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Abstract 
 
The most critical component of a dependability 

benchmark is the faultload, as it should represent a 
repeatable, portable, representative, and generally 
accepted set of faults. These properties are essential to 
achieve the desired standardization level required by a 
dependability benchmark but, unfortunately, are very 
hard to achieve. This is particularly true for software 
faults, which surely accounts for the fact that this 
important class of faults has never been used in known 
dependability benchmark proposals. This paper proposes 
a new methodology for the definition of faultloads based 
on software faults for dependability benchmarking. 
Faultload properties such as repeatability, portability 
and scalability are also analyzed and validated through 
experimentation using a case study of dependability 
benchmarking of web-servers. We concluded that 
software fault-based faultloads generated using our 
methodology are appropriate and useful for dependability 
benchmarking. As our methodology is not tied to any 
specific software vendor or platform, it can be used to 
generate faultloads for the evaluation of any software 
product such as OLTP systems. 

 
1.  Introduction 

 
The idea of benchmarking dependability features of 

computer systems or computer components has caught 
the attention of researchers and practitioners in recent 
years. After two decades of a success story in the area of 
performance benchmarks, the notion that measuring pure 
performance is not enough in many cases becomes more 
and more evident. 

The performance benchmarking field has originated 
solid industry driven organizations such as the TPC 
(Transaction Processing Performance Council) and the 
SPEC (Standard Performance Evaluation Corporation), 
that have released many successful performance 
benchmarks. These performance benchmarks have 
contributed to improve peak performance of successive 
generations of computer systems, particularly in what 
concerns key components such as processors and graphic 

boards, at the hardware level, or database management 
systems (DBMS) and web-servers, at the software level.  

Unfortunately, the seek for pure peak performance also 
have caused that, in many cases, the systems and 
configurations used to achieve the best performance are 
very far from the systems that are actually used in 
practice (this is in fact the main criticism on TPC and 
SPEC benchmarks). The fact that many businesses and 
applications require high availability, reliability, integrity, 
or other dependability attributes shows that it is necessary 
to shift the focus from measuring pure performance to the 
measurement of both performance and dependability. 
This is just the goal of the dependability benchmarks. 

A dependability benchmark can then be defined as a 
specification of a standard procedure to assess 
dependability related measures of a computer system or 
computer component. The key aspect that distinguishes 
dependability benchmarking from existing dependability 
evaluation and validation techniques is the standard 
nature required by a dependability benchmark. This 
standardization can only be achieved through an 
agreement (explicit or tacit) from the computer industry 
and/or by the user community. However, the contribution 
of the research community is essential to show possible 
solutions for the complex technical problems posed by 
dependability benchmarking. 

Many research works have established the ground for 
the proposal of dependability benchmarks. In addition to 
many works on experimental dependability evaluation, 
especially on the field of fault injection and robustness 
testing, the first works that have carved the concept of 
dependability benchmark are [1,2,3,4]. More recent 
research works have proposed and demonstrated fully 
functional dependability benchmarks [5,6,7,8,9,10]. Most 
of these proposals elaborate on the typical scenario used 
by performance benchmarks, which consists of four main 
elements: benchmarking setup, measures, workload, and 
procedures & rules, and add two new components: 
dependability measures and faultload.  

The faultload is in fact the most critical component of 
a dependability benchmark, as it should represent a 
repeatable, portable, representative, and generally 
accepted set of faults. Years of research in the field of 



dependability, especially on topics such as fault injection 
and analysis of field data on fault manifestations, have 
shown that the definition of a set of faults with the 
properties mentioned above is very hard to attain. 

It is not a surprise the fact that all the dependability 
benchmarks proposed so far include as faultload only 
operator faults [5, 6, 10] and hardware faults [8, 9]. 
Software faults have been completely absent from this 
research effort. Unfortunately, it is well-known that most 
of the computer outages are caused by residual software 
faults, which means that all the benchmark faultloads 
proposed so far simply ignore the most frequent source of 
problems in computer industry: the software faults. 

This is precisely the goal of this paper, as we propose a 
methodology to define faultloads based on software 
faults. Our methodology builds on previous published 
results based on field data and uses a fault injection 
technique based on machine code mutations to emulate 
programming errors. The paper also shows how the 
proposed method can be used to define a faultload based 
on software faults for a dependability benchmark of 
web-servers, and actually presents the first comparative 
dependability benchmarking of two well-known web-
servers. Properties such as repeatability, portability and 
scalability are also analyzed and validated through the set 
of experiments presented in the paper.  

