

Generic Faultloads Based on Software Faults for Dependability Benchmarking

João Durães
ISEC/CISUC - Polytechnic Institute of Coimbra

3030 Coimbra - Portugal
jduraes@isec.pt

Henrique Madeira
DEI/CISUC - University of Coimbra

3030 Coimbra – Portugal
henrique@dei.uc.pt

Abstract

The most critical component of a dependability

benchmark is the faultload, as it should represent a
repeatable, portable, representative, and generally
accepted set of faults. These properties are essential to
achieve the desired standardization level required by a
dependability benchmark but, unfortunately, are very
hard to achieve. This is particularly true for software
faults, which surely accounts for the fact that this
important class of faults has never been used in known
dependability benchmark proposals. This paper proposes
a new methodology for the definition of faultloads based
on software faults for dependability benchmarking.
Faultload properties such as repeatability, portability
and scalability are also analyzed and validated through
experimentation using a case study of dependability
benchmarking of web-servers. We concluded that
software fault-based faultloads generated using our
methodology are appropriate and useful for dependability
benchmarking. As our methodology is not tied to any
specific software vendor or platform, it can be used to
generate faultloads for the evaluation of any software
product such as OLTP systems.

1. Introduction

The idea of benchmarking dependability features of

computer systems or computer components has caught
the attention of researchers and practitioners in recent
years. After two decades of a success story in the area of
performance benchmarks, the notion that measuring pure
performance is not enough in many cases becomes more
and more evident.

The performance benchmarking field has originated
solid industry driven organizations such as the TPC
(Transaction Processing Performance Council) and the
SPEC (Standard Performance Evaluation Corporation),
that have released many successful performance
benchmarks. These performance benchmarks have
contributed to improve peak performance of successive
generations of computer systems, particularly in what
concerns key components such as processors and graphic

boards, at the hardware level, or database management
systems (DBMS) and web-servers, at the software level.

Unfortunately, the seek for pure peak performance also
have caused that, in many cases, the systems and
configurations used to achieve the best performance are
very far from the systems that are actually used in
practice (this is in fact the main criticism on TPC and
SPEC benchmarks). The fact that many businesses and
applications require high availability, reliability, integrity,
or other dependability attributes shows that it is necessary
to shift the focus from measuring pure performance to the
measurement of both performance and dependability.
This is just the goal of the dependability benchmarks.

A dependability benchmark can then be defined as a
specification of a standard procedure to assess
dependability related measures of a computer system or
computer component. The key aspect that distinguishes
dependability benchmarking from existing dependability
evaluation and validation techniques is the standard
nature required by a dependability benchmark. This
standardization can only be achieved through an
agreement (explicit or tacit) from the computer industry
and/or by the user community. However, the contribution
of the research community is essential to show possible
solutions for the complex technical problems posed by
dependability benchmarking.

Many research works have established the ground for
the proposal of dependability benchmarks. In addition to
many works on experimental dependability evaluation,
especially on the field of fault injection and robustness
testing, the first works that have carved the concept of
dependability benchmark are [1,2,3,4]. More recent
research works have proposed and demonstrated fully
functional dependability benchmarks [5,6,7,8,9,10]. Most
of these proposals elaborate on the typical scenario used
by performance benchmarks, which consists of four main
elements: benchmarking setup, measures, workload, and
procedures & rules, and add two new components:
dependability measures and faultload.

The faultload is in fact the most critical component of
a dependability benchmark, as it should represent a
repeatable, portable, representative, and generally
accepted set of faults. Years of research in the field of

dependability, especially on topics such as fault injection
and analysis of field data on fault manifestations, have
shown that the definition of a set of faults with the
properties mentioned above is very hard to attain.

It is not a surprise the fact that all the dependability
benchmarks proposed so far include as faultload only
operator faults [5, 6, 10] and hardware faults [8, 9].
Software faults have been completely absent from this
research effort. Unfortunately, it is well-known that most
of the computer outages are caused by residual software
faults, which means that all the benchmark faultloads
proposed so far simply ignore the most frequent source of
problems in computer industry: the software faults.

This is precisely the goal of this paper, as we propose a
methodology to define faultloads based on software
faults. Our methodology builds on previous published
results based on field data and uses a fault injection
technique based on machine code mutations to emulate
programming errors. The paper also shows how the
proposed method can be used to define a faultload based
on software faults for a dependability benchmark of
web-servers, and actually presents the first comparative
dependability benchmarking of two well-known web-
servers. Properties such as repeatability, portability and
scalability are also analyzed and validated through the set
of experiments presented in the paper.

The remainder of this paper is organized as follows:
the next section presents the proposed methodology for
the definition of faultloads based on software faults.
Section 3 shows how to generate a faultload using our
methodology for application in case-study scenario of
dependability benchmarking; using the results of the
previous section we discuss the validation of the faultload
properties in section 4. Section 5 concludes the paper.

2. Faultload definition approach

The success of a benchmark is measured by its

acceptance by the industry and user/research
communities. To be accepted, a benchmark must verify a
number of key properties:

• Representativeness: the workload submitted to the
system under evaluation must represent typical
profile for a given application domain. It is worth
noting that benchmarks are specific to an
application domain (e.g., transactional applications)
or a given type of component (e.g., operating
systems). Additionally, the faultload must represent
the typical faults experienced by those systems in
the field. The present work focuses on software
faults.

