
Creativity in Natural Language:
Studying Lexical Relations

Mateus Mendes∗, Francisco C. Pereira†,
Amílcar Cardoso†

∗Escola Superior de Tecnologia e Gestão de Oliveira do Hospital
R. General Santos Costa, 3400-124 Oliveira do Hospital, Portugal

mmendes@estgoh.ipc.pt

†Departamento de Engenharia Informática da FCTUC
Pólo II, Pinhal de Marrocos, 3000 Coimbra, Portugal

{camara, amilcar}@dei.uc.pt

Abstract
There are already many systems provided with the capacity of automatically generating sentences. Most of them were developed for
reliability, others for creativity. Dupond uses lexical relations to transform a sentence, following certain criteria. It is able to produce new
sentences keeping the original meaning. It was developed as part of a larger project whose goal is to understand how lexical relations can
be used to influence creativity in natural language. But Dupond is suitable for use in applications such as chatter bots and other sentence
generators.

1. Introduction
Due to the generalised use of computers, the problem of

automatic text generation has become of crucial relevance
in recent years. Many systems have already been devel-
oped which generate natural language, but most of them
invariably produce well known sentences based on rigid
templates or other strict rules that make them repeat them-
selves with little variance. Some systems produce novel
sentences, but these don’t usually limit their output to a
given topic. Dupond was built with the purpose of study-
ing how lexical relations can be used to achieve some cre-
ative automatic discourse. It is able to produce different
sentences to express the same idea.

Before a truly creative sentence generator can be built,
it is necessary to understand what creativity in natural lan-
guage is. Then we can go further to mimic it. Dupond
can presently be fed a sentence and, using selected lexical
relations, translate it into another one. Ideally, this new sen-
tence should express the same idea carried by the original
one.

Below is a short review of some related work. Sec-
tion 3. explains the system’s theoretical principles, based
on the properties of natural language. Section 4. describes
the system’s capabilities. Sections 5. and 6. contain a short
description of its internal modules and how they work. Fi-
nally, section 7. discusses some preliminary results.

2. Related Work
2.1. Random sentence generators

Random sentence generators are the simplest ones and
don’t usually require a complete and well structured knowl-
edge base. They simply pick-up random words or phrases
and fit them together in a particular, grammatically correct,
order. They are not at all reliable, and their interest, on a
scientific view, is very limited. The most frequent practi-
cal applications for random sentence generators are word

games. Spew and Yak (Schwartz, 1999) are examples of
these kind of generators. They are simple word-fitting sys-
tems, built just for play. Hypercard Random Sentence Gen-
erator (Kelly, 1993) is another example, with the particu-
larity that it applies the theory of random text generation to
language teaching.

2.2. Straight sentence generators

Straight sentence generators produce their output in a
carefully studied way, and their reliability makes them suit-
able for many different purposes. Their creativity is very
limited, if it ever exists at all. Long interactions with these
systems are often boring, and they are not supposed to be
used as creativity-aid tools. They are very useful for tasks
such as translation, question-answering, report and letter
writting, or summarising.

The simplest strict sentence generators are template-
based. They contain a set of templates with empty slots
that can be filled with known pieces of information. This
approach is widely used, because of its low complexity.
Most modern text editors are good examples of these sys-
tems, since they provide the user with template-based let-
ters, reports and other documents. Another example is Eliza
(Weizenbaum, 1966), a computer program built in the six-
ties, which emulates the discourse of a psychotherapist.
Eliza is considered the first great automatic chatterer. She
works based on tricks like string substitution and canned
responses triggered by keywords.

More complex systems usually produce the sentences
from formal specifications and grammatical rules. Penman
(Matthiessen, C.M.I.M. and Bateman, 1991) is one of the
most well known systems of this kind. It receives as input
a formal specification of a sentence and translates it into
words using the theory of Systemic Functional Linguistics.
Internally Penman consists of a network of over 700 nodes,
each node representing a single minimal grammatical alter-
nation. In order to generate a sentence, Penman traverses



the network guided by its inputs and default settings. At
each system node Penman selects a feature until it has as-
sembled enough features to fully specify a sentence. After
constructing a syntax tree and choosing words to satisfy the
features selected, Penman then generates the sentence.

Straight sentence generators have long been used for
many different purposes. Examples include the CO-OP
paraphraser (McKeown, ), the AGILE (Hana, 2001) trans-
lator, the SummariserPort (Oliveira, Paulo et al., 2002) text
summariser and the IDAS (Reiter, Ehud et al., 1992) docu-
mentation writer, among others.

3. Creativity, Natural Language and
Fluency

Natural language is usually analysed in three different
layers: syntax, semantics and pragmatics. Creativity can be
spotted in any of these layers.