The remainder of this paper is organized as follows: 
the next section presents the proposed methodology for 
the definition of faultloads based on software faults. 
Section 3 shows how to generate a faultload using our 
methodology for application in case-study scenario of 
dependability benchmarking; using the results of the 
previous section we discuss the validation of the faultload 
properties in section 4. Section 5 concludes the paper. 

 
2.  Faultload definition approach 

 
The success of a benchmark is measured by its 

acceptance by the industry and user/research 
communities. To be accepted, a benchmark must verify a 
number of key properties: 

• Representativeness: the workload submitted to the 
system under evaluation must represent typical 
profile for a given application domain. It is worth 
noting that benchmarks are specific to an 
application domain (e.g., transactional applications) 
or a given type of component (e.g., operating 
systems). Additionally, the faultload must represent 
the typical faults experienced by those systems in 
the field. The present work focuses on software 
faults. 

• Portability. One of the most relevant uses of 
benchmarks is the comparison of a set of systems of 
a given category (DBMS, for instance). Therefore, 

it is of paramount importance that the benchmark 
can be used in the different systems used in a given 
application domain. 

• Repeatable. By definition a benchmark is a tool that 
quantifies a given property of a system. Obviously, 
running the benchmark twice the user must obtain 
the same results (at least in statistical terms). 
Additionally, different teams must be able to 
reproduce the results obtained for a given system. 

• Feasibility: the concept of feasibility is twofold: the 
effort needed to prepare and execute the benchmark 
must be low enough to allow its use by a large 
community of users; and the time needed to execute 
the benchmark must not be too long. 

• Low intrusiveness. The introduction of some 
instrumentation in the system under observation is 
unavoidable. However, the perturbation caused by 
the instrumentation must be minimal in order to 
keep the results meaningful (too much intrusiveness 
would change the system under benchmark). 

Fault representativeness is particularly difficult to 
assure for software faults, as this class of faults is 
particularly complex and its categorization is very 
difficult. Because of this, the identification of the most 
relevant faults to include in a faultload is not as 
straightforward as in the case of other fault types. 

In addition to the properties mentioned above, which 
are difficult to attain for a faultload based on software 
faults, there are additional difficulties: 

• Emulation accuracy: as software faults have a 
complex nature the emulation of this type of faults 
is far more difficult than the traditional bit-flip fault 
injection.  

• Fault injection target identification: injecting a 
software fault ultimately means that the target code 
is changed in some way (a software fault is a 
programming error). Because the objective of the 
dependability benchmark is to observe the behavior 
of a given module, it follows that this module 
cannot be directly subjected to injection of faults. 
Indeed, if we inject faults in it, we would no longer 
have the original module and any conclusions 
drawn afterwards might not apply. 

Generally, the subject of the benchmark is a subsystem 
or component that is part of a larger system, which may 
include a variety of others components (software & 
hardware). Thus, it is necessary to clarify the difference 
between two concepts:  

• Benchmark Target (BT) is the system or component 
meant to be characterized by the benchmark.  

• System Under Benchmark (SUB) is the complete 
system needed to run the workload, which is 
normally larger than the BT. 



Because we cannot inject faults in the benchmark 
target, we establish a clear separation between the fault 
injection target component (FIT) and the benchmark 
target (BT). The FIT is the component where the faults 
are injected (also a part of the SUB). The idea supporting 
this approach is that faults are injected in one component 
with the purpose of evaluating their impact on another 
component or in the overall system. This makes particular 
sense in a COTS scenario, where a system integrator may 
want to know how a given component will react to the 
activation of hidden faults of another module (Fig. 1).  
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Figure 1 – Fault injection target 
 
The choice of an adequate FIT introduces the 

additional issues of fault activation rate and impact on the 
benchmark domain. The FIT must be chosen in a way that 
ensures the maximum activation rate without limiting the 
scope of the benchmark. 

We propose a methodology for the definition 
faultloads based on software faults that specifically 
address these issues in the following manner: 

• We use published results on field-data studies 
[11, 12] to identify a set of representative faults 
types and include only those types in the 
faultload. Particularly, in [12] the most frequent 
software fault types that have occurred in a large 
number of real programs were identified.  

• We use the fault-injection technique proposed in 
[13] to emulate software faults. The accuracy of 
this technique was evaluated and proved to be 
acceptable in [13]. 

• We choose a FIT that guaranties an optimized 
fault activation rate and does not imposes 
additional restriction on the benchmark scope. 

The following subsections discuss in detail the 
proposed methodology. 

