
 
 

CENTRE FOR INFORMATICS AND SYSTEMS 
Adaptive Computation Group 

 

 

 

 

 

 

 

 

 

 

 

Evolving Takagi-Sugeno Fuzzy Models 
 

TECHNICAL REPORT 

Version 1.0.2 

 

 

 

 

 

José Victor Ramos and António Dourado 

 

 

 

 

 

 

 

 

Coimbra, September 2003 

 



Evolving Takagi-Sugeno Fuzzy Models
 

Adaptive Computation Group ii
 

Abstract 
 

The approach proposed by Angelov for on-line learning of Takagi-Sugeno (TS) type 

models is described in this technical report. It is based on a novel learning algorithm that 

recursively updates TS model structure and parameters by combining supervised and 

unsupervised learning. The rule-base and parameters of the TS model continually evolve 

by adding new rules with more summarization power and by modifying existing rules 

and parameters. In this way, the rule-base structure is inherited and updated when new 

data become available. 

The adaptive nature of these evolving TS models in combination with the highly 

transparent and compact form of fuzzy rules makes them a promising candidate for on-

line modelling. The approach has significantly wider implications in a number of fields, 

including forecasting, fault detection, control, behavior modelling and knowledge 

extraction. 

 

Key words: Takagi-Sugeno models, rule-base adaptation, fuzzy clustering, subtractive 

clustering, on-line learning. 
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1.  Introduction 
 

In the last years significant attention has been given to data-driven techniques for 

generation of flexible models and among these techniques are fuzzy systems (Takagi-

Sugeno and Mamdani models) and neural networks, which are universal approximators. 

In the 80’s and early 90’s most of the models design rely on the subjective expert 

knowledge with well known drawbacks since the efforts have been mostly directed to 

tuning and static optimization of rules generated by experts. The fact that nowadays 

huge quantities and forms of data exists give rise to the fast development of the data 

mining and related knowledge extraction techniques. These techniques, however, are 

still mostly applied do classification and off-line modelling. 

At the present there are clear demands for effective approaches to design autonomous, 

self-developing and self-enriching systems, which at the same time should be flexible 

and robust. Their computational efficiency and compactness are prerequisites of a 

practical application. The problems of on-line applications are mostly related to the non-

linear nature of the rule-base/network structure and computational expenses of the 

training technique, which hampers development of recursive, adaptive schemes. Some 

practical applications of fuzzy systems and fuzzy neural networks are called self-learning 

or adaptive, but they are rather self-adjusting and self-tuning since they, normally, 

suppose structure of the model to be fixed. Algorithms for on-line learning with self-

constructing or evolving structure have been reported recently and independently for the 

fuzzy and neural network models. 

Takagi-Sugeno models have recently become a powerful practical engineering tool for 

modelling of complex systems. They form a natural transition between conventional and 

rule-based systems by expanding and generalizing the concept of gain scheduling. While 

gain scheduling paradigm is based on the assumption of local approximation of a 

nonlinear system by a collection of linear models, the TS fuzzy models use the idea of 

linearization in a fuzzily defined region of the state space. Due to the fuzzy regions, the 

nonlinear system is decomposed into a multi-model structure consisting of linear models 

that are not necessarily independent. The TS fuzzy model representation often provides 

efficient and computationally attractive solutions to a wide range of problems 

introducing a powerful multiple model structure that is capable to approximate nonlinear 

dynamics, multiple operating modes and significant parameter and structure variations. 

Evolving rule-based models use methods for learning TS fuzzy models from data are 

based on the idea of consecutive structure and parameter identification. Structure 

identification includes estimation of the focal points of the rules (antecedent parameters) 

by fuzzy clustering. With fixed antecedent parameters, the TS model transforms into a 

linear model. Parameters of the linear models associated with each of the rule 

antecedents are obtained by applying the recursive least-squares (RLS) method or the 

weighted recursive least-squares (wRLS) method. 
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For on-line learning of the TS fuzzy models it is necessary an on-line clustering method 

responsible for the model structure learning. Angelov proposed a new method inspired 

on the subtractive clustering algorithm that allows the recursive calculation of the 

information potential of the new data sample, which represents a spatial proximity 

measure used to define the focal points of the rules (antecedent parameters). Evolving 

rule-based models use the information potential of the new data sample as a trigger to 

update the rule-base, which ensures greater generality of the structural changes 

(Angelov and Filev, 2003). 

The evolution mechanism is basically the following: if the information potential of the 

new data sample is higher than the potential of the existing rules a new focal point 

(rule) is created. If the new focal point is too close to a previously existing rule then the 

old rule is replaced by the new one. A new rule is generated only if there is significant 

new information present in the data. The appearance of a new rule indicates a region of 

the data space that has not been covered by the existing rules. This could be a new 

operating mode of the plant or reaction to a new disturbance. 

The advantage of using the information potential instead of the distance to a certain rule 

centre only for forming the rule base is that the spatial information and history are not 

ignored, but are part of the decision whether to upgrade or modify the rule base. This 

interesting feature makes the approach potentially very useful as a tool for accumulation 

of knowledge (Angelov and Filev, 2003). 

 

2.  Identification of Takagi-Sugeno Fuzzy Models 
 

Fuzzy model identification has its roots in the pioneering papers of Sugeno and his 

coworkers and is associated with the so called Takagi-Sugeno fuzzy models, a special 

group of rule-based models with fuzzy antecedents and functional consequents that 

follow from the Takagi-Sugeno-Kang reasoning method: 

 

ininiiinnii bxaxaythenXisxandXisxIf +++=ℜ LK 1111           : ; Ri ,,2,1 K=  

 
where iℜ  denotes the ith fuzzy rule; R is the number of fuzzy rules; x is the input 

vector, [ ]Tnxxxx ,,, 21 K= ; ijX  denotes the antecedent fuzzy sets, nj ,,2,1 K= ; iy  is the 

output of the ith rule; ija  and ib  are parameters of the consequence. 

 
The degree of firing of each rule, iµ , is proportional to the level of contribution of the 

corresponding linear model to the overall output of the TS model. It is determined by the 

Gaussian law, which ensures the greatest possible generalization: 

 
*
ij xx

ij e −−
=

αµ ; Ri ,,2,1 K= ; nj ,,2,1 K=  
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where 2

4
r

=α  and r is a positive constant, which defines the spread of the antecedent 

and the zone of influence of the ith model (radius of the neighbourhood of a data point); 
*
ix  is the focal point of the ith rule antecedent. 