• Portability. One of the most relevant uses of
benchmarks is the comparison of a set of systems of
a given category (DBMS, for instance). Therefore,

it is of paramount importance that the benchmark
can be used in the different systems used in a given
application domain.

• Repeatable. By definition a benchmark is a tool that
quantifies a given property of a system. Obviously,
running the benchmark twice the user must obtain
the same results (at least in statistical terms).
Additionally, different teams must be able to
reproduce the results obtained for a given system.

• Feasibility: the concept of feasibility is twofold: the
effort needed to prepare and execute the benchmark
must be low enough to allow its use by a large
community of users; and the time needed to execute
the benchmark must not be too long.

• Low intrusiveness. The introduction of some
instrumentation in the system under observation is
unavoidable. However, the perturbation caused by
the instrumentation must be minimal in order to
keep the results meaningful (too much intrusiveness
would change the system under benchmark).

Fault representativeness is particularly difficult to
assure for software faults, as this class of faults is
particularly complex and its categorization is very
difficult. Because of this, the identification of the most
relevant faults to include in a faultload is not as
straightforward as in the case of other fault types.

In addition to the properties mentioned above, which
are difficult to attain for a faultload based on software
faults, there are additional difficulties:

• Emulation accuracy: as software faults have a
complex nature the emulation of this type of faults
is far more difficult than the traditional bit-flip fault
injection.

• Fault injection target identification: injecting a
software fault ultimately means that the target code
is changed in some way (a software fault is a
programming error). Because the objective of the
dependability benchmark is to observe the behavior
of a given module, it follows that this module
cannot be directly subjected to injection of faults.
Indeed, if we inject faults in it, we would no longer
have the original module and any conclusions
drawn afterwards might not apply.

Generally, the subject of the benchmark is a subsystem
or component that is part of a larger system, which may
include a variety of others components (software &
hardware). Thus, it is necessary to clarify the difference
between two concepts:

• Benchmark Target (BT) is the system or component
meant to be characterized by the benchmark.

• System Under Benchmark (SUB) is the complete
system needed to run the workload, which is
normally larger than the BT.

Because we cannot inject faults in the benchmark
target, we establish a clear separation between the fault
injection target component (FIT) and the benchmark
target (BT). The FIT is the component where the faults
are injected (also a part of the SUB). The idea supporting
this approach is that faults are injected in one component
with the purpose of evaluating their impact on another
component or in the overall system. This makes particular
sense in a COTS scenario, where a system integrator may
want to know how a given component will react to the
activation of hidden faults of another module (Fig. 1).

Faultload

Errors

Errors

System
Under
Benchmark
(SUB) =

Observations
&

measures

Fault Injection
Target (FIT)

Σ interacting
components

Benchmark
Target (BT)

Faultload

Errors

Errors

System
Under
Benchmark
(SUB) =

Observations
&

measures

Fault Injection
Target (FIT)

Σ interacting
components

Benchmark
Target (BT)

Figure 1 – Fault injection target

The choice of an adequate FIT introduces the

additional issues of fault activation rate and impact on the
benchmark domain. The FIT must be chosen in a way that
ensures the maximum activation rate without limiting the
scope of the benchmark.

We propose a methodology for the definition
faultloads based on software faults that specifically
address these issues in the following manner:

• We use published results on field-data studies
[11, 12] to identify a set of representative faults
types and include only those types in the
faultload. Particularly, in [12] the most frequent
software fault types that have occurred in a large
number of real programs were identified.

• We use the fault-injection technique proposed in
[13] to emulate software faults. The accuracy of
this technique was evaluated and proved to be
acceptable in [13].

• We choose a FIT that guaranties an optimized
fault activation rate and does not imposes
additional restriction on the benchmark scope.

The following subsections discuss in detail the
proposed methodology.

2.1. Identification of representative faults

A representative faultload is one that contains only

faults that are representative of the real faults
(programmer errors) that elude traditional software testing
techniques and are left undiscovered in software products

after shipment. The best way to estimate which faults are
representative is to analyze field data on software faults
discovered in programs already deployed.

The results presented in [11, 12] identify a clear trend
in the software faults that usually exist in available
systems: a small set of well-defined fault types is
responsible for a large part of the total software faults.
This set of fault types is the optimum starting point for a
faultload definition. [12] also presents an extension to the
Orthogonal Defect Classification (ODC) [14] fault
classification scheme. The new scheme is especially
useful for the emulation of software faults. Faults are
classified according to the point of view of the program
context in which they occur and are closely related with
programming language constructs.

According to this idea, a software defect is one or
more programming language constructs (statements,
expressions, etc) that are either missing, wrong or in
excess. This leads to the classification of faults as:
Missing construct, Wrong construct, or Extraneous
construct. Faults in each of these main classes are then
sub-divided according to the ODC classification. This
composed classification is particularly pertinent when
considering fault emulation, since emulating an omission
(missing construct) is substantially different from
emulating an extraneous construct.

Table 1 presents the fault types selected for inclusion
in our faultload. It also reproduces the statistical
information regarding the representativity of the fault
types according to the complete set of faults used in [12].
Faults of the extraneous construct nature were responsible
for a very small portion of the total number of faults and
did not justify its inclusion in the faultload. It is worth
noting that this small set of simple fault types represents
half of the total faults and cover four different ODC
types.