 
2.1. Identification of representative faults 

 
A representative faultload is one that contains only 

faults that are representative of the real faults 
(programmer errors) that elude traditional software testing 
techniques and are left undiscovered in software products 

after shipment. The best way to estimate which faults are 
representative is to analyze field data on software faults 
discovered in programs already deployed.  

The results presented in [11, 12] identify a clear trend 
in the software faults that usually exist in available 
systems: a small set of well-defined fault types is 
responsible for a large part of the total software faults. 
This set of fault types is the optimum starting point for a 
faultload definition. [12] also presents an extension to the 
Orthogonal Defect Classification (ODC) [14] fault 
classification scheme. The new scheme is especially 
useful for the emulation of software faults. Faults are 
classified according to the point of view of the program 
context in which they occur and are closely related with 
programming language constructs.  

According to this idea, a software defect is one or 
more programming language constructs (statements, 
expressions, etc) that are either missing, wrong or in 
excess. This leads to the classification of faults as: 
Missing construct, Wrong construct, or Extraneous 
construct. Faults in each of these main classes are then 
sub-divided according to the ODC classification. This 
composed classification is particularly pertinent when 
considering fault emulation, since emulating an omission 
(missing construct) is substantially different from 
emulating an extraneous construct. 

Table 1 presents the fault types selected for inclusion 
in our faultload. It also reproduces the statistical 
information regarding the representativity of the fault 
types according to the complete set of faults used in [12]. 
Faults of the extraneous construct nature were responsible 
for a very small portion of the total number of faults and 
did not justify its inclusion in the faultload. It is worth 
noting that this small set of simple fault types represents 
half of the total faults and cover four different ODC 
types. 

 
2.2 Emulation technique 

 
Once identified the most frequent types of software 

faults, we need a technique to emulate them accurately. 
The technique G-SWFIT (Generic Software Fault 
Injection Technique) [13] inserts directly in the target 
code a sequence of processor instructions that emulate the 
intended fault. The modifications inserted in the target 
code (mutation) are such that reproduce the code that 
would have been generated by the compiler if the 
software faults were in the high level source code. 
G-SWGIT provides good accuracy emulating software 
faults [13] and has already proved to be a practical 
technique for dependability benchmarking experiments 
[7]. It also has important characteristics such as 
independency from source code availability and 
portability (see [13]). 



G-SWFIT is based on a two steps methodology (Fig. 
2): in the first step fault locations are identified (i.e., the 
faultload is generated); this is done prior to the actual 
experimentation. In step two the faults are actually 
injected. The second step is usually performed during the 
target execution, but it can also be performed beforehand. 

The identification of the location faults in step 1 is 
performed through the automated scanning of the target 
executable code. The result of this scan is a map of the 
target identifying the locations suitable for the emulation 
of specific fault types. The scanning process is guided by 
a library of mutation operators which is previously 
defined according to a given fault model. Each operator 
describes one specific type of fault (sometimes more than 
one if the fault types are similar enough) and comprises 
two components: a search pattern and a low-level 
mutation definition. The search pattern is the set of 
matching rules for the identification of the locations 
where a given fault type can be emulated. The actual fault 
injection in step 2 is a very simple and low intrusive task, 
as each fault location have been previously identified in 
step 1.  
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Figure 2 – G-SWFIT methodology. 
 
The mutation operators related to the fault types of 

Table 1 constitute the mutation operator library used with 
in this work. Due to space restrictions we cannot 
reproduce the operators here (see [12, 15]).  

2.3 Fault injection target identification 
 
The identification of the fault injection target is a 

crucial step in the definition of the faultload. On one 
hand, faults must be injected in locations that guarantee 
an optimum activation rate; on the other hand, faults must 
not be injected in the benchmarking target itself, as seen 
before. Additionally, in order to ensure portability across 
different benchmark targets (i.e., use the same faultload in 
all of them), the FIT must be independent from the BT.  

A strong candidate for the FIT role is the operating 
system (OS), especially when the BT is the application 
layer running on top of the OS (e.g., a database 
management system (DBMS), a web-server, transaction 
monitors, etc). Indeed, the OS verifies all the above 
requirements: it is indispensable of the SUB operation, it 
is independent from the application domain, and there is a 
clear frontier between the OS and the BT. The following 
reasons further justifies the selection of the OS as FIT: 

• The use of the services of the operating system is 
unavoidable; if the portions of the operating system 
that are subjected to fault injection are adequately 
chosen, there will be a high fault activation rate. 

• Hidden faults do exist on common available 
operating system. Several research works show this 
(e.g. [16, 2, 12]). By applying fault injection on OS, 
we are merely achieving the desired fault activation 
acceleration factor. 

