving the
problems mentioned.

Figure 1: A Genetically Programmed Network

External Node

Recurrent Connection

Input Output

Internal Node

Feedforward Connection

mailto:arlindo@dei.uc.pt
mailto:arlindo@dei.uc.pt
mailto:ernesto@dei.uc.pt

A Genetically Programmed Network is constituted by a
sequence of programs. Each program can be pictured as as-
sociated with a node in a network. Besides the nodes with
associated programs, the network also has a set of inputs, a
set of outputs and connections between them (see Figure1).
The nodes are the computing elements in the network and
each one uses the attached program to compute its output
based on data flowing in from its connections. Connections
act as a mean of transportation for data between inputs, out-
puts and nodes. There is no explicit representation for this
network. In fact, the network structure is implicitly defined
in the way the programs make use of a carefully defined
terminal set. The evolutionary process used to evolve the
programs, and, consequently, the GPN, is an extension of
genetic programming (GP), as defined in [Koza92], to multi-
tree individuals.

Genetic programmed networks are described in section 2
and the evolutionary process used to evolve valid solutions
from a GPN population is explained in section 3. In section
4 we present the experimental results obtained by evolving
GPN as distributed programs, recurrent neural networks and
rule-based systems, all capable of solving the benchmark
problems. In the same section we compare the efficiency of
our approach with other methods of evolving agents with
memory capable of solving the same problems. We discuss
how GPN can be used to evolve agents with different archi-
tectures in section 5 and, in section 6, we draw some conclu-
sions about this results and outline ongoing and future work.

2 Genetically Programmed Networks

Genetically Programmed Networks are sequences of pro-
grams, which implicitly define a connectionist structure.
This structure, a network of nodes with attached, genetically
evolved programs, gives the name to our approach. In this
section we briefly describe the structure and behaviour of a
GPN. For a more detailed description see [Silva99].

2.1 GPN General Structure
A Genetically Programmed Network is constituted by (Fig-
ure 1):

• A set of inputs, whose values are received from the en-
vironment.

• A set of outputs, whose values are computed by the
GPN.

• Two sets of nodes: internal nodes and external nodes.

• A set of connections, which link the previous compo-
nents into a network.

Every node in the GPN is constituted by:
• A set of inputs.

• One output only.

• A genetically evolved program.
The structure of a particular GPN is partially defined at

the start of the evolutionary process, since the networks’ in-

puts and outputs, as well as the number of internal and ex-
ternal nodes are set a priori.

2.2 GPN Behaviour
The desired behaviour for a GPN is to solve some problem
posed by the environment. To do this, the network uses the
information provided by the environment at its inputs and
produces outputs that can be seen as instructions to eventu-
ally achieve a solution. This behaviour is achieved by exe-
cuting the programs associated with the network’s nodes.
These programs define the connections between nodes and
compute each node’s output based on the inputs available to
it.

2.2.1 The Programs
The program associated which each node can be evolved
using any variant of GP. The approach to GP we use is
adapted from [Keith90] and it uses C++ instead of Lisp for
extra speed and flexibility. What is particular to GPN is the
terminal and function set. In GPN these sets are not as
problem dependent as in GP, since no side effects are al-
lowed. On the other hand, these sets are heavily dependent
on architectural choices. In fact, we must choose terminals
and functions accordingly with the architecture we want to
evolve, i.e. evolving a neural network will require different
functions and terminals than evolving a rule-based system.
The kind of connections allowed will also depend on the
chosen terminals.

The terminal set is of extreme importance, since it must
contain a terminal for each input available to the node the
program is associated with. A terminal set can have the fol-
lowing inputs: network’s inputs at iteration t, nodes’ outputs
at instant t and nodes’ outputs at instant t-1. By restricting
the inputs (terminals) available to a given program we can
restrict the connections the correspondent node can make,
thus affecting the networks topology.

