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ABSTRACT 
As a result of recent technological innovations, there has 
been a tremendous growth in the Electronic Music 
Distribution industry. In this way, tasks such us automatic 
music genre classification address new and exciting 
research challenges. Automatic music genre recognition 
involves issues like feature extraction and development of 
classifiers using the obtained features. As for feature 
extraction, we use features such as the number of zero 
crossings, loudness, spectral centroid, bandwidth and 
uniformity. These are statistically manipulated, making a 
total of 40 features. As for the task of genre modeling, we 
train a feedforward neural network (FFNN). A taxonomy 
of subgenres of classical music is used. We consider three 
classification problems: in the first one, we aim at 
discriminating between music for flute, piano and violin; 
in the second problem, we distinguish choral music from 
opera; finally, in the third one, we aim at discriminating 
between all five genres. Preliminary results are presented 
and discussed, which show that the presented 
methodology may be a good starting point for addressing 
more challenging tasks, such as using a broader range of 
musical categories. 
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1.  Introduction 
 
Presently, whether it is the case of a digital music library, 
the Internet or any music database, search and retrieval is 
carried out mostly in a textual manner, based on 
categories such as author, title or genre. This approach 
leads to a certain number of difficulties for service 
providers, namely in what concerns music labeling. Real-
world music databases from sites like AllMusicGuide or 
CDNOW grow larger and larger on a daily basis, which 
requires a tremendous amount of manual work for 
keeping them updated. 
 

Thus, simplifying the task of music database organization 
would be an important advance. This calls for automatic 
classification systems. Such systems should overcome the 
limitations resulting from manual song labeling, which 
may be a highly time-consuming and subjective task. 
     Some authors have addressed this problem recently.  
Tzanetakis and Cook [1] classify music in ten genres, 
namely, classical, country, disco, hip-hop, jazz, rock, 
blues, reggae, pop and metal. They further classify 
classical music into choir, orchestra, piano and string 
quartets. Features used encompass three classes: timbral, 
rhythmic and pitch-related features. The authors 
investigate the importance of the features is training 
statistical pattern recognition classifiers, particularly, 
Gaussian Mixture Models and k-nearest neighbors. 61% 
accuracy was achieved for discriminating between the ten 
classes. As for classical music classification, an average 
accuracy of 82.25% was achieved. Golub [2] uses seven 
classes of mixed similarity (a capella, celtic, classical, 
electronic, jazz, latin and pop-rock). The features used are 
loudness, spectral centroid, bandwidth and uniformity, as 
well as statistical features obtained from them.  A 
generalized linear model, a multi-layer perceptron and a 
k-nearest classifier were used. The best of them achieved 
67% accuracy. Kosina [3] classifies three highly 
dissimilar classes (metal, dance and classical) using 
k-nearest neighbors. The used features were 
mel-frequency cepstral coefficients, zero-crossing rate, 
energy and beat. 88% accuracy was achieved. Martin  [4] 
addresses the problem of instrument identification. He 
proposes a set of features related to the physical properties 
of the instruments with the goal of identifying them in a 
complex auditory environment. 
     In our work we aim at classifying five subgenres of 
classical music, namely, opera, choral music and music 
for flute, piano and violin. This is due to the fact that there 
are not many studies regarding specifically classical 
music. Also, digital music libraries have a great diversity 
of taxonomies of classical music, which demonstrates its 
practical usefulness. Unlike other authors who use a broad 
range of generic classes, we chose to focus on specific set 
of related classes. This seems to be a more challenging 
problem since our classes show a higher similarity degree, 
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leading to, we think, a more difficult classification 
problem. We chose a set of features based on those used 
in [5] and [2], encompassing especially timbre and pitch 
content, which seemed relevant for the task under 
analysis: the number of zero crossings, loudness, spectral 
centroid, bandwidth and uniformity. Rhythmic features 
were not used. An FFNN classifier is used, which is 
trained via the Levenberg-Marquardt algorithm. For 
validation purposes we obtained 76% accuracy, using 6s’ 
extracts from each song. Our results, tough far from ideal, 
are satisfactory. Comparing to [1], we got a similar 
accuracy using one more category and a reduced feature 
set. 
     Additionally, we present a prototype system for 
automatic music classification of entire songs (not only 
extracts). We use 10 extracts of 6 seconds for each song, 
uniformly distributed throughout the song. Each song is 
classified according to the most representative genre in all 
extracts. 
     This paper is organized as follows. Section 2 describes 
the process of feature extraction and the features used. In 
Section 3, we give a short overview of FFNNs and their 
application to our music genre recognition problem. 
Experimental results are presented and discussed in 
Section 4. Section 5, describes the prototype system for 
classical music classification and analyzes the obtained 
results. Finally, in Section 6, conclusions are drawn and 
directions for future work are presented. 
 