 

The firing level of the rules is defined as the Cartesian product or conjunction of 

respective fuzzy sets for this rule: 

 

IL
n

j
jijniniii xxxx

1
1211 )()()()(

=

=×××= µµµµτ  

 

The TS model output is calculated by weighted averaging of individual rules 

contributions: 

 

∑ ∑
= =

==
R

i

R

i
i

T
eiii xyy
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where 

 

∑
=

= R

j
j

i
i

1
τ

τ
λ  

 
is the normalized firing level of the ith rule; iy  represents the output of the ith linear model; 

[ ]Tiniiii aaaa         210 K=π , Ri ,,1K=  is the vector of the parameters of the ith linear 

model; [ ]TT
e xx 1=  is the expanded data vector. 

 

Generally, the problem of identification of a TS model is divided into two sub-tasks: 

 

• Learning the antecedent part of the model, which consists on the determination of 

the centres and spreads of the membership functions; 

• Learning the parameters of the linear subsystems of the consequents. 

 

2.1  Learning Rule Antecedents by Data Space Clustering 
 

First sub-task can be solved by clustering the input-output data space [ ]( )TT yxz ;= . The 

subtractive clustering method, fuzzy c-means and the Gustafson-Kessel clustering 

method are among well-established methods for learning the antecedent parameters off-

line in a batch-processing learning mode when all the input-output data is available. 
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The procedure called subtractive clustering is an improved version of the so-called 

mountain clustering approach. It uses the data points as candidate prototype cluster 

centres. The capability of a point to be a cluster centre is evaluated through its 
potential, a measure of the spatial proximity between a particular point iz  and all other 

data points: 

 

∑
=

−−=
TD

j

zz
i

jie
TD

P
1

21 α
; TDi ,...,1=  

 
where iP  denote the potential of the ith data point, TD is the number of training data and 

2

4

ar
=α . ar  is a positive constant, called radii. 

The value of the potential is higher for a data point that is surrounded by a large number 

of close data points. Therefore, it is reasonable to establish such a point to be the 

centre of a cluster. The potential of all other data points is reduced by an amount 

proportional to the potential of the chosen data point and inversely proportional to the 

distance to this centre. The next centre is found also as the data point with the highest 

potential. The procedure is repeated until the potential of all data points is reduced 

below a certain threshold. 

 

The procedure of the subtractive clustering includes the following steps (Chiu, 1994): 

 

1.  Initially, the data point with the highest potential is chosen to be the first cluster centre: 

 

i

TD

i
PP

1

*
1 max

=
=  

 
where *

1P  denotes the potential of the first centre. 

 

2.  The potential of all other points are then reduced by an amount proportional to the 

potential of the chosen point and inversely proportional to the distance to this centre: 

 
2

* ki zz
kii ePPP −−−= β ; Ni ,...,1=  

 

where *
kP  denotes the potential of the kth centre; TDk ,...,1= . 2

4

br
=β , where br  is a 

positive constant, determining the radius of the neighbourhood that will have 

measurable reductions in the potential because of the closeness to an existing centre. 
Recommended value of br  is ab rr 5.1= . 
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3.  Two boundary conditions are defined: lower ( )refP*ε  and upper ( )refP*ε  thresholds, 

determined as a function of the maximal potential called reference potential ( )refP .  The 

values for ε and ε  are respectively 0.15 and 0.5. A data point is chosen to be a new 

cluster centre, and respectively centre of a rule, if its potential is higher than the upper 

threshold. If its potential is minor than the lower threshold it will be definitely rejected. 

 

4.  If the potential of a point lies between the two boundaries, the shortest of the 
distances ( )minδ  between the new candidate to be a cluster centre ( )*

kz  and all 

previously found cluster centres is decisive. The following inequality expresses the 

trade-off between the potential value and the closeness to the previous centres: 

 

1*
1

*
min ≥+

P
P

r
kδ

 

 

This approach has been used for initial estimation of the antecedent parameters in fuzzy 

identification. It relies on the idea that each cluster centre is representative of a 

characteristic behaviour of the system. The resulting cluster centres are used as 

parameters of the antecedent parts defining the focal points of the rules of the model. 

 

 

2.2  Learning Rule Consequents 
 

For fixed antecedent parameters the second subtask, estimation of the parameters of 

the consequent linear models, can be transformed into a least squared problem. This is 

accomplished by eliminating the summation operation in the TS model output and 

replacing it with an equivalent vector expression of y: 

 
θψ Ty =  

 

where [ ]TT
R

TT πππθ ,,, 21 K=  is a vector composed of the linear model parameters; 

[ ]TT
eR

T
e

T
e xxx λλλψ ,,, 21 K=  is a vector of the inputs that are weighted by the normalized 

firing levels of the rules. 

 
For a given set of input-output data ( )k

T
k yx , , TDk ,,1K= , the vector of linear 

parameters θ  minimizing the objective function is: 

 

( )
2

1
∑
=

−=
TD

k

T
kkG yJ θψ  
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where [ ]TT
ekkR

T
ekk

T
ekkk xxxxxx )(,,)(,)( 21 λλλψ K=  and [ ]TT

kek xx ,1=  can be estimated by 

the Recursive Least Squares (RLS) algorithm: 

 
( )11

ˆˆˆ
−− −+= k

T
kkkkkk yC θψψθθ  

 

kk
T
k

k
T
kkk

kk C
CC

CC
ψψ

ψψ

1

11
1 1 −

−−
− +
−= ; TDk ,,1K=  

 
with initial conditions and IC Ω=0 , where Ω  is a large positive number; C is a 

)1()1( +×+ nRnR  co-variance matrix; kθ̂  is an estimation of the parameters based on k 

data samples. 

 

 

3  On-Line Learning of Takagi-Sugeno Fuzzy Models 
 

In on-line mode the training data is collected continuously, rather than being a fixed set. 

Some of the new data reinforce and confirm the information contained in the previous 

data. Other data, however, bring new information, which could indicate a change in the 

operating conditions, development of a fault or simply a more significant change in the 

dynamic of the process. They may posses enough new information to form a new rule 

or to modify an existing one (Angelov and Filev, 2003). 

Real-time on-line applications are hampered by the need to recursive calculation of the 

model parameters. On-line learning of evolving TS fuzzy models includes on-line 

clustering under assumption of a gradual change of the rule-base and modified 

(weighted) recursive least squares. 

 

3.1  On-Line Clustering Algorithm 
 

The on-line clustering procedure starts with the first data point established as the focal 

point of the first cluster. Its coordinates are used to form the antecedent part of the 

fuzzy rule using Gaussian membership functions. Its potential is assumed equal to 1. 

Starting from the next data point onwards the potential of the new data points is 

calculated recursively using a Cauchy type function of first order: 

 

( )

( ) ( )∑∑
−

=

+

=−
+

= 1

1

1

1

2

1
11

1
k

i

n

j

j
ik

kk

d
k

zP ; K,3,2=k  
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where ( )kk zP  denotes the potential of the data point ( )kz  calculated at time k; 
j
k

j
i

j
ik zzd −= , denotes the projection of the distance between two data points, j

iz  and 
j
kz , on the axis jz  ( jx  for nj ,,2,1 K=  and on the axis y for 1+= nj ). 

