
DATA WAREHOUSE STRIPING: IMPROVED QUERY
RESPONSE TIME

Jorge Bernardino
Instituto Superior de Engenharia de Coimbra, Dept. Informática e de Sistemas

 Quinta da Nora, Apartado 10057, 3030-601 Coimbra, Portugal
Email: jorge@isec.pt

Henrique Madeira
Universidade de Coimbra, Departmento de Engenharia Informática

Pólo II, Pinhal de Marrocos, 3030-290 Coimbra, Portugal
Email: henrique@dei.uc.pt

Keywords: Data Warehousing, Online Analytical Processing, Query Performance

Abstract: The increasing use of decision support systems led to an explosion in the amount of business information
that must be managed by the data warehouses. Therefore, data warehouses must have efficient Online
Analytical Processing (OLAP) that provides tools to satisfy the information needs of business managers,
helping them to make faster and more effective decisions. Improving query response time in such an
environment is very difficult and can only be achieved by a combination of different approaches, in
particular the use of materialized views, advanced indexes and parallel query processing. However,
achieving quick response times with complex OLAP queries is still an open issue. This paper is an
extension of our previous work [Bernardino00], where we proposed a novel approach to this problem. In
this paper, we analyse the scalability performance of data warehouse striping system (DWS) system using
different environments. DWS is experimentally evaluated with Oracle 8 as back-end DBMS, for the most
typical OLAP operations using different types of queries and it is shown that an optimal speedup and scale-
up can be obtained. A new technique to process subqueries is also proposed and experimentally evaluated.

1. INTRODUCTION

Data warehouses integrate massive amount of
data from multiple sources, which is primarily used
for decision support purposes. This information is
historical in nature and can include detailed
transaction information from operational databases,
legacy systems, or even external data sources. These
large data volumes bring significant challenges to
database engines, requiring high level of query
performance and scalability. Data warehouses must
have efficient Online Analytical Processing (OLAP)
tools to process complex analytical queries
satisfying the information needs of business
managers and helping them to make faster and more
effective decisions.

Typical warehouse queries are very complex and
ad hoc in nature and generally access huge volumes

of data and perform many joins and aggregations.
Therefore, to handle this demanding in data and
processing a highly scalable architecture is vital in a
warehouse environment.

In this paper, we build upon our previous work
[Bernardino00] where a horizontal data partitioning
of the fact table specially designed for relational data
warehouses based on a star schema was proposed.
This approach, called data warehouse striping
(DWS), takes advantage of the specific
characteristics of star schemas and typical data
warehouse queries profile to guarantee optimal load
balance of query execution and assures high
scalability. In DWS the fact tables are distributed by
an arbitrary number of computers and the queries are
executed in parallel by all the computers,
guarantying a nearly linear speedup and significantly
improve query response time.

This paper presents an experimental evaluation
of the speedup and scaleup of the proposed

technique based on an implementation with three,
five and ten computers. We also investigate a
technique to deal with subqueries. In this type of
queries, the independent calculation of partial results
required for nearly optimal speedup is obtained
through estimation of some steps of the query.
However, it will be shown that the error introduced
this way in the final result is negligible for most of
the cases.

The remainder of the paper is organized as
follows. In the next section, we review related work
and discuss the problems associated to the
manipulation of large amounts of data in data
warehouses. Section 3 describes the proposed
approach and section 4 discusses experimental
results. The final section contains concluding
remarks and future work.

2. RELATED WORK

The most common strategies to improve query
response times in warehousing environments are the
precomputation of data in the form of materialized
views [Chauduri97, Agrawal00] and the use of
special indexes structures [Wu98, Srinivasan00].
Although necessary to tune a DW for speed, these
techniques have clear limitations and in the end
cannot avoid some very time consuming queries.
The precomputation strategy needs to anticipate
queries so that it can materialize them in the data
warehouse. However, OLAP queries are most
frequently of an ad hoc nature, which restricts the
precomputation to the imagination of the DW
administrator. Users might query on dimensions that
are not materialized in views. The indexing
structures provide faster access to the data stored in
the warehouse, but increases the size of the tables
stored in that data warehouse. One can say that the
strategies presented provide faster query processing,
but they may not be fast enough as perceived by the
user. Additionally, they require constant care from
the DW administrator.