2.2 Emulation technique

Once identified the most frequent types of software

faults, we need a technique to emulate them accurately.
The technique G-SWFIT (Generic Software Fault
Injection Technique) [13] inserts directly in the target
code a sequence of processor instructions that emulate the
intended fault. The modifications inserted in the target
code (mutation) are such that reproduce the code that
would have been generated by the compiler if the
software faults were in the high level source code.
G-SWGIT provides good accuracy emulating software
faults [13] and has already proved to be a practical
technique for dependability benchmarking experiments
[7]. It also has important characteristics such as
independency from source code availability and
portability (see [13]).

G-SWFIT is based on a two steps methodology (Fig.
2): in the first step fault locations are identified (i.e., the
faultload is generated); this is done prior to the actual
experimentation. In step two the faults are actually
injected. The second step is usually performed during the
target execution, but it can also be performed beforehand.

The identification of the location faults in step 1 is
performed through the automated scanning of the target
executable code. The result of this scan is a map of the
target identifying the locations suitable for the emulation
of specific fault types. The scanning process is guided by
a library of mutation operators which is previously
defined according to a given fault model. Each operator
describes one specific type of fault (sometimes more than
one if the fault types are similar enough) and comprises
two components: a search pattern and a low-level
mutation definition. The search pattern is the set of
matching rules for the identification of the locations
where a given fault type can be emulated. The actual fault
injection in step 2 is a very simple and low intrusive task,
as each fault location have been previously identified in
step 1.

Faultload
Fault

definitions
(loc. & type)

Target

Analysis & fault generation

G-SWFIT
fault

generator

Mutation
operators

library
Injection

rules Target

G-SWFIT
fault

injector

Fault injection(1) (2)

Faultload
Fault

definitions
(loc. & type)

Target

Analysis & fault generation

G-SWFIT
fault

generator

Mutation
operators

library
Injection

rules Target

G-SWFIT
fault

injector

Fault injection(1) (2)

Figure 2 – G-SWFIT methodology.

The mutation operators related to the fault types of

Table 1 constitute the mutation operator library used with
in this work. Due to space restrictions we cannot
reproduce the operators here (see [12, 15]).

2.3 Fault injection target identification

The identification of the fault injection target is a

crucial step in the definition of the faultload. On one
hand, faults must be injected in locations that guarantee
an optimum activation rate; on the other hand, faults must
not be injected in the benchmarking target itself, as seen
before. Additionally, in order to ensure portability across
different benchmark targets (i.e., use the same faultload in
all of them), the FIT must be independent from the BT.

A strong candidate for the FIT role is the operating
system (OS), especially when the BT is the application
layer running on top of the OS (e.g., a database
management system (DBMS), a web-server, transaction
monitors, etc). Indeed, the OS verifies all the above
requirements: it is indispensable of the SUB operation, it
is independent from the application domain, and there is a
clear frontier between the OS and the BT. The following
reasons further justifies the selection of the OS as FIT:

• The use of the services of the operating system is
unavoidable; if the portions of the operating system
that are subjected to fault injection are adequately
chosen, there will be a high fault activation rate.

• Hidden faults do exist on common available
operating system. Several research works show this
(e.g. [16, 2, 12]). By applying fault injection on OS,
we are merely achieving the desired fault activation
acceleration factor.

• By choosing the operating system as the target for
fault injection any other software that runs on top of
the OS can be benchmarked (because the condition
that the FIT does not overlaps the BT is met).
Experiments using the OS itself as BT are still
possible if the target of the fault injection is
carefully chosen resulting in a self-contained and
clearly separated module, such as a device driver
(see [7] for an example).

Table 1 – Representativity of the fault types included in the faultload
Fault types Description Fault coverage ODC types

 MVI Missing variable initialization 2.25 % Assignment
 MVAV Missing variable assignment using a value 2.25 % Assignment
 MVAE Missing variable assignment using an expression 3 % Assignment
 MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking
 MLAC Missing "AND EXPR" in expression used as branch condition 7.89 % Checking
 MFC Missing function call 8.64 % Algorithm
 MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm
 MLPC Missing small and localized part of the algorithm 3.19 % Algorithm
 WVAV Wrong value assigned to a value 2.44 % Assignment
 WLEC Wrong logical expression used as branch condition 3 % Checking
 WAEP Wrong arithmetic expression used in parameter of function call 2.25 % Interface
 WPFV Wrong variable used in parameter of function call 1.5 % Interface

 Total faults coverage 50.69 %

Although we specifically propose the operating system
for the FIT role, other component of the SUB could
conceivable be chosen (as long as it does not overlap with
the BT itself).

2.4 Faultload fine-tuning

One of the main reasons for the use of fault injection
techniques in dependability experiments is the need of an
acceleration factor for the activation of faults. To achieve
an optimum fault activation rate, there must be some
assurance that the code subjected to faults is actually
executed during the experiments. Such assurance can only
be obtained if all fault locations are used. Because the OS
is usually a large portion of code, using all fault locations
would result in unfeasible experimentation time. Clearly,
some sort of guide is necessary to identify the faults
locations that have the highest probability of being
activated during the execution of the dependability
experiment (in a reasonable time period).