 

This function is monotonic and inversely proportional to the distance and enables 

recursive calculation, which is important for on-line implementation of the learning 

algorithm (Angelov and Filev, 2003). 

Opposing to subtractive clustering there is not a specific amount subtracted from the 

highest potential, but update of all the potentials after a new data point is available on-

line. The potential of the new data sample is recursively calculated as follows (Angelov 

and Filev, 2003): 

 

( ) ( )( ) kkk
kk vk

kzP
211

1
−++−

−
=

σϑ
 

 

where 

 

( )∑
+

=

=
1

1

2n

j

j
kk zϑ ; ( )∑∑

−

=

+

=

=
1

1

1

1

2k

l

n

j

j
lk zσ ; ∑

+

=

=
1

1

n

j

j
k

j
kk zv β ; ∑

−

=

=
1

1

k

l

j
l

j
k zβ  

 
Parameters kϑ  and kv  are calculated from the current data point kz , while j

kβ  and kσ  

are recursively updated as follows (Angelov and Filev, 2003): 

 

( )∑
+

=
−− +=

1

1

2
11

n

j

j
kkk zσσ ; j

k
j

k
j

k z 11 −− += ββ  

 

After the new data are available in on-line mode, they influence the potentials of the 
centres of the clusters ( )Rlzl ,,1,* K= , which are respective to the focal points of the 

existing rules ( )Rlxl ,,1,* K= . The reason is that by definition the potential depends on 

the distance to all data points, including the new ones. 

The recursive formula for update the potential of the focal points of the existing clusters 

is derived from the recursive formula used to calculate the potential (Angelov and Filev, 

2003): 

 

( ) ( ) ( )
( ) ( ) ( )∑

+

=
−−−

−

++−

−
= 1

1

2
)1(

*
1

*
1

*
1*

2

1
n

j

j
kklklk

lk
lk

dzPzPk

zPk
zP  

 
where ( )*

lk zP  is the potential of the cluster at time k, which is a prototype of the lth rule. 



Evolving Takagi-Sugeno Fuzzy Models
 

Adaptive Computation Group 8
 

Potential of the new data point is compared to the updated potential of the centres. If 

the potential of the new data point is higher than the potential of the existing centres 

then the new data point is accepted as a new centre and a new rule is formed with a 

focal point based on the projection of this centre on the axis x. 

 
If ( ) ( )*

ikkk zPzP > ; Ri ,...,1=  then ( )kR xxRR =+= *;1  

 

If in addition to the previous condition the new data point is close to an old centre then 

the new data point replaces this rule (Angelov and Filev, 2003). 

 

If ( ) ( )*
lkkk zPzP >  and 

( )
( ) 1

maxminarg
1

**

1
<+

−−
==

kk

R

l
lklk

R

lk

zP

zP

radii

zzz
 then ( )kj zz =* ; Rl ,...,1=  

 

If none of the conditions is true it means the new data point has no relevance in terms 

of creation or modification of rules. 

It should be noted that using the potential instead of the distance to a certain rule 

centre only for forming the rule-base results in rules that are more informative and a 

more compact rule-base. The reason is that the spatial information and the history are 

not ignored, but are part of the decision whether to upgrade or modify the rule-base. 

The on-line clustering approach proposed by Angelov ensures an evolving rule-base by 

dynamically upgrading and modifying it while inheriting the bulk of the rules (R-1 rules 

are preserved even when a modification or an upgrade take place). 

 

 

3.2  On-Line Recursive Estimation of Consequence Parameters 
 

The problem of increasing size of the training data is handled by RLS for the globally 

optimal case and by wRLS for the locally optimal case. They, however, are based on the 

assumption of a constant/unchanged rule base, i.e. fixed antecedent parameters. Under 

this assumption, the optimization problems are linear in parameters. 

In evolving TS fuzzy models, however, the rule-base is assumed to be gradually 

evolving. Therefore, the number of rules as well as the parameters of the antecedent 

part will vary, though the changes are normally significantly rarer than the time step. 
Because of this evolution, the normalized firing strengths of the rules ( )iλ  will change. 

Since this affects all the data (including the data collected before time of the change) 

the straightforward application of the RLS or wRLS is not correct. A proper resetting of 

the covariance matrices and parameters initialization of the RLS is needed at each time a 

rule is added to and/or removed from the rule base (Angelov and Filev, 2003). 



Evolving Takagi-Sugeno Fuzzy Models
 

Adaptive Computation Group 9
 

Angelov proposed to estimate the covariance matrices and parameters of the new 
( )thR 1+  rule as a weighted average of the respective covariance and parameters of the 

remaining R rules (Angelov and Filev, 2003). This is possible since the approach of rule-

base innovation considered concerns one rule only; the other R rules of the rule base 

remain unchanged. 

 
3.2.1  Global Parameter Estimation 
 

The evolving TS model is used for on-line prediction of the output based on the past 

inputs: 

 

k
T
kky θψ ˆˆ 1 =+ ; ,...3,2=k  

 

The following RLS procedure is applied: 

 
( )11

ˆˆˆ
−− −+= k

T
kkkkkk yC θψψθθ , ,...3,2=k  

 

kk
T
k

k
T
kkk

kk C
CC

CC
ψψ

ψψ

1

11
1 1 −

−−
− +
−=  

 

with initial conditions 

 

[ ] 0ˆ,,ˆ,ˆˆ
211 ==

TT
R

TT πππθ K ; IC Ω=1  

 

When a new rule is added to the rule-base, the RLS is reseted in the following way: 

 

i)  Parameters of the new rule are determined by weighted average of the parameters of 
the other rules. The weights are the normalized firing levels of the existing rules iλ . The 

idea is to use the existing centers as a rule-base to approximate the initialization of the 

parameters of the new rule by a weighted sum. Parameters of the other rules are 

inherited from the previous step: 

 

[ ]TT
kR

T
kR

T
k

T
kk )(1)1()1(2)1(1 ˆ,ˆ,,ˆ,ˆˆ

+−−−= ππππθ K  

 

where 

 

∑
=

−+ =
R

i
kiikR

1
)1()(1 ˆˆ πλπ  
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ii)  Co-variance matrices are reseted as: 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

Ω

Ω
= +++

+

K

LLLLLL

K
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KKKKKK

KK
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0000
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)1()1(1)1(

)1(111

nRnRnR

nR

kC
ρζρζ

ρζρζ

 

 
where ijζ  is an element of the co-variance matrix [ ] [ ]( ))1(,1;)1(,1 +×=+×= nRjnRi ; 

2

2 1
R

R +
=ρ  is a coefficient. 