• By choosing the operating system as the target for 
fault injection any other software that runs on top of 
the OS can be benchmarked (because the condition 
that the FIT does not overlaps the BT is met). 
Experiments using the OS itself as BT are still 
possible if the target of the fault injection is 
carefully chosen resulting in a self-contained and 
clearly separated module, such as a device driver 
(see [7] for an example). 

Table 1 – Representativity of the fault types included in the faultload 
Fault types Description Fault coverage ODC types 

   MVI Missing variable initialization 2.25 % Assignment
   MVAV Missing variable assignment using a value 2.25 % Assignment 
   MVAE Missing variable assignment using an expression 3 % Assignment 
   MIA Missing "if (cond)" surrounding statement(s) 4.32 % Checking 
   MLAC Missing "AND EXPR" in expression used as branch condition 7.89 % Checking 
   MFC Missing function call 8.64 % Algorithm 
   MIFS Missing "If (cond) { statement(s) }" 9.96 % Algorithm 
   MLPC Missing small and localized part of the algorithm 3.19 % Algorithm 
   WVAV Wrong value assigned to a value 2.44 % Assignment 
   WLEC Wrong logical expression used as branch condition 3 % Checking 
   WAEP Wrong arithmetic expression used in parameter of function call 2.25 % Interface 
   WPFV Wrong variable used in parameter of function call 1.5 % Interface 
    

 Total faults coverage 50.69 %  



Although we specifically propose the operating system 
for the FIT role, other component of the SUB could 
conceivable be chosen (as long as it does not overlap with 
the BT itself). 

 
2.4 Faultload fine-tuning 
 

One of the main reasons for the use of fault injection 
techniques in dependability experiments is the need of an 
acceleration factor for the activation of faults.  To achieve 
an optimum fault activation rate, there must be some 
assurance that the code subjected to faults is actually 
executed during the experiments. Such assurance can only 
be obtained if all fault locations are used. Because the OS 
is usually a large portion of code, using all fault locations 
would result in unfeasible experimentation time. Clearly, 
some sort of guide is necessary to identify the faults 
locations that have the highest probability of being 
activated during the execution of the dependability 
experiment (in a reasonable time period). 

We propose a profiling phase to select the subset of the 
FIT code that is (most) used during the benchmark 
experimentation. To that effect, the SUB is exercised with 
the same workload that is used during actual benchmark 
execution. During the profiling phase, a trace of the API 
calls is used to identify the FIT code subset that is most 
used. The advantage of obtaining this FIT code subset is 
twofold: we have a high level of assurance that the faults 
injected there are activated; and, because the total number 
of faults injected is smaller, the time needed for 
experimentation is reduced. 

To ensure that the FIT subset identified during the 
profile is representative of the FIT usage across different 
BT (so that faults injected there have an equivalent 
activation rate and the benchmark itself is fair), the 
profiling must be performed using several BTs of the 
same category (i.e., if the BT is a DMBS, the several 
DBMS must be used). The subset of the FIT that is 
selected for actual fault injection is the intersection of the 
results obtained with each different BT (again, of the 
same category). The resulting faultload is specific for a 
given OS and an intended domain (for example, for all 
the DBMS). This is not a real restriction, as existing 
(performance) benchmarks are already specific to a given 
application domain (e.g., we have TPC-C for OLTP 
applications, SPECWeb for web-server domain, etc.). 

The methodology does not depend on the knowledge 
of the internals of either the operational environment (OS, 
platform) or the applications being observed. Thus this 
approach allows the generation of generic faultloads 
made of software faults that can be applied for 
dependability benchmarking in a broad range of domains. 
In the following section we apply this approach to define 
a faultload for web-server comparison regarding its 
behavior when executing in a faulty environment (OS). 

3.  Case study 
 
In order to evaluate the proposed methodology in a 

realistic dependability benchmarking scenario we decided 
to extend the industry standard SPECWeb99 performance 
benchmark for web servers [17], resulting in the first 
dependability benchmarking experiment for web servers.  

The benchmarking experiments were designed to show 
that the faultloads defined using the proposed 
methodology can really be used in future dependability 
benchmarks. Two different web-servers, Apache 
(available at www.apache.org) and Abyss (available at 
www.aprelium.com/abyssws) were benchmarked for 
comparative purposes running on top of two operating 
systems (MS Windows 2000/SP4 and MS Windows XP 
Pro/SP1), which is a realistic benchmarking scenario. 
Although we do not claim that these experiments 
constitute a formal proposal of the first dependability 
benchmarking for web servers, we believe that these 
results (which are effectively the first dependability 
benchmark results for web-servers) are a significant step 
in that direction. 