We propose a profiling phase to select the subset of the
FIT code that is (most) used during the benchmark
experimentation. To that effect, the SUB is exercised with
the same workload that is used during actual benchmark
execution. During the profiling phase, a trace of the API
calls is used to identify the FIT code subset that is most
used. The advantage of obtaining this FIT code subset is
twofold: we have a high level of assurance that the faults
injected there are activated; and, because the total number
of faults injected is smaller, the time needed for
experimentation is reduced.

To ensure that the FIT subset identified during the
profile is representative of the FIT usage across different
BT (so that faults injected there have an equivalent
activation rate and the benchmark itself is fair), the
profiling must be performed using several BTs of the
same category (i.e., if the BT is a DMBS, the several
DBMS must be used). The subset of the FIT that is
selected for actual fault injection is the intersection of the
results obtained with each different BT (again, of the
same category). The resulting faultload is specific for a
given OS and an intended domain (for example, for all
the DBMS). This is not a real restriction, as existing
(performance) benchmarks are already specific to a given
application domain (e.g., we have TPC-C for OLTP
applications, SPECWeb for web-server domain, etc.).

The methodology does not depend on the knowledge
of the internals of either the operational environment (OS,
platform) or the applications being observed. Thus this
approach allows the generation of generic faultloads
made of software faults that can be applied for
dependability benchmarking in a broad range of domains.
In the following section we apply this approach to define
a faultload for web-server comparison regarding its
behavior when executing in a faulty environment (OS).

3. Case study

In order to evaluate the proposed methodology in a

realistic dependability benchmarking scenario we decided
to extend the industry standard SPECWeb99 performance
benchmark for web servers [17], resulting in the first
dependability benchmarking experiment for web servers.

The benchmarking experiments were designed to show
that the faultloads defined using the proposed
methodology can really be used in future dependability
benchmarks. Two different web-servers, Apache
(available at www.apache.org) and Abyss (available at
www.aprelium.com/abyssws) were benchmarked for
comparative purposes running on top of two operating
systems (MS Windows 2000/SP4 and MS Windows XP
Pro/SP1), which is a realistic benchmarking scenario.
Although we do not claim that these experiments
constitute a formal proposal of the first dependability
benchmarking for web servers, we believe that these
results (which are effectively the first dependability
benchmark results for web-servers) are a significant step
in that direction.

The SPECWeb99 performance benchmark can be
briefly described as follows [17]:

• Benchmark setup: SPECWeb99 uses one or more
clients to submit requests to the web-server under
evaluation. One of the clients (the prime client)
coordinates all the others. The clients are usually
executed in different machines, although that is not
a requirement. Additionally, each client can be
executed in different operating systems.

• Workload: The workload submitted to the server is
representative of the average use of the common
web-based services and is composed of the typical
operations allowed by the HTML (GET and POST
operations, both static and dynamic). The workload
also reproduces common actions such as on-line
registration and advertisement serving.

• SPECWeb99 performance measures: The
measurements obtained through the SPECWeb99
client are mainly related to performance. The most
relevant to our work are the following:
− SPEC: This is the main SPECWeb99 metric. It

measures the number of simultaneous
conforming connection. SPEC defines
conforming connection (CC%) as a connection
with an average bit rate of at least 320 kbps and
less than 1% of errors reported. This metric will
be referred from now on as SPC.

− Throughput: this is the number of operations
(e.g., GETs and POSTs) per second (THR).

− Response time: this is the average time in
milliseconds that the operations requested by the
client take to complete (RTM).

− Error rate: this is the rate of errors found by the
client in the requested operations (ER%).

• Benchmark rules: SPECWeb99 dictate very
specific rules for experiment conduction. We refer
the reader to [17] for more details on those rules.
The most relevant at this point is that SPECWeb99
imposes that each benchmark experiment must be
carried through a series of at least three batches of
1200 or more seconds each, separated by a rampup
and a rampdown interval (both 300 seconds). At the
beginning of each experiment there is a warmup
period of 1200 seconds.

3.1 Experimental setup

Our experimental setup is composed of a server

machine (Athlon XP 2600+, 512Mb) which hosts the
web-server and the G-SWFIT injector, and a client
machine (Pentium IV 2GHz, 512Mb), which runs the
benchmarking client. Both machines are connected via a
100 Mbps Ethernet connection. The client machine never
changes; the server machine embodies the SUB and has
different instantiations according to the combination of
OS and web-server used in each experiment (Fig. 3).

S erver m achin e C lient m achin e

O .S . = W in X PO .S . =
W in X P / W in 2 0 0 0

W e b
S e rve r

A p ac he /
A b ys s

L oca l E the rne t 100 M b ps

G -S W F IT
In je c to r

F a u ltld .

S P E C W eb 9 9
C lie nt

W o rk lo a d

M e a s u re -
m e nts

M e a s ure -
m e nts

B ench .
R e su lts

S erver m achin e C lient m achin e

O .S . = W in X PO .S . = W in X PO .S . =
W in X P / W in 2 0 0 0
O .S . =
W in X P / W in 2 0 0 0

W e b
S e rve r

A p ac he /
A b ys s

W e b
S e rve r

A p ac he /
A b ys s

L oca l E the rne t 100 M b ps

G -S W F IT
In je c to r

F a u ltld .

G -S W F IT
In je c to r

F a u ltld .