Instead of using only one function set we use two: a
function set and a root set. The members of the root set are
the functions that can be chosen to be the root node in the
program’s tree. Functions in the function set are used in the
same way as in GP, except that they cannot be chosen to be
the program’s tree root node. The use of a root set allows us
to control more easily the type of architecture being evolved.

2.2.2 Establishing Connections
Connections are established in a GPN when a program at-
tached to some node includes in its code any terminal corre-
sponding to one of the inputs available to the node. If a pro-
gram, at iteration t, uses a terminal linked to a network’s in-
put or to a node’s output at the same iteration t, we say that a
forward connection has been established. Forward connec-
tions are only allowed between inputs and nodes, and be-
tween internal nodes and external nodes. These connections
are useful to carry data between nodes, e.g. from an input to
a node, and to define functional relations between nodes:

when there is a forward connection between nodes, the first
node performs some computation which result the second
node can use in its own computation.

When a program, at iteration t, uses a terminal linked to a
node’s output at instant t-1, a recurrent connection is estab-
lished. Recurrent connections are allowed between any pair
of nodes in the network. Temporal relations exist between
nodes recurrently connected, since the second node will
have access to the first node’s output in the previous itera-
tion. It is the existence of recurrent connections between
nodes that is responsible for the implementation of memory
in GPN. An agent can keep track of its state by using chains
of recurrent connections to remember values obtained in
some previous iteration. These values can than be modified
by the following iterations in some way that reflects the
changes in the agent state.

Defining the terminal set of a node as a subset of all the
terminals allowed to that node, we can make restrictions on
the topology of the GPN being evolved. E.g., we can allow
recurrent connections to exist only between internal nodes.
To achieve this, we define different terminal, function and
root sets for internal and external nodes.

2.2.3 Running the GPN
A GPN is run by sequentially executing all the programs in
it. The programs associated with internal nodes are the first
to be executed. Then the programs associated with external
nodes are executed. This sequence is the reason why for-
ward connections between nodes can only exist from an in-
ternal node to an external node. Every external node is con-
nected with a GPN output, which implies that we always
have the same number of external nodes and outputs in a
GPN. When a GPN is run, data flows from the inputs to the
network’s nodes, where it is processed by the associated
programs. The nodes’ outputs are then propagated trough
forward and recurrent connections to other nodes. When all
the external nodes’ programs have been executed the exter-
nal nodes’ outputs are copied to the correspondent net-
work’s output and the GPN is ready for the next iteration.

3 Evolving Genetically Programmed Networks

A GPN individual has n chromosomes, one for each node in
the network. Since the chromosomes correspond to the pro-
grams associated with the networks’ nodes, it follows that
each individual Ii (a GPN) is simply represented by a se-
quence of programs. Order is important, since, like in the
biological model, the genome operators are designed to act
on chromosomes with the same position in the individuals
they belong to.

3.1 Operators
The three main operators used in GP are also needed to
evolve GPN, therefore we defined reproduction, crossover

and mutation in a way they can be applied not only to a pro-
gram but also to a GPN, a sequence of programs:

• GPN Reproduction – Reproduction is an asexual op-
erator, which returns an exact copy of the individual as
the child. To apply reproduction to a GPN all programs
in the parent individual are copied, in the same se-
quence, to the child.

• GPN Crossover – Crossover is a sexual operator,
which takes two individuals and returns two children re-
sulting from the recombination of the parents. In GPN
crossover is implemented by exchanging sub-trees be-
tween all correspondent programs (with the same posi-
tion) in the individuals.

• GPN Mutation – A mutated child GPN is obtained by
substituting a randomly chosen sub-tree of each pro-
gram in the individual for a new, randomly generated,
sub-tree.