At the syntactic level creative sentences can arise from
an original sentence form or an irregular word or phrase or-
dering. Since syntax in most languages is ruled by well
known grammatical rules, creativity at this level is lim-
ited to either respecting these rules and have little liberty
or breaking them and produce ungrammatical sentences -
either meaningless or not. At the semantic level creativ-
ity can be the product of using some word or expression to
mean something unusual. Poets and some writers do it all
the time, producing the literary discourse. Since semantic
rules are not as strict as the syntactical ones, it’s easier to
work on creativity at the semantic level. Pragmatics relates
to the context, and can be exploited to disambiguate words
and make semantic shifts meaningful and useful. Creativity
in this level depends on things such as one’s culture, values
and education.

Writers exploit both syntax, semantics and pragmatics’
properties to achieve a fluent discourse, through the use
of figures of speech. Most of the figures of speech are
the product of conceptual relations (metaphor and simile,
for instance) and require knowledge and careful reason-
ing about the world. So far, Dupond doesn’t use figures
of speech theory in order to produce its output.

The use of lexical relations is another way to express the
same idea in different ways. Lexical relations are the fol-
lowing: antonymy, hypernymy/hyponymy, antonymy, ho-
mophony, homonymy, polysemy, metonymy and colloca-
tion (Yule, 2001). Collocation is an aspect of language
which characterises words which tend to occur with other
words. For instance, many people associate the pairs salt-
pepper and table-chair. This is just a characteristic that
seems of little use for Dupond. Metonymy is a whole-
part relation between some words (car-wheels, house-roof )
that makes possible the use of one for replacing another.
Most examples of metonymy are highly conventionalised
and easy to interpret. However, many others depend on an
ability to infer what the speaker has in mind. Thus, this
interchangeability requires pragmatic analyses and a good
database of knowledge. Polysemy can be defined as one
form of a word having multiple meanings, which are all
related. For example the words head, meaning something
or someone on top of something. Homonymy can be de-
fined as one form of a word having multiple meanings, but

which are not related. For example, race [speed] and race
[ethnic group]. Homophony happens when two differently
written words have the same pronunciation (bare-bear, for
instance). Polysemy, homonymy and homophony make it
possible to do some language tricks, but the latter is only
suitable for oral speech, and the formers shall not be used
if one wants the system to be reliable. Antonymy occurs
when two words have opposite meanings, and it is mostly
convenient for us to transmit meaning. For instance, our
natural explanation for dirty is not clean. But antonymy is
not a general relation we can use in all the situations. Con-
sider the word beautiful. Searching the WordNet 1 (Fell-
baum, 1998) for antonyms we find ugly, but we cannot say
the sentence It’s a beautiful morning is the same as It’s a not
ugly morning. Antonymy is good for explaining relation-
ships with other words in many different situations, but its
use requires some common-sense knowledge, so that one
knows where to use it.

Hypernymy/hyponymy relations happen when the
meaning of one word is included in the meaning of another.
A typical pair is dog-animal, where dog is an hyponym of
animal and the later is a hypernym of the former. One can
replace any word in any sentence by one hypernym with-
out changing the original idea. At most the result is an odd
sentence or a general, ambiguous sentence. For example,
consider the word girl. Searching WordNet for hypernyms
we find girl is a kind of woman, woman is a kind of female,
and there are 4 more relations before getting to the top word
entity. All these words are semantically valid replacements
for girl. In practise, though, replacements above 1 or 2 lev-
els usually sound unnatural.

Synonymy is the most simple relation one can use, once
the correct sense of a word is found. The vast majority of
the words can be replaced by synonyms in almost all the
contexts, although the result can be an odd sentence, or a
different sentence in terms of formality. For instance, con-
sider the sentences Cathy had one answer correct on the
test and My dad bought a bigcar. Using synonyms for re-
placing words we can get to: Cathy had one reply right
on the examination, which sounds odd, and My father pur-
chased a large automobile, which sounds more formal.

4. Dupond’s Features
For now, Dupond is able to disambiguate words, replace

words by synonyms and hypernyms and suppress unneces-
sary words. Each of its features can be configured from
wanted (always do that, if possible) to not wanted. In the
middle level it is expected to do that half the time.

4.1. Disambiguating words

Disambiguation is done in function of the context. For
instance, in the sentence That woman is a dog, the mean-
ing of dog is probably {dog,frump}, and the system finds it
realising that the word woman is found in the sentence and
the WordNet gloss for the sense {dog,frump}. If the word
dog has never been used in this sense in the current session,
Dupond accepts this sense with a given confidence. If it has
been used in another sense, then the previous confidence is

1Wordnet is available at http://www.cogsci.princeton.edu/˜wn/.



pondered and the preferred sense is a function of the pre-
vious confidence and the confidence in the current disam-
biguation. If the word cannot be disambiguated in function
of the context but it has been used before, then the sense
with the highest rank is accepted as its current meaning. If
the word has not been used before and cannot be disam-
biguated, then the most frequent sense is preferred with no
confidence at all.