S P E C W eb 9 9
C lie nt

W o rk lo a d

S P E C W eb 9 9
C lie nt

W o rk lo a d

M e a s u re -
m e nts

M e a s u re -
m e nts

M e a s ure -
m e nts

M e a s ure -
m e nts

B ench .
R e su lts
B ench .
R e su lts

Figure 3 – Experimental setup overview.

Our G-SWFIT injector takes the faultload definition
and injects each fault directly into the code of the running
target. The injector is also monitors the web-server
activity and, if needed, stop it and/or restart it. The
G-SWFIT injector provides the following measures
regarding the web-server error and availability status:

• Number of times the web-server died and did not
self-restarted (MIS);

• Number of times the web-server had to be killed
because it was not responding to HTML requests
(KNS);

• Number of times the web client had to be killed
because it was hogging the CPU and not providing
service (KCP).

We configured the G-SWFIT fault injector to apply
each software fault every 10 seconds. We reached the

value of 10 seconds by observing the log files of the
web-server after preliminary runs with the SPECWeb99.
The average duration of the workload operations is less
than a second, thus inserting each fault for a period of 10
seconds is enough time to activate the fault.

The injection of each fault may have one of the
following consequences: it may be tolerated; it may
simply cause performance degradation; it may cause the
web-server to crash or die.

To comply with SPECWeb99 rules, we organized our
experiments as a series of time slots. During each slot the
web-server is exercised with the workload and the
operating system is subjected to the faults defined in the
faultload. Between each slot, the web-server is not
exercised and no faults are injected (Fig. 4).

Time

Specweb Ramp Up
+ Ramp Down times.

faults

O.S. (FIT)

workload

. . .

. . .

Web Srv. (BT) idle Time

Specweb Ramp Up
+ Ramp Down times.

faults

O.S. (FIT)

workload

. . .

. . .

Web Srv. (BT) idle

Figure 4 – Experiment structure.

3.2 Dependability benchmark metrics

The output of a benchmark is ideally a small, non-

overlapping set of metrics with well-defined meanings.
We propose a set of new metrics based on the readouts
provided from the SPECWeb99 client and the G-SWFIT
injector. These metrics provide an immediate comparative
view of the web-servers:

• Performance degradation: This metric represent
the penalty in the performance of the web-server
caused by the faultload. It is composed by:
− SPCf: Main SPEC measure in the presence of

the faultload.
− THRf: Throughput in the presence of the

faultload.
− RTMf: Response time in the presence of the

faultload.
• Need of administrator intervention – ADMf: this

metric gives an idea about the need of
administrative intervention (human or automated)
to repair the web-server. Administration
intervention is needed when the web-server dies or
stops providing useful service. The value for this
metric can be computed as the sum of the values
that represent all the situations where the web-
server had to be restarted: MIS, KNS, and KCP.

• Error rate in the presence of the faultload –
ER%f: this metric is the average percentage of
errors discovered in the operations (extracted from
ER%).

3.3 Faultload definition

We used an API tracing tool to discover which OS

functions were the most used by each web-server.
According to our methodology, the code of those API
functions is the optimum target for fault injection.
Because these functions belong to the operating system
itself and not to the application being observed, we meet
the condition that the observed application is not changed
in any way. Only the API functions that were used by all
the observed web-servers were eligible. Functions that
were responsible for a negligible percentage of the total
number of API calls were ignored. Table 2 presents the
resulting set of functions. In addition to the Abyss and
Apache web-servers, we also used Sambar and Savant
web-servers in the profiling for the faultload fine tuning.

The most common used API call fall into the kernel32
and ntdll system modules. This represents an additional
advantage because, normally, all applications under
Windows have these two modules mapped into its address
space (thus improving the portability of the faultload). It
is worth noting that although the number of selected
functions is relatively small, it represents two thirds of all
the calls made to the OS by the observed web-servers. It
is also interesting to observe that the API usage pattern is
very stable across all the four web-servers. This gives us

some confidence in the assumption that other web-server
will also possess a similar pattern.

We applied the G-SWFIT technique to generate the
faultload. Because our work involves two operating
systems, we obtained two different faultloads (Table 3).

3.4 Experimental results

Our injector has a special profile mode of operation

designed to measure its performance overhead and
intrusion in the overall system. While in that mode, all
tasks related to an injection experiment are carried out but
the injection itself does not change the target. We run a
complete set of experiments with the injector in profile
mode. The comparison of the results (performance and
outputs) against the results observed without the injector
running gives us a measure of the injector overhead and
intrusiveness. Table 4 presents the results. The worst case
of performance degradation is less than 2%; the average
degradation is around 1%. Even in the worst case, the
injector intrusiveness is not significant enough to affect
the main SPECWeb figure. We conclude that the injector
has a reasonably low performance penalty. No errors
were signaled by the SPECWeb99 client nor registered in
the log files, so we can conclude that the intrusion in the
web-server operation is non-existent or very low.