3.2 The Initial Population
An initial population composed of n individuals with m
nodes will imply the generation of n*m programs. Since that
at this stage in our study of GPN we don’t allow the indi-
viduals’ number of nodes to vary, neither inside a population
nor during the evolutionary process, this number will remain
constant during the evolutionary process. The generation of
this initial set of programs is done using what [Koza92] calls
the “grow” method. A restriction is made on the tree’s
maximum depth and, until this depth is reached, nodes are
randomly chosen from the reunion of function and terminal
sets, except for the root node, where a function from the root
set must be chosen. When the maximum depth is reached
nodes are randomly chosen from the terminal set alone,
which causes the tree’s depth to be no greater then the
maximum depth allowed. This method creates trees of dif-
ferent sizes and shapes and revealed itself appropriate to be
used with our approach.

3.3 Selection and Evolution
Tournament selection, with size n depending on the set of
experiments, was used as the selection strategy. Candidates
for reproduction are chosen after entering a tournament be-
tween n individuals randomly chosen from the current
population. The individual with the best raw fitness is con-
sidered to be the winner and is copied into a mating pool
with the same size as the population. After the mating pool
is full, reproduction is applied to 10% of the individuals,
mutation to 5% of the individuals and crossover to the re-
maining ones. The individuals resulting from the operator
application are copied into a new population. The process
ends when a limit generation is reached or when an individ-
ual with some goal fitness is found.

4 Evolving Different Architectures

We have already mentioned the polymorphic ability of GPN.
In this section we will describe the process that allows us to

evolve a distributed program, a rule based system and a neu-
ral network from the same base structure, a GPN, only by
adjusting the nodes’ terminal, function and root sets. We
will first define the following symbols: Ti, Te, Fi, Fe, Ri and
Re represent, respectively, the terminal sets for internal and
external nodes, the function sets for internal and external
nodes and the root sets for internal and external nodes; ip, is
the terminal that contains the value of the network’s pth in-
put at iteration t, fq is the terminal that contains the value of
the output of the qth network’s internal node at iteration t
and rr is the terminal that contains the value of the output of
the rth network’s node at iteration t-1.

4.1 Distributed programs
If we allow a population of GPN to evolve without any spe-
cial constraints on terminal, function and root sets, the indi-
viduals will evolve as distributed programs. Table 1 presents
the typical sets for evolving distributed programs. An inter-
nal node can have forward connections from the network’s
inputs and recurrent connections from every other node.
External nodes can also have forward connections from in-
ternal nodes. The program associated with each node can
also have access to other terminals needed for the problem
being solved. Function and root sets have no particular con-
straints, they all have the same members: the functions
needed to solve the problem.

Ti={i1, ..., ip, r1, …, rr, ...}
Te={i1, ..., ip, f1, ..., fq, r1, …, rr, ...}
Fi=Fe=Ri=Re={...}

Table 1: Typical terminal, function and root sets for evolving a
distributed program.

Evolving a GPN with these terminal, function and root
sets, we will obtained a network of simple programs, each
one doing some part of the computation needed to solve the
problem. The GPN behaves as a distributed program.

4.2 Rule Based Systems
With a small change to the root sets we can evolve an agent
with a more specific architecture, a rule based system (see
Table 2). This is done by constraining the root sets to have
just one function: if-then-else. Every node in the GPN will
have the same structure, the one of a if-then-else rule. The
GPN can now be though of as a rule system where each
node correspond to a rule, and every rule can use the knowl-
edge produced by other rules to produce its own knowledge,
the node output.

Ti={i1, ..., ip, r1, …, rr, ...}
Te={i1, ..., ip, f1, ..., fq, r1, …, rr, ...}
Ri=Re={if-then-else}
Fi=Fe={...}

Table 2: Typical terminal, function and root sets for evolving a
rule based system.

4.3 Recurrent Neural Networks
To evolve a GPN as a recurrent neural network, further
changes are needed to the terminal, function and root sets
(see Table 3). Each terminal has an associated weight. These
weights are randomly generated for each occurrence of the
terminal in the programs of the initial population. The evo-
lutionary process searches for a suitable linear combination
of weighted terminals. To allow this, the function set has
only two functions: + and -, while the root sets only have
one argument, which is non-linear transference function.
Each node acts as an artificial neurone, with its output equal
to the result of applying the transference function to the lin-
ear combination of weighted inputs.