 
2.  Feature Extraction 
 
Based on the classification objectives referred, and taking 
into account the results obtained in similar works, we 
gave particular importance to features with some 
significance for timbral and pitch content analysis. We 
used no rhythmic features, since they did not seem very 
relevant for the type of music under analysis.   However, 
we plan to use them in the future and evaluate their 
usefulness in this context.  
     We started by selecting 6 seconds’ segments from each 
musical piece (22khz sampling, 16 bits quantization, 
monaural). Since for training issues the segment samples 
used should have little ambiguity regarding the category 
they belong to, we selected relevant segments from each 
piece. The purpose was not to use long training samples. 
Instead, short significant segments are used, mimicking 
the way humans classify music, i.e., short segments [6] 
using only music surface features without any 
higher-level theoretical descriptions [7]. 
     After collecting a relevant segment for each piece, the 
process of feature extraction is started by dividing each 6s 
signal in frames of 23.22 with 50% overlap. This 
particular frame length was defined so that the number of 
samples in each frame is a power of 2, which is necessary 
for optimizing the efficiency of Fast Fourier Transform 
(FFT) calculations [8] (Section 2.2). This gives 512 
samples per frame, in a total of 515 frames. 

Both temporal and spectral features are used, as described 
below. 
 
2.1 Time-Domain Features 
 
As for temporal features, we use loudness and the number 
of zero crossings. Loudness is a perceptual feature that 
tries to capture the perception of sound intensity. Only the 
amplitude is directly calculated from the signal. Loudness, 
i.e., the perception of amplitude, can be approximated as 
follows [2] (1): 
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where L denotes loudness, r refers to the frame number, N 
is the number of samples in each frame, n stands for the 
sample number in each frame and x(n) stands for the 
amplitude n-th sample in the current frame. 
     The number of zero crossings simply counts the 
number of times the signal crosses the time axis, as 
follows [5] (2): 
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where Z represents the number of zero crossings. This is a 
measure of the signal frequency content, which is 
frequently used in music/speech discrimination and for 
capturing the amount of noise in a signal [1]. 
 
2.2 Frequency-Domain Features 
 
The spectral features used, computed in the frequency 
domain, are spectral centroid, bandwidth and uniformity. 
Therefore, the process starts by converting the signal into 
the frequency domain using the Short-Time Fourier 
Transform (STFT) [9]. In this way, the signal is divided in 
frames, as stated above. The signal for each frame is then 
multiplied by a Hanning window, which is characterized 
by a good trade-off between spectral resolution and 
leakage [8]. 
     Spectral centroid is the magnitude-weighted mean of 
the frequencies [2] (3): 
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where C(r) represents the value of the spectral centroid at 
frame r and Mr(k) is the magnitude of the Fourier 
transform at frame r and frequency bin k. This is a 
measure of spectral brightness, important, for instance, in 
music/speech or musical instrument discrimination. 
     Bandwidth is the magnitude-weighted standard 
deviation of frequencies [2], as in (4). There, B(r) 
represents the spectral bandwidth at frame r. This is a 
measure of spectral distribution: lower bandwidth values 
denote a concentration of frequencies close to the centroid 
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(which is the energy-weighted mean of frequencies), i.e., 
a more narrow frequency range. j1