 
In this way, the part of the co-variance matrix associated with the new ( )thR 1+  rule 

(last n+1 columns and last n+1 rows) is initialized as usual (with a large number, Ω ) in 

its main diagonal and co-variance matrices respective for the rest of the rules (from 1 to 
R) are updated by multiplication of ρ . The rationale for this is that the correction of the 

co-variance matrices needs, to approximate the role the new, ( )thR 1+  rule would have if 

it was in the rule-base from the beginning, can be presented by ρ  (Angelov and Filev, 

2003). 

When a rule is replaced by another one, which has antecedent parameters close to the 

rule being replaced, then parameters and co-variance matrices are inherited from the 

previous time step (Angelov and Filev, 2003). 

 

 
3.2.2  Local Parameter Estimation 
 

The local parameter estimation is based on the wRLS: 

 
( )11 ˆ)(ˆˆ −− −+= ik

T
ekkkiekikikik xyxxc πλππ , ,...3,2=k  

 

ekik
T
ekki

ik
T
ekekikki

ikik xcxx
cxxcx

cc
1

11
1 )(1

)(

−

−−
− +
−=

λ
λ

; Ri ,...,1=  

 
with initial conditions 0ˆ1 =π ; Ici Ω=1  

 

In this case, the co-variance matrices are separated for each rule and have smaller 
dimensions ( )RiRc nn

ik ,...,1;)1()1( =∈ +×+ . Parameters of the newly added rule are 

determined as weighted average of the parameters of the rest R rules by: 
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∑
=

−+ =
R

i
kiikR

1
)1()(1 ˆˆ πλπ  

 
Parameters of the other R rules are inherited ( )Rikiik ,...,1;)1( == −ππ . 

 

The co-variance matrix of the newly added rule is initialized by: 

 
IC kR Ω=+ )(1  

 
The co-variance matrices of the rest R rules are inherited ( )Ricc kiik ,...,1;)1( == − . 

 

 
3.4  The Procedure for Rule-Base Evolution in TS Fuzzy Models 
 

The recursive procedure for on-line learning of evolving TS models includes the 

following stages (Angelov and Filev, 2003): 

 

Stage 1: Initialization of the rule-base structure (antecedent part of the rules); 

Stage 2: At the next time step reading the next data sample; 

Stage 3: Recursive calculation of the potential of each new data sample to influence the 

structure of the rule-base; 

Stage 4: Recursive up-date of the potentials of old centres taking into account the 

influence of the new data sample; 

Stage 5: Possible modification or up-grade of the rule-base structure based on the 

potential of the new data sample in comparison to the potential of the existing rule 

centres (focal points); 

Stage 6: Recursive calculation of the consequent parameters; 

Stage 7: Prediction of the model output for the next time step. 

 

The execution of the algorithm continues for the next time step from stage 2, Figure 1. 
It should be noted that the first output to be predicted is 3ŷ . In the following is briefly 

reminded the essential of each stage. 

 

Stage 1: Initialization of the rule-base structure 

 

The rule base can contain only one single rule, based, for example, on the first data 

sample. 

 
1=k ; 1=R ; kxx =*

1 ; ( ) 1*
11 =zP  
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Begin

Initialization

Read next data sample

Recursive calculation of the potential of
each new data sample

Recursive update of the potential of
the centres

Recursively update of consequence parameters by RLS or wRLS

Predict the next output

Add a new rule

Replace/modify rule

Export model

Yes

Yes

 

Figure 1: Recursive procedure for on-line learning of evolving TS fuzzy models (Angelov 

and Filev, 2003). 
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011 == πθ ; IC Ω=1  

 
where *

1z  is the first cluster centre; *
1x  is a focal point of the first rule being a projection 

of *
1z  on the axis x. 

The rule-base can be initialised by existent expert knowledge or based on off-line 

identification approaches. In this case: 

 
iniRR = ; ( ) 1*

1 =izP ; iniRi ,...,1=  

 

where iniR  denotes the number of rules defined initially off-line. 

 

Stage 2: Reading the next data sample 

 
At the next time step ( )1+= kk  the new data sample ( )kz  is collected. 

 

Stage 3: Recursive calculation of the potential of each new data sample 

 

The potential of each new data sample is recursively calculated. The use of already 
calculated values for kσ  and j

kβ  leads to significant time and calculation savings. At 

the same time, they have accumulated information regarding the spatial proximity to all 

previous data. 

 

Stage 4: Recursive up-date of the potential of old centres 

 

The potentials of the focal points (centres) of the existing clusters/rules are recursively 

updated. 

 

Stage 5: Possible modification or up-grade of the rule-base structure 

 

The potential of the new data sample is compared to the updated potential of existing 

centres and a decision whether to modify or upgrade the rule-base is taken. 

 

Stage 6: Recursive calculation of the consequent parameters 

 

Parameters of the consequence are recursively updated by RLS, for globally optimal 

parameters, or by wRLS, for locally optimal parameters. In the first case the cost 

function is minimized, which guarantees globally optimal values of the parameters, while 

in the second case the locally weighted cost function is minimized and locally 

meaningful parameters are obtained. 
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Stage 7: Prediction of the output 

 
The output for the next time step, )1( +k , is calculated by: 

 

k
T
kky θψ ˆˆ 1 =+ ; ,...3,2=k  

 

The algorithm continues from stage 2 by reading the next data sample at the next time 

step. 

 

Using the approach proposed by Angelov a transparent, compact and accurate model 

can be found by rule base evolution based on experimental data with the simultaneous 

recursive estimation of the fuzzy set parameters. 

It is interesting to note that the rate of upgrade with new rules does not lead to an 

excessively large rule base. The reason for this is that the condition for the new data 

point to have higher potential than the focal points of all existing rules is a hard 

requirement. Additionally, the possible proximity of a candidate centre to the already 

existing focal points leads to just a replacement of the existing point, i.e. modification of 

its coordinates without enlarging the rule-base size (Angelov and Filev, 2003). 

 

 

4.  Experimental Results 
 

The approach proposed by Angelov is tested on a benchmark problem: the Mackey-

Glass chaotic time series prediction. The data set has been used as a benchmark 

example in the areas of fuzzy systems, neural networks and hybrid systems. The 

chaotic time series is generated from the Mackey-Glass differential delay equation 

defined by: 

 
( )
( ) ( )tx
tx

txtx 1.0
1

2.0)( 10 −
−+
−

=
τ
τ

&  

 

The aim is using the past values of x to predict some future value of x. We assume 
2.1)0( =x , 17=τ  and the value of the signal 85 steps ahead is predicted, ( )85+tx , 

based on the values of the signal at the current moment, 6, 12 and 18 steps back, 
( ) ( ) ( ) ( )[ ]txtxtxtx  ,6 ,12 ,18 −−− . 