Parallel processing techniques have been applied
to relational database systems [Lu94, DeWitt92] to
speedup queries. The basic idea behind parallel
databases is to carry out evaluation steps in parallel
whenever possible, in order to improve performance.
Although some vendors support parallel data
warehousing to various degrees, e.g. Oracle8
[Oracle97] and Red Brick Warehouse [RedBrick98],
the fact is that parallel query processing in data
warehouses has received little attention in research
community.

Most of today’s OLAP tools require data
warehouses with a centralized structure where a

single database contains all the data. However, a
large centralized data warehouse is very expensive
because of the great setup costs and it is not very
flexible due to its centralized nature. The fact that
data warehouses tend to be extremely large in size
[Chauduri97] and grow quite fast in many cases
means that a scalable architecture is crucial to the
success of these systems. A truly distributed data
warehouse can be achieved by distributing the data
across multiple data warehouses in such a way that
each individual data warehouse cooperates to
provide the user with a single and global view of the
data. In spite of the potential advantages of
distributed data warehouses, these systems are
always very complex and have a difficult global
management [Albrecht98]. On the other hand, the
performance of many distributed queries is normally
poor, mainly due to load balance problems.

In this context the data warehousing striping
approach is more flexible because is a distributed
implementation of a centralized data warehouse. The
data warehouse striping is inspired in both the
distributed data warehouse architecture and in
classical round-robin partitioning techniques. The
data is partitioned in such a way that the load of
query execution is uniformly distributed by the
available computers. Normally, a partial result is
computed in each computer in a pure independent
way. For the queries that need communication
among computers during query execution we
propose a solution that maintain these type of
queries execution independent of the others.

3. QUERY PROCESSING USING
DWS

In this section, we review the data warehouse
striping approach [Bernardino00]. In particular, is
explained how the queries are processed using the
DWS system. First, we give some background on
data schemas used in data warehouse environments.
Then, we present strategies for rewriting queries that
cannot be executed independently in each computer.

3.1 Background and DWS

A data warehouse is organized, in logical terms,
according to the multidimensional model. This
model consists of a set of dimensions and a set of
measures (facts), where each dimension is typically
arranged in a hierarchy. All dimensions have some
attributes, describing a different perspective for the
analysis of business. For instance, in the classical
example of a chain of stores business, some of the

dimensions are Products, Stores, and Time. In this
simple three-dimension example, we have a cube
(see Figure 1) where each cell within the
multidimensional structure contains measures
(typically numerical facts) along each of the
dimensions. For example, a single cell may contain
the total sales for a given product in a given store in
a single day.

Jan
Feb

Mar

Products

T
i
m
e

S
t
o
r
e
s

NY

LA

Paris

Roma
TV VCR Cam CD

Sales

Figure 1: The multidimensional schema.

The conceptual multidimensional data model can
be physically realized in two ways, (1) by using
trusted relational databases (star schema)
[Chauduri97] or (2) by making use of specialized
multidimensional databases.

In this paper, we assume that a multidimensional
database is a relational data warehouse in which the
information is organized as a star schema
[Kimball96]. It offers flexibility, but often at the cost
of performance because more joins for each query
are required. A star schema models a consistent set
of facts (aggregated) in a central fact table and the
descriptive attributes about the facts are stored in
multiple dimension tables. The equivalent star
schema of the example of a chain of stores presented
before is shown in Figure 2. The fact table is Sales
and the dimensions are Products, Stores and Time.

ID_Store
Attributes_Stores

Stores

ID_Time
Attributes_Time

Time

ID_Product

Attributes_Product

Products

ID_Product
ID_Store
ID_Time

Numeric Facts

SALES

Figure 2: Star Schema.

The size of fact table is much bigger than the
size of dimension tables. The size of dimension
tables could be hundreds or thousands of rows while
the fact table could be millions of rows [Kimball96].
Queries tend to use aggregations and joins on two or

more tables, have often a large computation time,
and are mainly ad hoc in nature.