4.2. Selecting replacement words
Once we have a word and a set of synonyms in a given

context, there are various possible criteria to choose a valid
replacement.

One possible criterion is to pick the one with less senses,
thus minimising the probability of misinterpretation. An-
other possible criterion is to pick the one with more senses,
thus maximising the probability of that being a known
word. Dupond can follow any of the criteria or simply pick
a synonym randomly. It can also use hypernymy relations,
up to 7 levels, to find valid replacements.

4.3. Other features
Dupond can also be configured to prefer previously

used replacements and/or replacement methods, thus pro-
ducing a more coherent discourse. For instance, consider it
chose the word miss to replace woman. If it is configured
to reuse previous replacements, the following occurrences
of woman will always be replaced by miss.

Another feature is its ability to suppress unnecessary
words. For instance, consider the sentence John ate cookies
and Mary [ate] cake. The word in square brackets can be
suppressed without the sentence loosing significance and it
becomes simpler.

The fact that the system is based on the product of prob-
abilities gives it an infinite flexibility.

5. Dupond’s architecture
The system’s architecture is as shown in figure 1. All

the processing is coordinated by the server module, which
receives sentences and orders from its clients through a
message queue, performs the necessary steps and sends the
new sentences and responses back to them. Users are not
expected to interact with the server directly. There is a web
client interface where the users can set their preferences and
send their sentences in a comfortable way. The client then
communicates with the server through the message queue.
The server can attend many different clients at the same
time. That led to the need of a module for user authentica-
tion. When a client sends his first message, it is assigned an
identification number and a data structure is created for it.
User preferences and some data about the ongoing dialogue
are stored, for better performance.

After receiving a sentence, the very first step the server
performs is to parse it. A sentence which cannot be parsed,
either because it is ungrammatical or for some other rea-
son, is not translated. For parsing Dupond uses Link Gram-
mar Parser2, a free parser based on link grammar (Sleator
and Temperley, 1993). Once the sentence is success-
fully parsed, the server obtains an equivalent tree-structure

2http://www.link.cs.cmu.edu/link/

which contains all the necessary information about it. The
grammatical category of each word and its connection with
other words in the same sentence should be well known.
Figure 2 illustrates an example parse tree. Suffixes indicate
the grammatical category of each word. For instance, ".n"
is appended to nouns, and ".v" is appended to verbs.

Presently the parse tree is not used - only the tags at-
tached to each word. In the future the tree may be used to
replace phrases or other portions of the sentence.

But knowing the grammatical category of a word is not
enough for this system. Consider the word"girls": we need
to know not only that it is a name but also that it’s in the
plural form. To solve this problem there’s an additional
module, named Morphy. Morphy can be interfaced in two
different ways. If it is given as input a word in its context it
returns complete information about it. For instance, when
asked for the word girls, morphy would find it’s a plural
noun and its base form is girl. On the other hand, it can
be asked what the plural form for the noun girl is, and the
output would be girls.

The disambiguation module tries to find the correct
sense of a word, based on the present context and any pre-
vious concepts. For example, consider the sentence "The
bird went to the market". Searching the WordNet for bird
we find 5 senses for the noun and 1 for the verb. Since we
parsed the sentence we know bird is a noun. When asked
for the correct sense of this noun in this context, the disam-
biguator module would return sense 3, indicating that bird
refers to a girl with an acceptable confidence. If we had
been using the noun bird in sense 1 (warm-blooded egg-
laying vertebrates characterised by feathers and forelimbs
modified as wings) for a long time before, the disambigua-
tor would most probably return sense one with little con-
fidence. If it cannot disambiguate the word, the module
returns the most frequent sense with no confidence.

The Replacer module receives the disambiguated word
and the set of user preferences. In function of the user’s
preferences, it picks an appropriated word that could re-
place the original one. The server uses all these modules
to parse the sentence, disambiguate each word, get its base
form, find a valid replacement word, put it in the correct
grammatical form and rebuild a new sentence.

6. Finding valid replacements
Dupond is controlled internally by "state words". This

state words represent sets of probabilities whose values the
user can change in order to get different behaviours. Figure
3 shows the system’s interface.

If the state words are null, all the probabilities are zero
and the system’s output is equal to the input.