( )

∑

∑

=

=

−

=
N

k
r

N

k
r

kM

kMkrC

rB

1

1

2
2

)(

)(log)(

)(

 

(4) 

     Uniformity gives a measure of spectral shape. It 
measures the similarity of the magnitude levels in the 
spectrum and it is useful for discriminating between 
highly pitched signals (most of the energy concentrated in 
a narrow frequency range) and   highly unpitched signals 
(energy distributed across more frequencies) [2]. 
Uniformity is computed as follows (5): 
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     For each frame, the five features described are 
extracted. Then, first-differences are calculated, based on 
the feature values in consecutive frames, e.g., L(r) - L(r-
1). These five new features plus the five features 
described before constitute our set of 10 basis features. 
     Classical music is usually characterized by accentuated 
variations in the basis features throughout time. 
Therefore, statistical manipulations of the basis features 
are calculated in order to cope with this aspect.  
     The means and standard deviations for the ten basis 
features are calculated in 2 seconds’ chunks, leading to 20 
features. The final features that compose the signature 
correspond to the means and standard deviations of the 20 
intermediate features computed previously. We get a total 
of 40 features (2×2×10). 
 
 
3.  Genre Modelling with FFNNs  
 
Artificial Neural Networks (ANN) [10] are computational 
models that try to emulate the behavior of the human 
brain. They are based on a set of simple processing 
elements, highly interconnected, and with a massive 
parallel structure. ANNs are characterized by their 
learning, adapting and generalization capabilities, which 
make them particularly suited for tasks such as function 
approximation.  
 
     Feedforward Neural Networks (FFNN) are a special 
class of ANNs, in which all the nodes in some layer l are 
connected to all the nodes in layer l-1. Each neuron 
receives information from all the nodes in the previous 
layer and sends information to all the nodes in the 
following layer. A FFNN is composed of the input layer, 
which receives data from the exterior environment, 
typically one hidden layer (though more layers may be 
used [11]) and the output layer, which sends data to the 
exterior environment (Figure 1). 

 
Figure 1. FFNN used on the classification of music in 

three musical genres (flute, piano and violin). 
 
     The links connecting each pair of neurons are given 
some weight, w. This attribution of weights to links is the 
job of any training algorithm, as described below. Each 
neuron computes an output value based on the input 
values received, the weights of the links from the neurons 
in the previous layer and the neuron’s activation function. 
Usually, sigmoid functions are used [10]. 
     The capability of the FFNN for mapping input values 
into output values depends on the link weights. Their 
optimal determination is still and open problem. 
Therefore, iterative hill-climbing algorithms are used. 
Their main limitation comes from the fact that only local 
optima are obtained: only occasionally the global 
optimum can be found. In the context of ANNs, these 
iterative optimization algorithms are called training 
algorithms. 
     ANNs are usually trained in a supervised manner, i.e., 
the weights are adjusted based on training samples (input-
output pairs) that guide the optimization procedure 
towards an optimum. For instance, in the case of our 
music genre classification (Figure 1), each network input 
is a vector with the 40 extracted features and each target 
value has a value of 1 for the correct class and a value of 
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0 otherwise. Our FFNN is trained in batch mode, i.e., all 
the training pares are presented to the network, an error 
measure is computed and only then the weights are 
adjusted towards error reduction. In Figure 1, we have a 
40×120 input matrix where each line corresponds to a 
particular feature and each column corresponds to each 
music feature-vector used for training the network. In the 
same figure, a 3×120 target output matrix is presented, 
where each column has information regarding the target 
class for the corresponding music feature-vector: all the 
lines have zero value, except for the line corresponding to 
the correct class, which has a value of one. For example, 
if the Tth music signature denotes a piano piece, and the 
second output neuron was assigned to the piano category, 
then the Tth ouput column would have a value of 1 in the 
second line, and zero for all other lines. 
     The most widely used training algorithm for FFNNs is 
backpropagation [10]. Here, there is a forward pass where 
inputs are presented to the network and output values are 
computed. The error between each target value and the 
corresponding output value is then calculated. Then, a 
backward pass is performed, where the weights are 
adjusted towards error reduction, using the gradient 
descent method. This process is repeated iteratively until 
the error is below a given threshold.  
     The gradient descent method has some limitations 
regarding convergence properties: the algorithm can get 
stuck in a local minimum and the selection of the learning 
rate is usually not trivial (if its value is too low, learning is 
slow; if it is too high, the network may diverge). 
Therefore, some variants are used, e.g., learning with a 
momentum coefficient or defining an adaptive learning 
rate [10].  
     Here, we use the Levenberg-Marquardt algorithm, 
which has the advantage of being significantly faster (10 
to 100 times faster [12]) at the cost of higher memory 
consumption, due to the computation of a Jacobian matrix 
in each iteration. Also, this algorithm converges in 
situations where others do not [13]. 
     After training, the neural network must be validated, 
i.e., its response to unknown data must be analyzed in 
order to evaluate its generalization capabilities. Thus, a 
forward pass is performed, with samples never presented 
before, and the same error measure used during training is 
computed. Typically, the available samples are divided in 
two sets, one for training and the other for validation, 2/3 
for the former and 1/3 for the latter, respectively. 
     In order to avoid numerical problems, all the features 
were previously normalized to the [0, 1] interval [12]. 
 