Taking in account these characteristics of data
warehouses our approach replicates the dimensions
of star schema and distributes evenly the rows of
fact table by the computers that form the DWS
system.

All the computers that comprise the DWS
system have the same star schema structure,
equivalent to the centralized version. The dimension
tables are replicated in each computer and the fact
rows are distributed by the fact tables of each
computer using a row-by-row round robin
partitioning approach as illustrated in Figure 3.

…

Computer 1

SALES

N
Facts

Products

Stores

Time

Computer N

SALES

N
Facts

Products

Stores

Time

Figure 3: Data Partitioning in DWS.

Using DWS, the number of fact rows stored in
each computer is about the same, meaning that each
computer has a fraction of the fact rows (Facts/N),
with N being the number of computers. In the next
section, we explain how the queries are executed in
the DWS system.

3.2 Processing Queries with DWS

In DWS, typical OLAP queries are transformed
into N partial queries that are executed in parallel in
each of N computers that represent the DWS system
(see Figure 4), avoiding the need of communication
between computers during query execution. The
parallel execution of a query by the available
computers maintains the best load balance because
the number of fact rows stored in each computer is
about the same and the row distribution is random.

The Query Distribution and Processing (QDP) is
a DWS layer responsible to receive the original
query from the client application, rewriting it if
necessary, and distribute this “modified” query by
all computers. After the execution of these partial
queries, the QDP layer merges these partial results
and sends the final result to the user.

Most of the queries over a star schema can be
transformed into N independent partial queries just
because of the nature of the queries (and because the
fact rows are partitioned in a disjoint way: i.e., the
fact rows stored in a computer are not replicated in
the other computers). For some queries, the
computation of the partial result in one computer
needs to access data stored in the other computers of

the DWS system (i.e., needs a truly distributed
query). However, in most of these cases it is possible
to accurately estimate the partial result that need to
access the data stored in other computers by an
estimation calculated from the local data, avoiding
the need of a truly distributed query. Even though
this is only possible because we are working with
aggregation functions.

Products,Stores,Time … Products,Stores,Time
Facts/N … Facts/N

ResultQuery

Query distribution and
processing layer

. . .

Partial
query 1

Partial
result 1

Partial
query N

Partial
result N

Figure 4: Query Processing in DWS.

In reality, processing some queries in a DWS
system could need to access intermediate results
computed from all the computers. Thus, in a DWS
system concerning the need of communication
among computers during query execution, typical
queries can be divided in two groups:

• Independent queries: queries that can be
independently executed in each computer,
with no need of communication among
computers during the execution of the
query. In this case the global result can be
computed very quickly from the partial
results.

• Dependent queries: queries that need
communication among computers to
compute the final result. In these queries the
computation of the partial results in each
computer need to access data stored in
others computers. In this case, the execution
of queries is dependent of partial results
calculated over the data in all the computers
of the DWS system. We designate the
number of times that is necessary to access
the data in all the computers as number of
executions.

In a DWS system the ideal speedup is equal to
the number of computers (N) used in a DWS system.
Independent queries are distributed by the available
computers in a DWS system in such a way that each
computer needs to execute only one partial query

(number of executions=1), which corresponds to the
nearly optimal linear speedup.

On the other hand, dependent queries raise
several problems concerning the speedup of DWS,
as it is not possible to attain the optimal speedup,
because the nodes must compute intermediate results
that are required in additional steps to compute the
partial and final results.

An example of dependent query is a query
containing subqueries, where we use the results of
one query as part of another query. In the DWS
system, this means that we must access the data
stored in the others computers to compute the results
of subqueries. For example to calculate the number
of units sold for all products whose sales price is
greater than the average sales price. Using the star
schema of Figure 5 (that will be explained in next
section), this query corresponds to the following
SQL statement:

Q0: select sum(unitssold)
from actvars
where dollarsales >

(select avg(dollarsales)
from actvars)

During the execution the inner query that
computes the average dollarsales is executed first.
The result of this subquery is used in the main query.
The problem with this type of query when DWS is
used is that the original query must be partitioned
and reformulated, resulting into new partial queries.
This means that the distribution of subqueries
requires two phases:

Phase one: The innermost subqueries are send to
all the computers and the results are computed. The
intermediate results are made available for all
computers.