Once the sentence is parsed, the first optional step
Dupond can perform is to disambiguate each word. For
this step the user can choose between disambiguation in
function of the context, picking the most frequent sense or
pick a sense randomly. If the user assigns 7 to the "Dis-
ambiguate words" option, the system will always try to dis-
ambiguate. 0 means Dupond should never disambiguate,
and try any of the other options if they are selected. Once a
sense is selected for a given word, it’s necessary to choose
a valid replacement for it. For example, considering the



Figure 1: System Overview.

Figure 2: Parse tree for the sentence "The girls have got flowers".

word confess in the last sentence shown in figure 3, the dis-
ambiguation process would return the sense 1: {confess,
squeal, shrive}. The replacement module should then select
a valid word from this setfor replacing confess. If the user
had assigned 7 to the "Prefer synonym with less senses:"
option, Dupond would always select the verb shrive, since
this word contains only one sense and confess and squeal
contain more. The "Trust memory and acquired concepts"
option tells the system to repeat previous replacements. If
this was selected in the example above, the word progress in
this sense would always be replaced by advancement. The
option "Prefer previously used methods:" intends to make
the system be more coherent with past behaviour. It tells
Dupond to reuse previously applied methods. For instance,
if it explored an hypernymy relation to replace a noun (e.g.
dog -> canine), it should use hypernymy to find replace-
ments for subsequent nouns (e.g. cat -> feline).

7. Preliminary Results
The main goal of this project is to study how important

the lexical relations may be to produce sentences in an orig-
inal way. This involves two steps: 1) build a system able to
receive a sentence and, using lexical relations, produce a
different one with an equivalent meaning; 2) study how dif-
ferent, meaningful and interesting this automatically rebuilt
sentences are for the people. Dupond was built for perform-
ing step 1. It can be fed English sentences and rebuild them
in function of the user’s preferences.

Figure 3 shows a sample session, using sentences se-
lected from the first paragraphs of the book "The return of
Sherlock Holmes"3, with the options shown in the figure.

8. Conclusions
Sentence generators are being used more and more in

modern intelligent systems. Creativity will play an impor-
tant role if one wants to overcome the present limitation

3"The return of Sherlock Holmes", by Arthur Conan Doyle.
Downloaded from the project Gutenberg: http://gutenberg.net.

that makes machines’ speech sound unnatural and repeti-
tive. Dupond is an automatic word replacer ready for being
used in the study of natural language and/or other applica-
tions. Namely, it may be adapted for automatic chatter bots,
documentation and letter writers, message generators and
similar systems. Indeed, its main limitation is that it isn’t a
stand-alone system, thus not suitable for any purpose on its
own.

In future work Dupond will be used to study how lexical
relations may be used to improve the creativity of natural
language generation systems. Possible questions to be an-
swered are: "Do people prefer the more common or the less
common words? What makes a sentence look like odd? Do
people prefer words with more or less senses?".

Dupond may also be improved for dealing with some
figures of speech, replacing phrases and sets of words as
well as working on the syntactic and pragmatic levels.

9. References
Fellbaum, Christiane (ed.), 1998. WordNet: An Electronic

Lexical Database. USA: Bradford Books.
Hana, Jirí, 2001. The agile system. In PBML. Praha, pages

39–67.
Kelly, Charles, 1993. A hypercard random sentence gen-

erator for language study. Bulletin of Aichi Institute of
Technology, 28, Part A:51–55.

Matthiessen, C.M.I.M. and J.A. Bateman, 1991. Text Gen-
eration and Systemic-Functional Linguistics. London:
Pinter.

McKeown, Kathleen R. Paraphrasing using given and new
information in a question-answer system. In 17th Annual
Meeting of the Association for Computational Linguis-
tics. ACL.

Oliveira, Paulo, Khurshid Ahmad, and Lee Gillam, 2002.
A financial news summarisation system based on lexical
cohesion. In Workshop at the International Conference
on Terminology and Knowledge Engineering.

Reiter, Ehud, Chris Mellish, and John Levine, 1992. Au-
tomatic generation of on-line documentation in the idas



Figure 3: Screenshot showing Dupond’s client after a short session.

project. In Procs of the 3rd Conference on Applied Nat-
ural Language Processing. Trento, Italy.

Schwartz, Randal, 1999. Writing randomly. Linux Mag-
azine. Http://www.stonehenge.com/merlyn/LinuxMag/
col04.html.

Sleator, Daniel and Davy Temperley, 1993. Parsing en-
glish with a link grammar. Technical report, Third In-
ternational Workshop on Parsing Technologies, Carnegie
Mellon University.

Weizenbaum, Joseph, 1966. Eliza - a computer program
for the study of natural language communication be-
tween man and machine. Communications of the ACM,
9(1):35–36.

Yule, George, 2001. The study of language, chapter 11.
Cambridge, pages 114–125.