Ti={wi1, ..., wip, wr1, …, wrr}
Te={ wf1, ...,w fq}
Ri=Re={transf}
Fi=Fe={+,-}

Table 3: Typical terminal, function and root sets for evolving a re-
current neural network

For the problems in the next section we defined the ter-
minal sets so that recurrent connections could only be made
between internal nodes. External nodes can only have for-
ward connections from internal nodes. It is easy to see that
by manipulating the terminal sets a large number of other
topologies could be produced. It could also be interesting to
use several transference functions in the root sets and allow
the evolutionary process to choose the best function, or
combination of functions, for the problem being solved.

The same flexibility in terms of topology is also valid for
distributed programs and rule-based systems. We chose to
use the described topologies since they are very general and
allow the evolutionary process to choose from a high num-
ber of possibilities the connections needed to solve the pro-
posed problems.

5 Experimental Results

5.1 The Ant Problem
The first benchmark problem for which we present experi-
mental results is the well-known Ant Problem. Originally
presented in [Collins91], this problem consists in developing
an artificial ant capable of following a discontinuous trail of
sugar in a toroidal 32×32 cell world. The ant has a rudi-
mentary sensor, which informs it if there is sugar in next cell
in the direction of its movement. The ant can perform four
actions: turning left or right while remaining in the same
cell, moving one cell in the current direction or doing noth-
ing. Memory is essential to solve the problem because the
ant has a limited number of actions to follow the trail. The
ant will have to remember the regularities in the trail so that
the discontinuities don’t take too many actions to overcome.

We can find many evolutionary approaches to this prob-
lem. [Collins91] uses a genetic algorithm (GA) to evolve
both neural networks and finite automata capable of follow-
ing the “John Muir” trail, [Angeline93] uses a GA to evolve
neural networks capable of following the same trail. Finite
automata and recurrent neural networks are an obvious so-
lution to provide the memory the ant needs to solve the
problem. The variant of this problem that we solved is called
the “Santa Fé” trail and it has been extensively used as a
benchmark problem for GP. It was first presented in
[Koza92], and is harder, with more levels of deception than
the “John Muir” trail. [Langdon98] presents an extensive
study of the program space for this problem in GP, and
compares the effort needed to find a solution with random
search, GP and several other search techniques. Effort is de-
fined as in [Koza92] to be number of individuals that need
to be evaluated to ensure a solution is found, with probabil-
ity z, and can be computed using the following equations:

−
−

=
)),(1log(

)1log(
),,(

imP

z
ceilzimR

n
iS

imP
)(

),(=
)1(),,(),,(+××= izimRmzimI

with P(m,i) the cumulative probability of success at iteration
i with a population m; S(i) the number of successful runs at
iteration i, n the total number of runs; R(m,i,z) the number of
runs needed to find a solution at iteration i, with a popula-
tion m and probability z; and I(m,i,z) the number of indi-
viduals that must be evaluated to guarantee that a solution is
found with probability z. Table 4 presents, for comparative
purposes, values of I(m,i,z) for several approaches. Most of
these values were taken from [Langdon98]. The value for
evolutionary programming (EP) was taken from
[Chellapilla97].

We used GPN to evolve distributed programs, rule based
systems and recurrent neural networks, all capable of fol-
lowing the “Santa Fe” trail. In all experiments, we used GPN
individuals with 2 inputs, 6 internal nodes and 3 external
nodes (attached to 3 outputs). The external nodes corre-
sponded, respectively, to the actions move, turn right and
turn left (like in most GP based approaches doing nothing is
not used). The output with larger value determines which
action is to be executed. Table 5 presents the terminal, func-
tion and root sets used for the three sets of experiments.