Table 2 – Relevant API calls.
API Representativeness (%) of the total number of API

Function name Module Apache Abyss Samba Savant Average

NtClose Ntdll 2.8 1.6 2.4 0.8 1.9
NtCreateFile Ntdll 0.7 0.3 0.4 0.3 0.43
NtOpenFile Ntdll 1.4 0.5 1.4 0.3 0.9
NtProtectVirtualMemory Ntdll 3.8 2.5 3.2 2.3 2.95
NtQueryVirtualMemory Ntdll 1.9 1.1 1.6 1.1 1.43
NtReadFile Ntdll 0.2 2.9 5.6 0.4 2.28
NtWriteFile Ntdll 0.2 1.1 0.1 0.2 0.4
RtlAllocateHeap Ntdll 14.6 17.6 4.3 17.5 13.5
RtlDosPathNameToNtPathName U Ntdll 2.3 1.2 1.9 0.8 1.55
RtlEnterCriticalSection Ntdll 3.3 2.3 1.8 2.3 2.43
RtlFreeHeap Ntdll 17.4 19.8 18.6 17.8 18.4
RtlFreeUnicodeString Ntdll 0.3 0.8 0.9 0.6 0.65
RtlInitAnsiString Ntdll 0.5 1.1 1.7 0.3 0.9
RtlInitUnicodeString Ntdll 3.2 3.5 4.8 1.4 3.23
RtlLeaveCriticalSection Ntdll 3.3 2.3 1.8 2.3 2.43
RtlUnicodeToMultiByteN Ntdll 11.7 8.3 10.9 14.5 11.35
CloseHandle Kernel32 0.9 1.1 0.9 0.2 0.78
GetLongPathNameW Kernel32 0.1 0.1 0.1 0.1 0.1
ReadFile Kernel32 0.2 2.9 5.6 0.1 2.2
SetFilePointer Kernel32 0.2 0.2 0.1 0.1 0.15
WriteFile Kernel32 0.2 1.1 0.1 0.1 0.38

Total call coverage 69.2 72.3 68.2 63.5 68.34

Table 3 – Faultload details
 Number of faults per fault type Total
 MVI MVAV MVAE MIA MLAC MFC MIFS MLPC WVAV WLEC WAEP WPFV faults
 Windows 2000 SP4 149 4 129 497 147 392 200 50 33 71 11 31 1714
Windows XP SP1 192 5 117 899 253 629 471 94 59 163 11 34 2927

The results observed with the injector running in
profile mode correspond the baseline web-server behavior
(i.e., the injector is considered as part of the load
submitted to the server machine). The observations
obtained during actual fault injection will be compared
against the baseline behavior.

Each combination of web-server/operating system was
tested three times (to comply with SPECWeb rules).
Table 5 presents the results. We are specially interested in
the average behavior variation of the web-servers relative
its baseline behavior because that variation is an indicator
of the web-server vulnerability (or tolerance) to faults
existing in the OS.

The following observations are pertinent for the
validation of the faultload properties:

• All three iterations yielded very similar results
within each web-server/OS pair. This suggests that
experiments using these faultloads are repeatable;

• The results allow a clear distinction between the
two web-servers. This gives us confidence to the
assumption that our faultloads are indeed useful for
dependability experiments;

• The behavior of the two web-servers in presence of
faults remains stable across both OSes. This is an
important fact because it suggests that, although the
faultloads are not exactly equal (but were generated
through the same rules), they are equivalent in the
sense that provide the same kind of BT behavior
across different OSes.

Figure 5 presents a comparison of Apache and Abyss
web-servers using our metrics. To allow for a clear

comparison between Apache and Abyss, both
web-servers appear side by side. To easily assess the
impact of the faultloads over each web-server, we present
both the baseline performance and the behavior with
faults.

The results clearly point to the conclusion that the
Apache web-server experiences less service and
performance degradation than Abyss web-server when
exposed to an operating system with software faults. All
metrics give Apache an advantage over the Abyss: the
performance relative to its normal condition (i.e., without
faults) is better than in the case of Abyss; the percentage
of erroneous operations lower; the number of times
Apache had to be killed and/or restarted explicitly is
lower than in the case of Abyss, thus requiring less
administration intervention (this is consistent with the fact
that Apache has a built-in mechanism that allows it to
self-restart in some error situations).

It is worth noting that the relative difference between
Apache and Abyss is the same for both Windows 2000
and Windows XP (see Figure 5). This leads us to
conclude that the faultloads exposed an intrinsic property
of the web-servers tested. This fact suggests that concrete
conclusions can indeed be extracted regarding the
comparison of the web-servers. Although the faultloads
used for Windows 2000 and Windows XP are different
(e.g., the number of fault is larger for XP), the results of
the experiment are consistent. This leads to the
conclusion that the methodology used for the definition of
the faultloads is valid and portable across different
operating systems.

Table 4 – Performance degradation and intrusion evaluation.
 Windows 2000 Windows XP
 Apache Abyss Apache Abyss

 SPC CC% THR RTM SPC CC% THR RTM SPC CC% THR RTM SPC CC% THR RTM
Max. Perf. 37 100 104.2 354.2 34 100 95.9 355.5 34 100 93.9 361.2 33 100 93.7 352.5
Profile mode 37 100 103 358.1 34 100 95.3 358.1 34 100 92.9 365.5 33 100 92 359.4
Degradation (%) 0 0 1.15 1.1 0 0 0.63 0.73 0 0 1.06 1.19 0 0 1.81 1.96

Table 5 – Experimental results.
 B.T. = Apache web-server B.T. = Abyss web-server