 
4.  Experimental Results 
 
As we stated before, our aim is to build a prototype of a 
real system for classification of classical music. We 
defined a taxonomy of five sub-genres: pieces for flute, 
piano, violin, choral and opera. These can be organized in 
a hierarchical manner, grouping flute, piano and violin as 
instrumental music and choral and opera as vocal. The 

presented taxonomy is defined only for the sake of clarity: 
the practical classification performed was not hierarchical. 
     For evaluation purposes, we collected a database of 
100 monaural classical pieces, 20 from each class, 
sampled at 22050 Hz, with 16 bits quantization. For each 
musical piece, 10 segments of 6 seconds each were 
extracted. Those segments were automatically created so 
as to uniformly cover the entire piece.  Then, each piece 
was classified according to the most represented class in 
all its segments.  
     Before classifying entire songs, we evaluated our 
approach with a database of 300 monaural musical 
segments, 60 from each genre. The segments, each with 
duration of 6 seconds, were manually extracted from the 
initial database, based on their relevance for the genre in 
cause, as stated in Section 2. The difference to the 
segments in entire-song classification is that, in the 
prototype, the segments were automatically extracted, 
whereas in the segment classification task “well-behaved” 
samples were selected. 
     Our first goal was to discriminate between three genres 
of instrumental music: music for flute, piano and violin. 
The 6s’ segments extracted were chosen so as to include 
soles from each instrument by single or several players in 
unison, in isolation (monophonic segment) or with an 
orchestra in the background (polyphonic segment). 
     In our second goal, we wanted to discriminate between 
genres of vocal music: chorals and opera.  Typically, the 
musical pieces used for opera were vocal soles, essentially 
performed by tenors, sopranos and mezzo-sopranos 
(Callas, Pavarotti, etc.), whereas for choral music 
segments of simultaneous distinct voices were used 
without many of the stylistic effects used in opera 
(vibrato, tremolo). Many of the used pieces were also a 
cappela, i.e., only human voices, no instruments.  
     Finally, our third goal was to discriminate between all 
of the five genres referred above. 
     For the three problems addressed we used three-
layered FFNNs, trained in batch mode via the 
Levenberg-Marquardt algorithm. Each network consists 
of 40 input neurons (one for each extracted feature) a 
variable number of hidden neurons (described below) and 
2, 3 or 5 output neurons, according to problem under 
analysis. Both hidden and output neurons use sigmoid 
activation functions. For training purposes, we used 40 
pieces from each genre, whereas for validation the 
remaining 20 were used (a total of 200 pieces for training 
and 100 for validation). Special care was taken so that the 
training samples for each genre were diverse enough. 
     Validation, i.e., classification of unknown segments, 
was carried out under two different perspectives that we 
designate as percentage calculus rule 1 (PCR1) and 
percentage calculus rule 2 (PCR2). 
     Under the PCR1 perspective, a musical piece from a 
particular genre is well classified when the highest 
network output corresponds to that genre and its value is 
above or equal 0.7 (recall that the network outputs values 
between 0 and 1). In this situation, the piece considered is 
correctly classified, without any ambiguities. 
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     When all output values are under 0.7, it is concluded 
that this particular musical piece does not belong to any of 
the defined categories. The highest value is not high 
enough to avoid possible ambiguities.  
     As for PCR2 In this case, a musical piece from a 
particular genre is well classified if the highest network 
output value corresponds to the right genre, regardless of 
its amplitude. 
     Regarding segment classification, 85%, 90% and 76% 
average accuracy was obtained for the three, two and five 
genre classification tasks, respectively [14]. These results, 
tough not accurate enough for real applications, are 
encouraging. Therefore, we decided to evaluate our 
approach in the classification of entire songs. Below we 
present the results for each of the classification tasks 
addressed, regarding the entire-song classification 
problem.   
 