 
The following experiment was conducted: 3000 data points, for 3200:201=t , are 

extracted from the time series and used as training data, Figure 2; 500 data points, for 
5500:5001=t , are used as testing (validation) data, Figure 3. 
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Figure 2: Training data. 

 

 
Figure 3: Testing (validation) data. 
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All the data is putted in the same file, i.e. training data plus testing data. The data set 

has 3500 data samples and the learning mechanism is always active, even for the 

testing data. 

To evaluate the performance of the models we use the RMSE and the NDEI (Non-

Dimensional Error Index), defined as the ratio of the root mean square error over the 

standard deviation of the target data. 

 

( ))(tystd
RMSENDEI =  

 

The values of the performance measures will be calculated separately for the training 

and testing data. 

 

 
4.1  Parameters Influence 
 

In this algorithm it is necessary to specify the following parameters: 

 
• Radii ( )ar  

• Omega ( )Ω  

• Ro ( )ρ  

 

The first parameter, radii, has a strong influence in the structure of the model since it 

directly affects the number of rules and consequently the performance and complexity 

of the models. The experiments confirm that in general as the constant radii increases 

the number of rules created decreases. Too large values of radii lead to averaging and 

too small values lead to over-fitting. Values between 0.3 and 0.5 can be recommended. 

In the studies we carry out smaller and larger values of radii were considered in order to 

better understand its influence in the rule creation/modification process. 

Parameter Omega has influence on the estimation of the consequence parameters. A 

small value for Ω  means that we have some confidence in the initialization parameters 

of the new rule consequents. A bigger value expresses less confidence in the 

initialization and inherently it is given a better adaptation capability to the method. In all 

the scenarios studied the value for parameter Ω  is 750. 

Parameter Ro also influences the estimation of the consequence parameters. When a 

new rule is added the existent elements of the co-variance matrix are updated by 
multiplication of ρ  in order to allow the method to make the necessary adjustments. 

The goal of this action is quite the same when we use recursive estimation with 

forgetting factor, except that in this case the elements of the co-variance matrix are 
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updated only when a new rule id added. In all the scenarios studied the coefficient ρ  is 

given by 2

2 1
R

R +
=ρ , where R is the number of rules (Angelov and Filev, 2003). 

 
4.2  Conditions for rule innovation/modification 
 

The conditions for creation of rules and modification or up-date of rules have a strong 

influence in the algorithm behaviour and performance. There are several conditions that 

can be used to create or modify rules and it is not easy to adjust the definitions for a 

specific problem. The generic conditions proposed by Angelov are the following: 

 

 
 

We will consider several scenarios where different conditions will be tested. Scenarios 

A, B and C, as we will see, were proposed by Angelov while scenarios D, E, F and G are 

new. Scenarios A and B are presented only to better understand the subsequent 

scenarios since these are only valid for previous versions of the approach, the off-line 

version and the version with a moving window (Angelov, 2002). 

 

In this study precision and generalization capabilities of the models obtained are 

important but it is also important the complexity and transparency of the models. The 

first aspect is measured by the RMSE and NDEI for training and testing data. The 

second one is measured by the number of rules and the location of the membership 

functions. 

 

Scenario A (Angelov and Filev, 2003). 

 
Condition 1: the potential of the new data point is higher than certain threshold ε , i.e. 

( ) ε>kk zP ; 

Condition 2: the new data point is close to an old centre, given by 
( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

; 

Condition 3: the potential of the new data point is higher than certain threshold ε , i.e. 

( ) ε>kk zP . 

 

If < Condition 1 > and < Condition 2 > Then modify rule 

Else If < Condition 3 > Then create new rule 
 

Condition 1: the potential of the new data point is higher than some value 

Condition 2: the new data point is close to an old centre 

Condition 3: most of the times the same as Condition 1 
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In a more formal way we have: 

 

 
 

The values of the thresholds are determined as: 

 
R

i
iP

1

*max15.0
=

∗=ε ; 
R

i
iP

1

*max5.0
=

∗=ε  

 
The upper threshold ε  ensures that only data samples with potential above half of the 

best are accepted. Its value influences the number of rules present in the final model. 

The value of 50% of the maximal potential showed a good balance between the model 

complexity and precision on a number of examples. 
The lower threshold ε  defines a grey zone where the data points are checked on the 

proximity to the existing centres. It influences the number of replacements of centres, which 

will take place. Alternatively, both thresholds could be equal to the mean potential of all rules: 

 

∑
=

==
R

i
iP

R 1

*1εε  

 

It must be stated again that this scenario can only be used off-line. 

 
Scenario B 
 

Condition 1: the potential of the new data point is higher than the mean potential of the 
existing centres, i.e. ( ) ( )*

ikkk zmeanPzP > ; 

Condition 2: the new data point is close to an old centre, given by 
( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

; 

Condition 3: same as Condition 1. 

 

In a more formal way we have: 

 

 

If ( ) ( )*
ikkk zmeanPzP >  and 

( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

 Then kj zz =*  

Else If ( ) ( )*
ikkk zmeanPzP >  Then kR zzRR =+= *;1  

If ( ) ε>kk zP  and 
( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

 Then kj zz =*  

Else If ( ) ε>kk zP  Then kR zzRR =+= *;1  
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Condition 1 is very flexible which means the number of rules will increase rapidly. This 

could make sense for some problems but most of the times we want a rule base with 

the minimum number of rules possible. 

 

 
Scenario C 
 

Condition 1: the potential of the new data point is higher than the potential of the 
existing centres, i.e. ( ) ( )*

ikkk zPzP > ; 

Condition 2: the new data point is close to an old centre, given by 
( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

; 

Condition 3: same as Condition 1. 

 

In a more formal way we have: 

 

 
 

We conduct a study for different values of radii and Table 1 summarizes some of the 

information obtained. 

 
Radii New rules Modified 

rules 
RMSE 

Training 
RMSE 

Validation 
NDEI 

Training 
NDEI 

Validation 

0.1 19 0 0.08755 0.08894 0.38667 0.39262 

0.2 19 0 0.08688 0.08779 0.38372 0.38754 

0.3 19 0 0.08622 0.08676 0.38081 0.38299 

0.4 19 0 0.08547 0.08670 0.37749 0.38272 

0.5 19 0 0.08508 0.08760 0.37580 0.38668 

0.6 19 0 0.08512 0.08877 0.37593 0.39187 

0.7 19 0 0.08530 0.08979 0.37675 0.39635 

Table 1: Results from scenario C. 

 

The behaviour of the algorithm is not the expected, since the number of rules is always 

the same for different values of radii. The same happens for the number of modified 

rules, which is zero in all the situations. The reason for this is because Condition 2 is 

practically impossible and therefore no data point that verifies Condition 1 verifies also 

Condition 2. 