 SPC THR RTM ER% MIS KCP KNS SPC THR RTM ER% MIS KCP KNS

Baseline Perf. 37 103 358.1 0 0 0 0 34 95.3 358.1 0 0 0 0
Iteration 1 13.6 98.6 366.5 7.7 64 0 74 9.1 91.5 363.1 21.9 125 0 43
Iteration 2 12.7 97.3 368.2 7.7 58 1 65 9.3 91.7 362.7 22.3 135 0 35
Iteration 3 13.9 98.5 366.9 7.6 58 2 68 9 91.4 363.8 21.8 131 0 38

W
in

. 2
00

0

Average (all iter) 13.4 98.1 367.2 7.7 60 1 69 9.1 91.5 363.2 21.9 130.3 0 38.7

Baseline Perf. 34 92.9 365.5 0 0 0 0 33 92 359.4 0 0 0 0
Iteration 1 13.8 90.3 371.7 5.8 86 1 102 10 88.9 364.7 14.2 165 0 52
Iteration 2 14.4 90.1 367.7 5.7 85 1 107 8.5 88.5 361.9 14.7 171 0 57
Iteration 3 13.1 89.7 373.3 5.7 84 1 101 8.4 88.5 366.2 14.6 154 0 69 W
in

. X
P

Average (all iter) 13.7 90 370.8 5.7 85 1 103 8.9 88.6 364.3 14.5 163.3 0 59.3

4. Faultload properties discussion

This section discusses the properties of the proposed

faultload.

Representativeness: The faultloads used in this work
are representative because they are based on
representative types of software faults identified in
previously published works using actual field data.
Additionally, the fault locations reside in code that is
representative of the most used OS API functions from
the point of view of the BT.

Feasibility and benchmark execution time: In
addition to showing the feasibility of the proposed
approach, the case study also allows us to measure the
execution time of the various steps. The time needed to
generate the faultload is the time that the G-SWFIT takes
to analyze the target (less than 5 minutes). The profile
process used to fine tune the faultload took about 100
min. for each web-server. The duration of the
experimentation is a function of the number of faults.
Even with the larger faultload of the Windows XP, the
experiments took about 24 hours (3 complete runs),
which acceptable for dependability benchmarking.

Accuracy: As we use a technique that replicates the
code that corresponds to typical programmer errors, we
emulate the fault itself and not only its effects, thus
providing a good accuracy. A detailed evaluation of the
accuracy of the technique is provided in [13] (which
concludes that this form of fault emulation has indeed a
good accuracy).

Repeatability: The results of the experiments
presented here show that our faultloads are repeatable: not
only all iterations inside each web-sever/OS yielded
similar results, but also we observed a clear behavior
pattern that remains stable across the two different OSes.

Portability: The portability of the faultload is directly
derived from the portability of G-SWFIT itself. In the
work presented in [13] we have shown that G-SWFIT is
portable: the main issue is the definition of the mutation
operator library. That task is mainly dependent on the
target processor architecture. In fact the programming
language, the compiler, and the compiler optimization
switches also have some influence on the library;
however, such variations cause only the need of some
additional operators in the library. Different processor
architectures usually require different libraries. When
porting the mutation library to other processors, all which
is required is the specification of new rules and mutations.
The technique itself remains the same.

Scalability: The faultload size is mainly dependent of
the complexity of the FIT and not directly on the BT. In
our case we have already used one of the most complex
FIT available (the Windows XP) and still the experiments
were reasonably feasible both in effort and time. Even
using a larger BT, the faultload is not expected to grow
significantly.

Non-intrusiveness: Our experiments show that the
performance overhead of the faultload and the technique
to deploy it is low (less than 2% in the worst case).
Furthermore, no side-effects on the BT behavior were
caused by the injector itself.

 Baseline performance vs.
Perf. in presence of faults

Need of administrator
intervention

 Error rate in presence
of faults

W
in

do
w

s
20

00

37 34

13.4
9.1

0

10

20

30

40

Apache Abyss

SPC SPCf

103

95.3
98.1

91.3

85

90

95

100

105

Apache Abyss

THR THRf

130
169

0

50

100

150

200

Apache Abyss

ADMf

7.7

21.9

0
5

10
15
20
25

Apache Abyss

ER%f

W
in

do
w

s X
P 34 33

13.7
8.9

0

10

20

30

40

Apache Abyss

SPC SPCf

92.9
92

90
88.6

86

88

90

92

94

Apache Abyss

THR THRf

189.3

222.7

170
180
190
200
210
220
230

Apache Abyss

ADMf

5.7

14.5

0

5

10

15

20

Apache Abyss

ER%f

Figure 5 – Comparison of the behavior of Apache and Abyss in presence of software faults.

5. Conclusions
In this paper we presented a methodology for the

definition of faultloads based on software faults for
dependability research. The methodology does not
depend on any specific properties of the target system or
operational environment. Also it does not require any
knowledge of the details of the target such as source code.

As a case study, the methodology was applied to
benchmark the dependability of two different web-
servers. Because we wanted to evaluate the web-server
behavior, faults had to be injected in another component
of the system. The operating system is a good choice
when the benchmark target is in the application domain.
We generated a faultload for Windows 2000 and a
faultload for Windows XP. Both faultloads were fine-
tuned to assure an optimum fault activation ratio. Faults
were defined and injected using the G-SWFIT technique,
which emulates software faults in a realistic manner.