4.1. First Classification: Three Genres 
 
In this case, musical pieces were classified into flute, 
piano and violin pieces. A database of 60 songs, 20 per 
class, was used. As referred before, each song is 
represented by 10 segments of 6 seconds each, and the 
final classification corresponds to the most represented 
genre. 
     For the determination of the most adequate number of 
neurons in the hidden layer, we tested several values in 
the range [10, 30]. The best classification results were 
obtained for 20 neurons in the hidden layer.  
     We obtained as average accuracy of 78% (75% for 
flute, 59.1% for piano and 100% for violin) both for 
PCR1 (Table 1) and PCR2 (Table 2). Analyzing the 
results for flute pieces, we also notice that 5% of them 
were erroneously classified as piano and 20%. 
Furthermore, no songs remained unclassified. 
 

PCR1 78% Flute Piano Violin 
Flute 75 9 - 
Piano 5 59.1 - 
Violin 20 31.9 100 
unclassif.    - - - 

Table 1. Instrumental music confusion matrix: PCR1. 
 

PCR2 85% Flute Piano Violin 
Flute 75 9 - 
Piano 5 59.1 - 
Violin 20 31.9 100 

Table 2. Instrumental music confusion matrix: PCR2. 
 
     It is interesting to see the excellent results obtained for 
the violin class, showing that the network correctly 
captured is characteristics, particularly its timbre.  
     As for the piano class, the results were somewhat 
disappointing, with only 59.1% accuracy and 31.9% of 
songs misclassified as violin. We could no find any 
reasonable explanation for that. 
     Anyway, we think these results are positive, since the 
average results based on automatically extracted segments 

(78%) were close the ones obtained for segment 
classification using “well-behaved” samples (85%) 
 
4.2. Second Classification: Three Genres 
 
In this situation, musical pieces were classified into opera 
and choral pieces. A database of 40 songs, 20 per class, 
was used. We obtained best classification results with 25 
neurons in the hidden layer: an average classification 
accuracy of 73.5% (81.8% for choral pieces and 65.2% 
for opera) both for PCR1 (Table 3) and PCR2 (Table 4). 
We can see that no songs remained unclassified. 
 

PCR1 
73.5% 

Choral Opera 

Choral 81.8 34.8 
Opera 18.2 65.2 
unclassif.    - - 

Table 3. Vocal music confusion matrix: PCR1. 
 

PCR2 
73.5% 

Choral Opera 

Choral 81.8 34.8 
Opera 18.2 65.2 

Table 4. Vocal music confusion matrix: PCR2. 
 