The SPECWeb99 performance benchmark can be 
briefly described as follows [17]: 

• Benchmark setup: SPECWeb99 uses one or more 
clients to submit requests to the web-server under 
evaluation. One of the clients (the prime client) 
coordinates all the others. The clients are usually 
executed in different machines, although that is not 
a requirement. Additionally, each client can be 
executed in different operating systems. 

• Workload: The workload submitted to the server is 
representative of the average use of the common 
web-based services and is composed of the typical 
operations allowed by the HTML (GET and POST 
operations, both static and dynamic). The workload 
also reproduces common actions such as on-line 
registration and advertisement serving. 

• SPECWeb99 performance measures: The 
measurements obtained through the SPECWeb99 
client are mainly related to performance. The most 
relevant to our work are the following: 
− SPEC: This is the main SPECWeb99 metric. It 

measures the number of simultaneous 
conforming connection. SPEC defines 
conforming connection (CC%) as a connection 
with an average bit rate of at least 320 kbps and 
less than 1% of errors reported. This metric will 
be referred from now on as SPC. 

− Throughput: this is the number of operations 
(e.g., GETs and POSTs) per second (THR). 

− Response time: this is the average time in 
milliseconds that the operations requested by the 
client take to complete (RTM). 



− Error rate: this is the rate of errors found by the 
client in the requested operations (ER%). 

• Benchmark rules: SPECWeb99 dictate very 
specific rules for experiment conduction. We refer 
the reader to [17] for more details on those rules. 
The most relevant at this point is that SPECWeb99 
imposes that each benchmark experiment must be 
carried through a series of at least three batches of 
1200 or more seconds each, separated by a rampup 
and a rampdown interval (both 300 seconds). At the 
beginning of each experiment there is a warmup 
period of 1200 seconds. 

 
3.1 Experimental setup 

 
Our experimental setup is composed of a server 

machine (Athlon XP 2600+, 512Mb) which hosts the 
web-server and the G-SWFIT injector, and a client 
machine (Pentium IV 2GHz, 512Mb), which runs the 
benchmarking client. Both machines are connected via a 
100 Mbps Ethernet connection. The client machine never 
changes; the server machine embodies the SUB and has 
different instantiations according to the combination of 
OS and web-server used in each experiment (Fig. 3). 
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Figure 3 – Experimental setup overview. 

Our G-SWFIT injector takes the faultload definition 
and injects each fault directly into the code of the running 
target. The injector is also monitors the web-server 
activity and, if needed, stop it and/or restart it. The 
G-SWFIT injector provides the following measures 
regarding the web-server error and availability status: 

• Number of times the web-server died and did not 
self-restarted (MIS); 

• Number of times the web-server had to be killed 
because it was not responding to HTML requests 
(KNS); 

• Number of times the web client had to be killed 
because it was hogging the CPU and not providing 
service (KCP). 

We configured the G-SWFIT fault injector to apply 
each software fault every 10 seconds. We reached the 

value of 10 seconds by observing the log files of the 
web-server after preliminary runs with the SPECWeb99. 
The average duration of the workload operations is less 
than a second, thus inserting each fault for a period of 10 
seconds is enough time to activate the fault.  

The injection of each fault may have one of the 
following consequences: it may be tolerated; it may 
simply cause performance degradation; it may cause the 
web-server to crash or die.  

To comply with SPECWeb99 rules, we organized our 
experiments as a series of time slots. During each slot the 
web-server is exercised with the workload and the 
operating system is subjected to the faults defined in the 
faultload. Between each slot, the web-server is not 
exercised and no faults are injected (Fig. 4). 
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Figure 4 – Experiment structure. 
 

3.2 Dependability benchmark metrics 
 
The output of a benchmark is ideally a small, non-

overlapping set of metrics with well-defined meanings. 
We propose a set of new metrics based on the readouts 
provided from the SPECWeb99 client and the G-SWFIT 
injector. These metrics provide an immediate comparative 
view of the web-servers: 

• Performance degradation: This metric represent 
the penalty in the performance of the web-server 
caused by the faultload. It is composed by: 
− SPCf: Main SPEC measure in the presence of 

the faultload. 
− THRf: Throughput in the presence of the 

faultload. 
− RTMf: Response time in the presence of the 

faultload. 
• Need of administrator intervention – ADMf: this 

metric gives an idea about the need of 
administrative intervention (human or automated) 
to repair the web-server. Administration 
intervention is needed when the web-server dies or 
stops providing useful service. The value for this 
metric can be computed as the sum of the values 
that represent all the situations where the web-
server had to be restarted: MIS, KNS, and KCP. 