The results of the experiments suggest that our
faultloads are indeed useful to observe and compare the
behavior of different applications in the presence of
software faults. Our results enabled us to extract objective
conclusions regarding the comparison between the two
web-servers tested.

Based on the analysis of the methodology used to
define the faultloads and on the results obtained with the
experiments conducted, we concluded that our faultloads
satisfy the key properties required for its use in
dependability benchmarking contexts. Based on these
experiments, a full dependability benchmark for web-
servers can be defined by adding more fault models
(hardware faults, operator faults, etc.) and measures.

An important characteristic of the methodology and
the resulting faultloads is the fact that it is not tied to a
specific type of platform. Therefore, the methodology and
faultloads can be used in other experimental contexts, for
example, DBMS dependability benchmarking.

References

[1] D. P. Siewiorek et al., “Developement of a Benchmark to
Measure System Robustenness”, Proc. of the IEEE International
Fault Tolerant Computing Symposium, June 1993, pp. 88-97.
[2] P. Koopman, J. Sung, C. Dingman, D. Siewiorek, T. Marz,
“Comparing Operating Systems using Robustness
Benchmarks”, in Proceedings of the 16th International
Symposium on Reliable Distributed Systems, SRDS-16,
Durham, NC, USA, 1997.
[3] A. Mukherjee and D. P. Siewiorek, “Measuring software
dependability by robustness benchmarking”, IEEE Transactions
on Software Engineering, Vol. 23, No. 6, June, 1997.
[4] T. Tsai and R, K. Iyer, “An Approach to Benchmarking of
Fault-Tolerant Commercial Systems”, Proc. of the 26th IEEE
Fault Tolerant Computing Symposium, FTCS-26, Sendai,
Japan, pp. 314-323, June 1996.

[5] M. Vieira and H. Madeira, “Benchmarking the
Dependability of Different OLTP Systems”, The International
Conference on Dependable Systems and Networks, DSN-
DCC2003, San Francisco, CA, June 22 - 25, 2003.
[6] Marco Vieira and Henrique Madeira, “A Dependability
Benchmark for OLTP Application Environments”, 29th
International Conference on Very Large Data Bases,
VLDB2003, Berlin, Germany, September 09-12, 2003.
[7] J. Durães, H. Madeira, "Multidimensional Characterization
of the Impact of Faulty Drivers on the Operating Systems
Behavior ", IEICE Transactions, Special Issue on Dependability
Computing, Dec. 2003.
[8] K. Buchacker, M. Dal Cin, H.-J. Hoexer, R. Karch, V. Sieh,
and O. Tschaeche, “Reproducible Dependability Benchmarking
Experiments Based on Unambiguous Benchmark Setup
Descriptions”, The Int. Conf. on Dependable Systems and
Networks, DSN-PDS03, San Francisco, CA, June 22-25, 2003.
[9] Ji J. Zhu, J. Mauro, and I. Pramanick, “Robustness
Benchmarking for Hardware Maintenance Events”, The
International Conference on Dependable Systems and Networks,
DSN2003, San Francisco, CA, June 22 - 25, 2003.
[10] A. Brown and D. Patterson, “To Err is Human”, First
Workshop on Evaluating and Architecting System
Dependability (EASY), Joint organized with Int. Conf. on
Dependable Systems and Networks, DSN-2001, Göteborg,
Sweden, July, 2001
[11] J. Christmansson, Chillarege, “Generation of an Error Set
that Emulates Software Faults”, Proc. of the 26th IEEE Fault
Tolerant Computing Symp., FTCS-26, Sendai, Japan, pp. 304-
313, June 1996.
[12] J. Durães, H. Madeira, "Definition of Software Fault
Emulation Operators: a Field Data Study", The Intl Conference
on Dependability Systems and Networks, DSN-2003, San
Francisco, CA, USA, June-2003
[13] J. Durães, H. Madeira, "Emulation of Software Faults by
Educated Mutations at Machine-Code Level", Proc. of the 13th
IEEE Int. Symp. on Software Reliability Engineering,
ISSRE’02, Annapolis MD, USA, pp. 329-340, November 2002.
[14] R. Chillarege, “Orthogonal Defect Classification”, Ch. 9
of “Handbook of Software Reliability Engineering”, M. Lyu
Ed., IEEE Computer Society Press, McGrow-Hill, 1995
[15] J. Durães, H. Madeira, “Definition of complete set of
software fault emulation operators based on a field data Study”,
Technical Report DEI-005-2002, ISSN 0873-9293,
Departamento de Engenharia Informática – FCTUC, 2002,
http://www.dei.uc.pt/~henrique/G-SWFIT.htm.
[16] J.-C. Fabre, F. Salles, M. R. Moreno, J. Arlat, “Assessment
of COTS Microkernels by Fault Injection”, in Dependable
Computing for Critical Applications (Proceedings of the 7th
IFIP Working Conf. on Dependable Computing for Critical
Applications: DCCA-7, San Jose, CA, USA, Jan 1999).
[17] “SPECWeb99 Benchmark”, Standard Performance
Evaluation Corporation, http://www.spec.org/web99.

Acknowledgements
Funding for this paper was provided, in part, by the Portuguese
Government/European Union through R&D Unit 326/94
(CISUC) and by DBench project, IST 2000 - 25425 DBENCH.