     The obtained results fell notoriously below the ones for 
segment classification (90%). This drop follows directly 
from the percentage of opera songs that were 
misclassified as chorals: 34.8%. We analyzed some of 
those cases and observed that many operas have regions 
that could easily be mistaken as chorals, even for humans. 
Those regions are, especially, the quieter ones. 
 
4.3. Third Classification: Five Genres 
 
Here, musical pieces were classified into the five 
categories listed before: flute, piano, violin, opera and 
choral music. A database of 100 songs, 20 per class, was 
used. Best classification results were obtained with 20 
neurons in the hidden layer for PCR1, with 57.3% average 
classification accuracy, and 30 neurons for PCR2, with 
66.7% average classification accuracy, for the five genres 
used.  
     Regarding PCR1 analysis (Table 5), we obtained 
59.2% classification accuracy for flute pieces, 42.3% for 
piano, 85% for violin, 59.2% for chorals and 40.9% for 
opera. 15% of the musical pieces remained unclassified.  
     As for PCR2 analysis (Table 6), the classification 
accuracy was 66.7% for flute pieces, 50% for piano, 
100% for violin, 66.7% for chorals and 50% for opera. 
     Though interesting, the results obtained for this more 
complex classification problem are less satisfactory. They 
fell from an average of 76% accuracy in the segment 
classification to 66.7% for classification of entire musical 
pieces.  
     However, once again the violin class accomplished 
outstanding results: 100% accuracy for PCR2. As for 
PCR1, there are only three false negatives: two 
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unclassified pieces and one piece misclassified as choral. 
Therefore, we can conclude that this classifier learned the 
best way to identify the characteristics of the violin. 
 
PCR1 57.3% Flute Piano Violin Choral Opera 
Flute 59.2 3.9 0 18.2 0 
Piano 4.5 42.3 0 4.5 0 
Violin 13.6 7.7 85 0 9.1 
Choral 4.5 19.2 5 59.2 31.8 
Opera 0 11.5 0 4.5 40.9 
unclassif.    18.2 15.4 10 13.6 18.2 
Table 5. Mixed classification confusion matrix: PCR1. 
 
PCR2 66.7% Flute Piano Violin Choral Opera 
Flute 66.7 4.2 0 19.1 5 
Piano 4.8 50 0 4.7 0 
Violin 14.2 4.2 100 0 15 
Choral 9.5 29.1 0 66.7 30 
Opera 4.8 12.5 0 9.5 50 
Table 6. Mixed classification confusion matrix: PCR2. 
 
     Unlike the violin class, the results for piano and opera 
were not so good. From Table 6, we can see that 29.1% of 
the piano pieces were classified as chorals and 30% of the 
operas were classified also as chorals. This conflict 
between opera and choral music had already been 
detected in the two-class separation task and comes from 
the same reasons pointed out before. As for the conflict 
between piano and choral pieces, we could not any 
reasonable justification for it, except for the fact that they 
both are often rather quiet. 
     As a conclusion, we could say that the obtained results 
are encouraging in a perspective of future evolvement. 
However, it is clear that the used features could not 
separate the five classes in a totally unambiguous manner. 
Therefore, a deeper feature analysis seems fundamental in 
order to obtain better results.  
 
 
5.  Conclusion 
 
The main goal of this paper was to present a methodology 
for the classification of classical music. Although the 
results obtained are not sufficient for real-world 
applications, they are promising.  
     In the most complex case, where we defined five 
categories, the classification results were less accurate. 
However, in our opinion a hierarchical classifier, 
following the structure in Figure 3, would lead to better 
results. 
     In the future, we will conduct a more thorough analysis 
of the feature space: detection and elimination of 
redundant features, as well as definition and utilization of 
other features, which may help to discriminate the more 
atypical cases. Another way to increase the classification 
accuracy would be to increase the number of segments 
used in each song. One other possibility would be to train 
the network with a higher number of training examples, 
containing more atypical cases for each genre. 

     Additionally, we plan to use a broader and deeper set 
of categories, i.e., more basis classes and subclasses. In 
case we use categories like waltz, rhythmic features, not 
used in the present work, will certainly be important.  
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