• Error rate in the presence of the faultload – 
ER%f: this metric is the average percentage of 
errors discovered in the operations (extracted from 
ER%). 



3.3 Faultload definition 
 
We used an API tracing tool to discover which OS 

functions were the most used by each web-server. 
According to our methodology, the code of those API 
functions is the optimum target for fault injection. 
Because these functions belong to the operating system 
itself and not to the application being observed, we meet 
the condition that the observed application is not changed 
in any way. Only the API functions that were used by all 
the observed web-servers were eligible. Functions that 
were responsible for a negligible percentage of the total 
number of API calls were ignored. Table 2 presents the 
resulting set of functions. In addition to the Abyss and 
Apache web-servers, we also used Sambar and Savant 
web-servers in the profiling for the faultload fine tuning.  

The most common used API call fall into the kernel32 
and ntdll system modules. This represents an additional 
advantage because, normally, all applications under 
Windows have these two modules mapped into its address 
space (thus improving the portability of the faultload). It 
is worth noting that although the number of selected 
functions is relatively small, it represents two thirds of all 
the calls made to the OS by the observed web-servers. It 
is also interesting to observe that the API usage pattern is 
very stable across all the four web-servers. This gives us 

some confidence in the assumption that other web-server 
will also possess a similar pattern. 

We applied the G-SWFIT technique to generate the 
faultload. Because our work involves two operating 
systems, we obtained two different faultloads (Table 3).  

 
3.4 Experimental results 

 
Our injector has a special profile mode of operation 

designed to measure its performance overhead and 
intrusion in the overall system. While in that mode, all 
tasks related to an injection experiment are carried out but 
the injection itself does not change the target. We run a 
complete set of experiments with the injector in profile 
mode. The comparison of the results (performance and 
outputs) against the results observed without the injector 
running gives us a measure of the injector overhead and 
intrusiveness. Table 4 presents the results. The worst case 
of performance degradation is less than 2%; the average 
degradation is around 1%. Even in the worst case, the 
injector intrusiveness is not significant enough to affect 
the main SPECWeb figure. We conclude that the injector 
has a reasonably low performance penalty. No errors 
were signaled by the SPECWeb99 client nor registered in 
the log files, so we can conclude that the intrusion in the 
web-server operation is non-existent or very low. 

Table 2 – Relevant API calls. 
API  Representativeness (%) of the total number of API 

Function name Module  Apache Abyss Samba Savant  Average
 

      

NtClose Ntdll 2.8 1.6 2.4 0.8  1.9
NtCreateFile Ntdll 0.7 0.3 0.4 0.3  0.43
NtOpenFile Ntdll 1.4 0.5 1.4 0.3  0.9
NtProtectVirtualMemory Ntdll 3.8 2.5 3.2 2.3  2.95
NtQueryVirtualMemory Ntdll 1.9 1.1 1.6 1.1  1.43
NtReadFile Ntdll 0.2 2.9 5.6 0.4  2.28
NtWriteFile Ntdll 0.2 1.1 0.1 0.2  0.4
RtlAllocateHeap Ntdll 14.6 17.6 4.3 17.5  13.5
RtlDosPathNameToNtPathName U Ntdll 2.3 1.2 1.9 0.8  1.55
RtlEnterCriticalSection Ntdll 3.3 2.3 1.8 2.3  2.43
RtlFreeHeap Ntdll 17.4 19.8 18.6 17.8  18.4
RtlFreeUnicodeString Ntdll 0.3 0.8 0.9 0.6  0.65
RtlInitAnsiString Ntdll 0.5 1.1 1.7 0.3  0.9
RtlInitUnicodeString Ntdll 3.2 3.5 4.8 1.4  3.23
RtlLeaveCriticalSection Ntdll 3.3 2.3 1.8 2.3  2.43
RtlUnicodeToMultiByteN Ntdll 11.7 8.3 10.9 14.5  11.35
CloseHandle Kernel32 0.9 1.1 0.9 0.2  0.78
GetLongPathNameW Kernel32 0.1 0.1 0.1 0.1  0.1
ReadFile Kernel32 0.2 2.9 5.6 0.1  2.2
SetFilePointer Kernel32 0.2 0.2 0.1 0.1  0.15
WriteFile Kernel32 0.2 1.1 0.1 0.1  0.38
        

Total call coverage 69.2 72.3 68.2 63.5  68.34
         

Table 3 – Faultload details 
  Number of faults per fault type  Total 
  MVI MVAV MVAE MIA MLAC MFC MIFS MLPC WVAV WLEC WAEP WPFV  faults 
    Windows 2000 SP4  149 4 129 497 147 392 200 50 33 71 11 31  1714 
Windows XP SP1  192 5 117 899 253 629 471 94 59 163 11 34  2927 



The results observed with the injector running in 
profile mode correspond the baseline web-server behavior 
(i.e., the injector is considered as part of the load 
submitted to the server machine). The observations 
obtained during actual fault injection will be compared 
against the baseline behavior.  