Method I(m,i,z)
GP 450,000
Sub-Tree Mutation 426,000
PDGP 336,000
Strict Hill Climbing 186,000
EP 136,000

Table 4: Comparative results over the number of individuals that
must be evaluated to find a solution with probability 0.99 for the

“Santa Fe” trail.

Distributed Program
Ti={i1, ..., ip, r1, …, rr}
Te={i1, ..., ip, f1, ..., fq, r1, …, rr}
Fi=Fe=Ri=Re={ and, or, not, >, <, ==, !=, if-then-else}

Table 5: Terminal, function and root sets for evolving a distributed
program capable of solving the Ant Problem.

Rule-Based System
Ti={i1, ..., ip, r1, …, rr}
Te={i1, ..., ip, f1, ..., fq, r1, …, rr}
Ri=Re={if-then-else}
Fi=Fe={ and, or, not, >, <, ==, !=}

Table 6: Terminal, function and root sets for evolving a rule based
system capable of solving the Ant Problem.

Recurrent Neural Network
Ti={wi1, ..., wip, wr1, …, wrr}
Te={ wf1, ...,w fq}
Ri=Re={transf}
Fi=Fe={+,-}

Table 7: Terminal, function and root sets for evolving a recurrent
neural network capable of solving the Ant Problem.

Using the sets in Table 5, Table 6 and Table 7, we per-
formed 200 runs for each set of experiments, using a popu-
lation of size 100. The evolution of the probability of suc-
cess, P(m,i), and of the smaller number of individuals that
need to be processed, I(m,i,z), so that a solution has 99%
probability of being found, is presented in Figure 2. We can
see that we need to process 81,600 individuals to find a dis-
tributed program solution, 86,700 individuals to find a rule
based system solution and 59,500 individuals to find neural
network solution. Comparing these values with the ones for
other approaches (see Table 4 and Table 8), GPN seem the
most efficient in evolving an agent capable of solving the
Ant Problem.

Figure 2: Evolution of the number of individuals that must be evaluated to find a solution with probability 0.99 for the “Santa Fe” trail,
using three GPN based approaches.

Method I(m,i,z)
GPN (Dist. Program) 81,600
GPN (Rule Based System) 86,700
GPN (Neural Network) 59,500

Table 8: Comparative results over the number of individuals that
must be evaluated to find a solution with probability 0.99 for the
“Santa Fe” trail, using GPN based approaches.

5.2 The Tartarus Problem
The Tartarus Problem was first outlined in [Teller94] and is
a good benchmark for evolving agents that need state mem-
ory. In our experiments we use a slightly different statement
of the problem, as proposed in [Trenaman98]. Tartarus is a
6x6 bounded, cellular, world. In this version of the problem
5 blocks are randomly placed in the inner 4x4 cells. The
agent’s mission is to push the blocks into the world’s
boundaries in a fixed number of moves. The agent can move
forward, turn right and turn left, and thus can move in eight
directions. It also has 8 sensors, which return the state of the
8 neighbouring cells. A cell can be occupied, empty or a
wall. The agent doesn’t know its position or orientation and
cannot push two blocks or a block into the wall. After 80
moves (move, right, left) the agent is awarded 2 point for
each block in a corner and 1 point for each block in the
edges. The fitness of the agent is the total score over 40 ran-
dom worlds.

[Teller94] originally demonstrated that conventional GP
agents perform poorly in this problem. [Teller94] incorpo-
rated indexed memory into its agents and showed that not
only the agents performed better using memory but also that
they performed badly if its memory was “damaged”. These
results proved that state memory is essential to agent per-
formance in the Tartarus problem. [Trenaman] replicated
these results and presented a new paradigm called Concur-
rent Genetic Programming (CGP), which implemented

memory by using several scheduling strategies for two-tree
agents which have their program trees executed concur-
rently. Table 9 summarises the results obtained by
[Trenaman98] in terms of the best individual obtained in
100 generations and the average best individual over 25 in-
dependent runs. Results obtained using GPN based ap-
proaches are presented in Table 13.