If ( ) ( )*
ikkk zPzP >  and 

( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

 Then kj zz =*  

Else If ( ) ( )*
ikkk zPzP >  Then kR zzRR =+= *;1  
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Figure 4: Evolution of the potential for the first 500 samples. 

 

 
Figure 5: Rule base evolution. 



Evolving Takagi-Sugeno Fuzzy Models
 

Adaptive Computation Group 21
 

 
Figure 6: Model output for the testing data. 

 

In Figure 4, 5 and 6 is presented more detailed information for a particular value of the 

parameter radii, radii=0.4. Figure 4 presents the evolution of the potential, recursively 

calculated, for the first 500 samples and Figure 5 the samples that give origin to new 

rules. 

Figure 6 shows the model output for the testing data and the real output of the time 

series. The model output follows most of the time the real output but for the regions of 

extrema the behaviour of the model is not so good. 

 

In the following are described the new scenarios proposed in this study. 

 

 

Scenario D 

 

Condition 1: the potential of the new data point is higher than the potential of the 
existing centres, i.e. ( ) ( )*

ikkk zPzP > ; 

Condition 2: the new data point is close to an old centre, given by 5.0min <
radii
d

; 

Condition 3: same as Condition 1. 
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In a more formal way we have: 

 

 
 

In the following it is explained the deduction of Condition 2, 5.0min <
radii
d

. 

 

Let’s consider the condition to create a new centre in the subtractive clustering 

algorithm when the potential of the data point lies between the two boundaries defined 

by the lower and upper thresholds, i.e.: 

 
*

1
**

1 PPP k εε << : 

 
where *

1P  is the potential of data point *
1x , the one with the biggest potential, and *

kP  

is the potential of point *
kx  which can be a accepted as a centre if the condition below 

is true. 

 

If 1*
1

*
min ≥+

P
P

r
d k

a

 then accept point as a cluster centre. 

 

We know that 5.015.0 *
1

*

<<
P
Pk , since 15.0=ε  and 5.0=ε . 

 

For data point *
kx  being possibly accepted as a centre the term 

ar
dmin  has to be greater 

than 0.5, i.e.: 

 

5.0min >
ar

d
, or ard *5.0min >  

 

The meaning of this condition is that the points that are under the influence of an 

existing centre can be selected as new centres. More precisely, the points for which the 

potential lies between the two boundaries and the distance to the existing cluster 

centres is superior to 0.5 the radius are possibly accepted as new centres. If 

85.0min ≥
ar

d
 then we can say for sure the point will be accepted as a new centre. 

If ( ) ( )*
ikkk zPzP >  and 5.0min <

radii
d

 Then kj zz =*  

Else If ( ) ( )*
ikkk zPzP >  Then kR zzRR =+= *;1  
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In the on-line clustering algorithm the condition proposed by Angelov for the 

modification of a rule is: 

 
( )
( ) 1

*
min <+

k

i

zP
zP

radii
d

, with ( ) ( )*
ik zPzP >  

 
This condition is false for almost all data points, if not for all, for which ( ) ( )*

ik zPzP >  

because the second term of the condition is very close to 1. This brings the need for the 

definition of a new condition to determine if a data point is close to an existing centre. 

 

Following the same principle used in the subtractive clustering algorithm we eliminate 

the second term of the condition and obtain: 

 

1min <
radii
d

 

 

However, this condition allows the modification of the clusters centres for any data 

point that is under the influence of a cluster. In practice all points that verify the 
condition ( ) ( )*

ik zPzP >  will also verify the previous condition and consequently no new 

cluster centres are created. 

 

To avoid this we can use a condition similar to the one used in subtractive clustering, 
i.e. the ratio between mind  and radii in this case should be lesser than 0.5, i.e.: 

 

5.0min <
radii
d

 

 
or radiid *5.0min <  

 

This condition allows a good compromise for the points that have a potential higher 

than the potential of the existing centres to originate new centres or modify the existing 

ones. 

 

We conduct a study for different values of radii and Table 2 summarizes some of the 

information obtained. 

 

In this scenario the algorithm presents a good behaviour since as radii increases the 

number of created rules decreases and the number of modified rules increases. 
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Radii New rules Modified 
rules 

RMSE 
Training 

RMSE 
Validation 

NDEI 
Training 

NDEI 
Validation 

0.1 15 4 0.09011 0.08964 0.39798 0.39569 

0.2 9 12 0.09610 0.09301 0.42444 0.41059 

0.3 6 20 0.09847 0.09483 0.43492 0.41862 

0.4 6 27 0.09622 0.09392 0.42497 0.41460 

0.5 4 22 0.10562 0.10325 0.46648 0.45577 

0.6 4 33 0.09970 0.10255 0.44036 0.45268 

0.7 3 49 0.10586 0.10405 0.46752 0.45930 

Table 2: Results from scenario D. 

 

For the particular case of radii=0.4 we present the evolution of the potential, the rule 

base evolution and the model output for the testing data set. 

 

 

Figure 7: Evolution of the potential for the first 500 samples. 

 

Figure 7 presents the evolution of the potential for each sample and the maximum 

potential for the existing centres. All these values are recursively calculated. 
The analysis of the graphic shows that the condition ( ) ( )*

ikkk zPzP >  is very strong since 

the number of data points that verify this condition is quite small. 
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Figure 8: Rule base evolution. 

 

Figure 8 shows for the output the instants when rules are created or modified, i.e. the 

rule base evolution. The samples that originate new rules were the following: 1, 7, 87, 

90, 183 and 1494. Samples 88, 89, 92, 93, 184, 185, 186, 286, 287, 485, 486, 

487, 686, 687, 688, 885, 886, 987, 1088, 1089, 1190, 1291, 1292, 1495, 2086, 

2891 and 3495 correspond to situations where a rule is modified. With the conditions 

used in this scenario the rules are created in the beginning of the learning process, with 

the exception of rule 6 and after that only 4 rules are modified. 

 

In Figure 9 is presented the model output for the testing data set. The model output 

shows that the performance is not quite good, particularly for the regions of extrema, 

which means the model has good prediction capabilities for some regions but for others 

the behaviour is poor. 

 

This fact can also be confirmed by the location of the fuzzy sets of the input variables. 

Most of the fuzzy sets are concentrated only on some parts of the universe of discourse 

while some parts are not covered. In order to improve the model performance a better 

distribution of the fuzzy sets must be guaranteed, particularly for the regions that are 

not covered. 
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Figure 9: Model output for the testing data. 

 

Scenario E 

 

We decide to make some improvements and for that we pick up the thresholds idea of 

the subtractive clustering algorithm, also already used by Angelov, scenario B. 