Each combination of web-server/operating system was 
tested three times (to comply with SPECWeb rules). 
Table 5 presents the results. We are specially interested in 
the average behavior variation of the web-servers relative 
its baseline behavior because that variation is an indicator 
of the web-server vulnerability (or tolerance) to faults 
existing in the OS. 

The following observations are pertinent for the 
validation of the faultload properties: 

• All three iterations yielded very similar results 
within each web-server/OS pair. This suggests that 
experiments using these faultloads are repeatable; 

• The results allow a clear distinction between the 
two web-servers. This gives us confidence to the 
assumption that our faultloads are indeed useful for 
dependability experiments; 

• The behavior of the two web-servers in presence of 
faults remains stable across both OSes. This is an 
important fact because it suggests that, although the 
faultloads are not exactly equal (but were generated 
through the same rules), they are equivalent in the 
sense that provide the same kind of BT behavior 
across different OSes. 

Figure 5 presents a comparison of Apache and Abyss 
web-servers using our metrics. To allow for a clear 

comparison between Apache and Abyss, both 
web-servers appear side by side. To easily assess the 
impact of the faultloads over each web-server, we present 
both the baseline performance and the behavior with 
faults.  

The results clearly point to the conclusion that the 
Apache web-server experiences less service and 
performance degradation than Abyss web-server when 
exposed to an operating system with software faults. All 
metrics give Apache an advantage over the Abyss: the 
performance relative to its normal condition (i.e., without 
faults) is better than in the case of Abyss; the percentage 
of erroneous operations lower; the number of times 
Apache had to be killed and/or restarted explicitly is 
lower than in the case of Abyss, thus requiring less 
administration intervention (this is consistent with the fact 
that Apache has a built-in mechanism that allows it to 
self-restart in some error situations). 

It is worth noting that the relative difference between 
Apache and Abyss is the same for both Windows 2000 
and Windows XP (see Figure 5). This leads us to 
conclude that the faultloads exposed an intrinsic property 
of the web-servers tested. This fact suggests that concrete 
conclusions can indeed be extracted regarding the 
comparison of the web-servers. Although the faultloads 
used for Windows 2000 and Windows XP are different 
(e.g., the number of fault is larger for XP), the results of 
the experiment are consistent. This leads to the 
conclusion that the methodology used for the definition of 
the faultloads is valid and portable across different 
operating systems. 

Table 4 – Performance degradation and intrusion evaluation. 
 Windows 2000 Windows XP 
 Apache Abyss Apache Abyss 

 SPC CC% THR RTM SPC CC% THR RTM SPC CC% THR RTM SPC CC% THR RTM 
Max. Perf.  37 100 104.2 354.2  34 100 95.9 355.5 34 100 93.9 361.2  33 100 93.7 352.5 
Profile mode  37 100 103 358.1  34 100 95.3 358.1 34 100 92.9 365.5  33 100 92 359.4 
Degradation (%)  0 0 1.15 1.1  0 0 0.63 0.73 0 0 1.06 1.19  0 0 1.81 1.96 

Table 5 – Experimental results. 
   B.T. = Apache web-server  B.T. = Abyss web-server

    SPC THR RTM ER% MIS KCP KNS   SPC THR RTM ER% MIS KCP KNS 
                  

Baseline Perf.   37 103 358.1 0  0 0 0   34 95.3 358.1 0 0 0 0 
Iteration 1       13.6 98.6 366.5 7.7 64 0 74   9.1 91.5 363.1 21.9 125 0 43 
Iteration 2       12.7 97.3 368.2 7.7 58 1 65   9.3 91.7 362.7 22.3 135 0 35 
Iteration 3       13.9 98.5 366.9 7.6 58 2 68   9 91.4 363.8 21.8 131 0 38 

W
in

. 2
00

0 

Average (all iter)   13.4 98.1 367.2 7.7 60 1 69   9.1 91.5 363.2 21.9 130.3 0 38.7 
                   

Baseline Perf.   34 92.9 365.5 0 0 0 0   33 92 359.4 0 0 0 0 
Iteration 1       13.8 90.3 371.7 5.8 86 1 102   10 88.9 364.7 14.2 165 0 52 
Iteration 2       14.4 90.1 367.7 5.7 85 1 107   8.5 88.5 361.9 14.7 171 0 57 
Iteration 3       13.1 89.7 373.3 5.7 84 1 101   8.4 88.5 366.2 14.6 154 0 69 W
in

. X
P 

Average (all iter)   13.7 90 370.8 5.7 85 1 103   8.9 88.6 364.3 14.5 163.3 0 59.3 



4.  Faultload properties discussion 
 
This section discusses the properties of the proposed 

faultload.  