Method Best Average
GP 98 63.2
GP + Ind. Memory 212 176.5
GP + ADF + Ind. Mem 207 165.1
CGP (best strategy) 221 205.0

Table 9: Comparative results for the best and average best individ-
ual for 100 generation runs.

GPN was used to evolve distributed programs, rule based
systems and recurrent neural networks capable of perform-
ing well in the Tartarus Problem. Each GPN individual has 8
inputs (one for each sensor), 4 internal nodes and 3 external
nodes (attached to 3 outputs). The external nodes corre-
sponded, respectively, to the actions move, turn right and
turn left. The output with larger value determines which
action is to be executed. The terminal, function and root sets
used for the three sets of experiments are presented in Table
10, Table 11 and Table 12. They are similar to the ones in
Table 5, Table 6 and Table 7, used for the Ant Problem, ex-
cept that the functions +, -, *, and / were added to the func-
tion sets for the distributed programs and ruled based system
experiments.

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 50
Generation

P
(1

00
,i)

0

50000

100000

150000

200000

250000

300000

350000

400000

I(
10

0,
i,0

.9
9)

P(m,i) - Dist. Program P(m,i) - Rule System P(m,i) - Neural Network

I(m,i,z) - Dist. Program I(m,i,z) - Rule System I(m,i,z) - Neural Network

Figure 3: Evolution of the best individual and average fitness for three GPN based approaches to the Tartarus Problem

Distributed Program
Ti={i1, ..., ip, r1, …, rr}
Te={i1, ..., ip, f1, ..., fq, r1, …, rr}
Fi=Fe=Ri=Re={ and, or, not, >, <, ==, !=, +, -, /,
if-then-else}

Table 10: Terminal, function and root sets for evolving a distrib-
uted program for the Tartarus Problem.

Rule-Based System
Ti={i1, ..., ip, r1, …, rr}
Te={i1, ..., ip, f1, ..., fq, r1, …, rr}
Ri=Re={if-then-else}
Fi=Fe={ and, or, not, >, <, ==, !=, +, -, *, /}

Table 11: Terminal, function and root sets for evolving a rule
based system for the Tartarus Problem.

Recurrent Neural Network
Ti={wi1, ..., wip, wr1, …, wrr}
Te={ wf1, ...,w fq}
Ri=Re={transf}
Fi=Fe={+,-}

Table 12: Terminal, function and root sets for evolving a recurrent
neural network for the Tartarus Problem.

We performed 20 runs for each set of experiments, using
a population of size 800. The evolution over 100 genera-
tions of the best individual’s fitness and the population’s av-
erage fitness, averaged over the 20 runs, is presented in
Figure 3. Table 5 shows the fitness for the best individual
evolved over the 20 runs of 100 generations for each one of
the architectures, and the average fitness of the best indi-
viduals in each run. Comparing with results for other ap-
proaches, GPN, especially when evolving the rule based
system architecture, produces individuals with best fitness,
not only over all runs, but also when averaging the best indi-
viduals evolved in each run.

Method Best Average
GPN (Dist. Program) 264 218.9
GPN (Rule Based System) 252 226.7
GPN (Neural Network) 223 214.4

Table 13: Comparative results for the best and average best indi-
vidual for 100 generation runs, for GPN based approaches.

6 Conclusions and Future Work

We presented results that seem to confirm our intuition
that Genetically Programmed Networks can be a valid alter-
native for evolving agents with state memory. In the two
benchmark problems used to test GPN, this approach be-
haved more efficiently that other GP based evolutionary ap-
proaches. It needed to evaluate less individuals to find a so-
lution to the Ant problem, and found individuals fitter for
the Tartarus Problem with the same generations limit and
population size as the approaches used for comparison.
While testing with other, more diverse, problems must still
be done, these results seem very promising.