 

Condition 1: the potential of the new data point is higher than the potential of the 
existing centres, i.e. ( ) ( )*

ikkk zPzP > , or between two thresholds ε  and ε  

Condition 2: the new data point is close to an old centre, given by 5.0min <
radii
d

 

Condition 3: same as Condition 1 

 

In a more formal way we have: 

 

 
 
The values for the lower and upper threshold are f

kPRe50.0 ∗=ε  and f
kPRe75.0 ∗=ε . 

If ( ) ( ) ( ){ }εε <<> kkikkk zPorzPzP *  and 5.0min <
radii
d

 Then kj zz =*  

Else If ( ) ( ) ( ){ }εε <<> kkikkk zPorzPzP *  Then kR zzRR =+= *;1  
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Table 3 summarizes some of the information obtained for different values of radii. 

 
Radii New rules Modified 

rules 
RMSE 

Training 
RMSE 

Validation 
NDEI 

Training 
NDEI 

Validation 

0.1 80 266 0.07316 0.06762 0.32311 0.29851 

0.2 28 320 0.07876 0.07673 0.34787 0.33873 

0.3 19 313 0.08150 0.07948 0.35997 0.35086 

0.4 15 305 0.08272 0.08024 0.36536 0.35422 

0.5 9 322 0.08813 0.08684 0.38927 0.38336 

0.6 9 294 0.09097 0.09090 0.40178 0.40126 

0.7 8 286 0.09551 0.09330 0.42183 0.41186 

Table 3: Results from scenario E. 

 

For the particular case of radii=0.4 we present the evolution of the potential, the rule 

base evolution and the model output for the testing data set. 

 

 

Figure 10: Evolution of the potential for the first 500 samples. 

 

From the previous figure we conclude that the lower threshold has no influence in the 

process of creation and modification of rules. 
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Figure 11: Rule base evolution. 

 

 
Figure 12: Model output for the testing data. 
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At a first glance it seems that this scenario allows better results than the previous one, 

which is true, but that is achieved with an increase in the number of rules, so it is 

natural that better values for RMSE and NDEI has been obtained. 

This scenario also brings up something interesting. If we take a closer look at Figure 10 

we can see that data points with minimum potential (local minima) match some of the 

local minima of the series output. This interesting fact can be useful in order to improve 

the models behaviour in these regions. 

 

Scenario F 

 

As we saw in scenario E we can use not only the maxima of the potential but also the 

minima in the process of creation and modification of rules. 

 

Condition 1: the potential of the new data point is higher than the potential of the 
existing centres, i.e. ( ) ( )*

ikkk zPzP >  or lower than the potential of the existing centres, 

i.e. ( ) ( )*inf
ikkk zPzP <  

Condition 2: the new data point is close to an old centre, given by 5.0min <
radii
d

 

Condition 3: same as Condition 1 

 

In a more formal way we have: 

 

 
 

Table 4 summarizes some of the information obtained for different values of radii. 

 
Radii New rules Modified 

rules 
RMSE 

Training 
RMSE 

Validation 
NDEI 

Training 
NDEI 

Validation 

0.1 61 7 0.05745 0.05762 0.25373 0.25437 

0.2 32 37 0.06219 0.06121 0.27467 0.27021 

0.3 23 51 0.06779 0.06657 0.29942 0.29388 

0.4 17 52 0.07263 0.07210 0.32079 0.31827 

0.5 13 67 0.08291 0.08173 0.36621 0.36081 

0.6 9 87 0.08979 0.09084 0.39657 0.40099 

0.7 8 95 0.08657 0.08467 0.38237 0.37376 

Table 4: Results from scenario F. 

If ( ) ( ) ( ) ( ){ }*inf*
ikkkikkk zPzPorzPzP <>  and 5.0min <

radii
d

 Then kj zz =*  

Else If ( ) ( ) ( ) ( ){ }*inf*
ikkkikkk zPzPorzPzP <>  Then kR zzRR =+= *;1  
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For the particular case of radii=0.4 we present the evolution of the potential, the rule 

base evolution and the model output for the testing data set. 

 

 

Figure 13: Evolution of the potential for the first 500 samples. 

 

Figures 13 and 14 shows that there are some data points for which the potential is 

lower than the potential of the existing centres. More precisely the number of data 
points that verify the condition ( ) ( )*inf

ikkk zPzP <  is 45 and the number of data points 

that verify the condition ( ) ( )*
ikkk zPzP >  is 23. From the 17 new rules 3 were created 

with ( ) ( )*
ikkk zPzP >  and 13 were created with ( ) ( )*inf

ikkk zPzP < , the other one 

corresponds to the initial data point. In this scenario the rules creation process is more 

extended in time. 

In Figure 15 is presented the model output for the testing data set and we can see that 

the model output has improved considerably in the regions of lower extrema. In the 

regions of upper extrema the behaviour remains the same. 

A question that immediately arises and that must be answered is why the minimum 

potential of the existing centres should be considered. The minimization of the 

information potential makes sense since we are searching for some information details 

to better predict the series output. When the information potential is maximized the 

models generated predict the essential of the information, but the details are not present. 
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Figure 14: Rule base evolution. 

 

 
Figure 15: Model output for the validation data. 
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The minimization of the information potential allows recovering some of the missing 

details. The same for instance happens with PCA (Principal Component Analysis) 

technique where the main components describe the major of the information of the 

signal but the small information details (regions of extrema, noise, etc.) are precisely 

described by the components with less descriptive power. 

If we make an analogy between information potential and entropy it is well known that 

when the entropy is maximized that does not mean it will be obtained the model with 

the smaller error, what is obtained is a model that maximizes the quantity of information 

it can describe. 

Another important issue related with the introduction of the new condition in the 

process of creation and modification of rules is the model interpretability enhancement. 

This seems contradictory since the number of rules has increased, but if we analyse the 

location of the fuzzy sets we conclude that almost all the universe of discourse is 

covered, which did not happen before. 

 

 

Scenario G  

 

In scenario F the performance of the models has improve considerably, but we are 

interested in investigate if it is possible to achieve similar performances with a small 

number of rules.  

 

Condition 1: the potential of the new data point is higher than the potential of the 
existing centres, i.e. ( ) ( )*

ikkk zPzP >  or lower than the potential of the existing centres, 

i.e. ( ) ( )*inf
ikkk zPzP <  

Condition 2: the new data point is close to an old centre, given by 5.0min <
radii
d

 if 

( ) ( )*
ikkk zPzP >  or 85.0min <

radii
d

 if ( ) ( )*inf
ikkk zPzP <  

Condition 3:  

 

In a more formal way we have: 

 

 
 

We conduct a study for different values of radii and Table 5 summarizes some of the 

information obtained. 

If ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ <> 5.0    min*

radii
dandzPzP ikkk  or ( ) ( )

⎭
⎬
⎫

⎩
⎨
⎧ << 85.0    min*inf

radii
dandzPzP ikkk  Then kj zz =*

Else If ( ) ( )*
ikkk zPzP >  or ( ) ( )*inf

ikkk zPzP <  Then kR zzRR =+= *;1  
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Radii New rules Modified 
rules 

RMSE 
Training 

RMSE 
Validation 

NDEI 
Training 

NDEI 
Validation 

0.1 42 23 0.06177 0.06155 0.27284 0.27173 

0.2 23 42 0.06937 0.06782 0.30640 0.29938 

0.3 14 67 0.08240 0.08064 0.36394 0.35597 

0.4 11 70 0.08649 0.08481 0.38199 0.37439 

0.5 8 65 0.09133 0.09398 0.40338 0.41486 

0.6 7 78 0.09568 0.09678 0.42259 0.42724 

0.7 5 153 0.09816 0.09595 0.43353 0.42355 

Table 5: Results from scenario G. 

 

For the particular case of radii=0.4 we present the evolution of the potential, the rule 

base evolution and the model output for the testing data set. 

 

 

Figure 16: Evolution of the potential for the first 500 samples. 

 

The consequence of the modification of Condition 2 is a reduction in the number of 

created rules, which slightly affects the model performance. On the other hand, the 

complexity of the models is reduced and the interpretability improves considerably. 
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Figure 17: Rule base evolution. 

 

 
Figure 18: Model output for the testing data. 



Evolving Takagi-Sugeno Fuzzy Models
 

Adaptive Computation Group 35
 

After all the experiments for the scenarios described in the report in Table 6 are 

presented the results for a particular value of the constant radii, radii=0.4. 

 
Scenario Radii New 

rules 
Modified 

rules 
RMSE 

Training 
RMSE 

Validation 
NDEI 

Training 
NDEI 

Validation 

A -- -- -- -- -- -- -- 

B -- -- -- -- -- -- -- 

C 0.4 19 0 0.08547 0.08670 0.37749 0.38272 

D 0.4 6 27 0.09622 0.09392 0.42497 0.41460 

E 0.4 15 305 0.08272 0.08024 0.36536 0.35422 

F 0.4 17 52 0.07263 0.07210 0.32079 0.31827 

G 0.4 11 70 0.08649 0.08481 0.38199 0.37439 

Table 6: Results of the different scenarios for radii=0.4. 

 

From the table above we can see that for the same value of radii very different values 

for the number of rules created and modified are obtained. The performance of the 

models, measured by the RMSE and NDEI, also varies significantly. 

 

In order to better understand the different scenarios in Table 7 are presented the results 

for a similar number of created rules. 

 
Scenario Radii New 

rules 
Modified 

rules 
RMSE 

Training 
RMSE 

Validation 
NDEI 

Training 
NDEI 

Validation 

A -- -- -- -- -- -- -- 

B -- -- -- -- -- -- -- 

C -- -- -- -- -- -- -- 

D 0.20 9 12 0.09610 0.09301 0.42444 0.41059 

E 0.50 9 322 0.08813 0.08684 0.38927 0.38336 

F 0.60 9 87 0.08979 0.09084 0.39657 0.40099 

G 0.45 9 113 0.08933 0.08931 0.39456 0.39426 

Table 7: Results for a similar number of new rules. 

 

Table 7 lists the results when the number of rules created is 9. With the exception of 

scenario D the value for the constant radii are around 0.5. The performance in this case 

is better for scenario E. 

However, it must be stated that in scenario E the definition of the relevant threshold, 

the upper one, was made after some experimentation, which means that if another data 

set is considered probably it will not work. 
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4.3  Comparative analysis 
 

For the purpose of a comparative analysis we consider some existing online learning 

models applied on the same task. The models considered are RAN (Platt, 1991), ESOM 

(Deng and Kasabov, 2000), EFuNN (Kasabov,1998), DENFIS (Kasabov and Song, 2002) 

and ETS (Angelov and Filev, 2003). 

 

Table 7 lists the prediction results (NDEI on testing data after online learning) and the 

number of rules (nodes, units) evolved in each model. 

 
Methods Rules (nodes, units) NDEI 

RAN 113 units 0.373 

ESOM 114 units 0.320 

EFuNN 193 rule nodes 0.401 

DENFIS 58 fuzzy rules 0.276 

ETS 113 fuzzy rules 0.095 

ETS* 13 fuzzy rules 0.360 

Table 8: Online learning models. 

 

From the table above we conclude that it is possible to build a model with reasonable 

accuracy with a small number of rules, i.e. more transparent models. In this study a 

model with only 13 rules (result from scenario F) has a performance similar to models 

with a much higher number of units or rule nodes. 

It should be noted that models with much lower NDEI have been reported, but the 

number of rules (nodes or units) is in the range of thousands, which completely 

undermines their transparency. 

As we previously stated our concern is not only to obtain accurate models but also 

interpretable ones. The interpretability of the models generated with the approach 

described in this study can be significantly improved since some of the fuzzy sets are 

quite similar. Improvements on the interpretability of the models will reduce its 

complexity but the price to pay is a smaller accuracy. 
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5.  Conclusions 
 

The approach to on-line identification of ETS models proposed by Angelov is based on 

recursive, non-iterative building of the rule base by hybrid learning. The rule-based 

model evolves by replacement or upgrade of rules and parameter estimation. It is 

computationally effective, as it does not require retraining of the whole model. 

The adaptive nature of this model, in addition to the highly transparent and compact 

form of fuzzy rules, makes them a useful tool for on-line modelling. The main 

advantages of the approach are (Angelov and Filev, 2003): 

 

• It can develop/evolve an existing model when the data pattern changes, while 

inheriting the rule base; 

• It can start to learn a process from a single data sample or evolve an existing 

model and improve the performance of predictions on-line; 

• It is non-iterative and recursive and hence computationally very effective. 

 

The approach however still needs some improvements. The conditions to modify and 

upgrade the fuzzy rules must be studied more deeply since they influence the number of 

created and modified rules and it is not easy to adjust the definitions for a specific 

problem. 

Another vital issue is the on-line clustering algorithm, particularly the function for 

recursive calculation of the potential of each new data sample. Angelov used different 

functions (Cauchy type function of first order, exponential with the summation in the 

exponent) for recursive calculation of the potential but all present limitations. New 

functions or estimators from information theory need to be tested to achieve a better 

placement for focal points covering not only the regions of higher density of points but 

also other regions of interest. 

The transparency of the models must also be improved since the fuzzy sets most of the 

times are very similar, particularly when the number of rules is high. This objective 

however is not easy to perform on-line. 
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