Representativeness: The faultloads used in this work 
are representative because they are based on 
representative types of software faults identified in 
previously published works using actual field data. 
Additionally, the fault locations reside in code that is 
representative of the most used OS API functions from 
the point of view of the BT. 

Feasibility and benchmark execution time: In 
addition to showing the feasibility of the proposed 
approach, the case study also allows us to measure the 
execution time of the various steps. The time needed to 
generate the faultload is the time that the G-SWFIT takes 
to analyze the target (less than 5 minutes). The profile 
process used to fine tune the faultload took about 100 
min. for each web-server. The duration of the 
experimentation is a function of the number of faults. 
Even with the larger faultload of the Windows XP, the 
experiments took about 24 hours (3 complete runs), 
which acceptable for dependability benchmarking. 

Accuracy: As we use a technique that replicates the 
code that corresponds to typical programmer errors, we 
emulate the fault itself and not only its effects, thus 
providing a good accuracy. A detailed evaluation of the 
accuracy of the technique is provided in [13] (which 
concludes that this form of fault emulation has indeed a 
good accuracy).  

Repeatability: The results of the experiments 
presented here show that our faultloads are repeatable: not 
only all iterations inside each web-sever/OS yielded 
similar results, but also we observed a clear behavior 
pattern that remains stable across the two different OSes. 

Portability: The portability of the faultload is directly 
derived from the portability of G-SWFIT itself. In the 
work presented in [13] we have shown that G-SWFIT is 
portable: the main issue is the definition of the mutation 
operator library. That task is mainly dependent on the 
target processor architecture. In fact the programming 
language, the compiler, and the compiler optimization 
switches also have some influence on the library; 
however, such variations cause only the need of some 
additional operators in the library. Different processor 
architectures usually require different libraries.  When 
porting the mutation library to other processors, all which 
is required is the specification of new rules and mutations. 
The technique itself remains the same. 

Scalability: The faultload size is mainly dependent of 
the complexity of the FIT and not directly on the BT. In 
our case we have already used one of the most complex 
FIT available (the Windows XP) and still the experiments 
were reasonably feasible both in effort and time. Even 
using a larger BT, the faultload is not expected to grow 
significantly.  

Non-intrusiveness: Our experiments show that the 
performance overhead of the faultload and the technique 
to deploy it is low (less than 2% in the worst case). 
Furthermore, no side-effects on the BT behavior were 
caused by the injector itself.  
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Figure 5 – Comparison of the behavior of Apache and Abyss in presence of software faults. 



5.  Conclusions 
In this paper we presented a methodology for the 

definition of faultloads based on software faults for 
dependability research. The methodology does not 
depend on any specific properties of the target system or 
operational environment. Also it does not require any 
knowledge of the details of the target such as source code. 

As a case study, the methodology was applied to 
benchmark the dependability of two different web-
servers. Because we wanted to evaluate the web-server 
behavior, faults had to be injected in another component 
of the system. The operating system is a good choice 
when the benchmark target is in the application domain. 
We generated a faultload for Windows 2000 and a 
faultload for Windows XP. Both faultloads were fine-
tuned to assure an optimum fault activation ratio. Faults 
were defined and injected using the G-SWFIT technique, 
which emulates software faults in a realistic manner. 

The results of the experiments suggest that our 
faultloads are indeed useful to observe and compare the 
behavior of different applications in the presence of 
software faults. Our results enabled us to extract objective 
conclusions regarding the comparison between the two 
web-servers tested. 

Based on the analysis of the methodology used to 
define the faultloads and on the results obtained with the 
experiments conducted, we concluded that our faultloads 
satisfy the key properties required for its use in 
dependability benchmarking contexts. Based on these 
experiments, a full dependability benchmark for web-
servers can be defined by adding more fault models 
(hardware faults, operator faults, etc.) and measures. 

An important characteristic of the methodology and 
the resulting faultloads is the fact that it is not tied to a 
specific type of platform. Therefore, the methodology and 
faultloads can be used in other experimental contexts, for 
example, DBMS dependability benchmarking. 
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