Another interesting point was the ability to evolve good
solutions for the proposed problems using three different
agent architectures: distributed programs, rule based systems
and recurrent neural networks. While all of them were
evolved from the same base connectionist architecture, the
GPN, it interesting to see that some architectures seem fitter
to produce solutions to a specific problem. E.g. the best re-
sults for the ant problem, with a meaningful advantage, were
obtained evolving GPN as neural networks, while evolving
rule based systems seem the most fit approach to the Tar-
tarus Problem. Since changing the architecture being
evolved is a very flexible and straightforward process, re-
quiring only some changes the terminal, function and root
sets of each group of nodes, GPN can be a useful tool in de-

0

50

100

150

200

250

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96
Generation

F
it

n
e

s
s

Best - Dist. Program

Average - Dist. Program

Best - Rule System

Average - Rule System

Best - Neural Network

Average - Neural Network

ciding where evolving a given architecture for a given
problem is the most efficient approach.

Our current and future work involves the further study of
the two aspects mentioned above. More experimental work
must be done using new problems and evolving more di-
verse architectures.

7 Acknowledgements

This work was partially funded by the Portuguese Ministry
of Science and Technology under the Program PRAXIS
XXI.

Bibliography

[Angeline93] P. Angeline, “Evolutionary Algorithms
and Emergent Intelligence”, PhD Thesis, Ohio State
University, 1993.

[Angeline97] P. Angeline, “An alternative to indexed
memory for evolving programs with explicit state
representation” in Genetic Programming 1997: Pro-
ceedings of the Second Annual Conference, pages
431-438, Morgan Kaufmann, 13-16 July 1997.

[Chellapilla97] K. Chellapilla, “Evolutionary program-
ming with tree mutations: Evolving computer pro-
grams without crossover”, Genetic Programming
1997: Proceedings of the Second Annual Confer-
ence, pages 431-438, Morgan Kaufmann, 13-16 July
1997.

[Collins91] R. Collins and D. Jefferson, “Antfarm: toward
simulated evolution”, Artificial Life II, Santa Fe In-
stitute Studies in the Sciences of the Complexity, vol-
ume X, Addison-Wesley, 1991.

[Keith90] M. Keith, “Genetic Programming in C++: Im-
plementation Issues”, Advances in Genetic Pro-
gramming, pp. 285-310, MIT Press, 1994.

[Koza92] J. Koza, “Genetic programming: On the pro-
gramming of computers by means of natural selec-
tion”, Cambridge, MA, MIT Press, 1992.

[Langdon98] W. Langdon and R. Poli, “Why Ants are
Hard”, Technical Report CSRP-98-04, The Univer-
sity of Birmingham, School of Computer Science,
1998.

[Silva99] A. Silva, A. Neves and E. Costa, “Evolving
Controllers for Autonomous Agents Using Geneti-
cally Programmed Networks”, accepted to be pub-
lished in EuroGP99: Proceedings of 2nd European
Workshop on Genetic Programming.

[Teller94] A. Teller, “The Evolution of Mental Models”,
Advances in Genetic Programming, Complex Adap-
tive Systems, pp. 199-220, MIT Press, 1994.

[Trenaman98] A. Trenaman, “Concurrent Genetic Pro-
gramming and the Use of Explicit State to Evolve
Agents in Partially-Known Environments”, Genetic
Programming 1998: Proceedings of the Third An-

nual Conference, pp. 391-398, Morgan Kaufmann,
22-25 July 1998.

	Introduction
	Genetically Programmed Networks
	GPN General Structure
	GPN Behaviour
	The Programs
	Establishing Connections
	Running the GPN

	Evolving Genetically Programmed Networks
	Operators
	The Initial Population
	Selection and Evolution

	Evolving Different Architectures
	Distributed programs
	Rule Based Systems
	Recurrent Neural Networks

	Experimental Results
	The Ant Problem
	Table 8: Comparative results over the number of individuals that must be evaluated to find a solution with probability 0.99 for the “Santa Fe” trail, using GPN based approaches.
	The Tartarus Problem

	Conclusions and Future Work
	Acknowledgements