Phase two: The main query is rewritten taking
into account the intermediate results and it is sent to
all computers. If the deep level of the query is
greater than two levels these subqueries must be
executed sequentially from the innermost query until
the main query.

In our example, the original query Q0 gives
origin to the following two queries that must be
executed in sequence (but each one is executed in
parallel in all the available machines):

Q0.1: select sum(dollarsales),
count(dollarsales)

from actvars

Q0.2: select sum(unitssold)
from actvars
where dollarsales>

average_dollarsales

The first query, Q0.1, computes the product
average sales price and the result can be stored in the
auxiliary variable average_dollarsales. The second
query, Q0.2, computes the units sold for revenues
greater than the value computed by Q0.1
(average_dollarsales). DWS does not achieve
optimal speedup with this type of query because it
requires the value of the subquery to be computed
first.

A solution to the problem of dependent queries
could be the use of an approach similar to
materialized views where we store aggregation
values like sum, count or average. But this solution
has the typical problems of materialized views: we
do not know a-priory all the values needed by the
user because we are working essentially with ad hoc
queries.

Instead, we propose another approach that uses
the estimation of aggregation values. When a
business manager is “digging the data”, s/he usually
wants to find data trends, extracting important
information to future decisions. In this way, the most
important action is to explore the data quickly, even
if the results are only approximate. This form of
working with DW is well suited to DWS technique
because this way we can transform dependent
queries into approximate independent queries,
producing a final result that is an estimation of the
exact value but that is obtained much more quickly.

In short, in dependent queries we propose the
elimination of the first step by estimation of the
aggregation value locally. This means that we
transform all dependent queries in independent ones.
Using this approach with our example, we use the
local average of each computer as an estimate of the
global average. In the next section, we analyze more
deeply the proposed approach and the errors
introduced in the final result with queries that
aggregate groups with different number of elements.
As we will see later on, the error introduced in the
final result is negligible in most cases.

4. EXPERIMENTAL STUDY

The main goals of this study are to show typical
speedup and scaleup characteristics of the DWS
approach, to illustrate the independent execution of
subqueries, and to demonstrate the small error
obtained in this case.

All the experiments are conducted in a Windows
NT environment, where all the computers have the
same hardware characteristics, using Intel Pentium
Celeron 466 MHz CPU, with 6.4 GB IDE hard disk
and 64 MB of main memory. The computers use

Oracle 8, release 8.0.5 as back-end DBMS and are
linked together in an Ethernet network at 100 Mbps.

To evaluate the performance of the proposed
technique we used the data set of the Analytical
Processing Benchmark-1, Release II [APB98], that
simulates a realistic OLAP business situation.

4.1 Experimental testbed

Figure 5 shows our star schema based on the
APB-1 benchmark. The schema provides a typical
sales analysis environment with one fact table,
ACTVARS (24,786,000 rows) and four dimension
tables PRODLEVEL (9,000 rows), CUSTLEVEL (900
rows), TIMELEVEL (24 rows) and CHANLEVEL (9
rows). As usual for star schemas, dimension tables
are denormalized to reduce join overhead. The fact
table ACTVARS holds the measuring attributes
UnitsSold, DollarSales and DollarCost for
calculating aggregations.

In order to have a baseline reference for the
experiments we apply our technique to one
computer, simulating a centralized data warehouse
and denote it as CDW (Centralized Data
Warehouse). DWS-3 corresponds to the DWS
technique applied to three computers. DWS-5 and
DWS-10 correspond to data warehouse striping
applied to five and ten computers, respectively.

Customer_level
Product_level
Channel_level
Time_level
UnitsSold
DollarSales
DollarCost

ACTVARS

Store_level
Retailer_level

CUSTLEVEL

Code_level
Class_level
Group_level
Family_level
Line_level
Division_level

PRODLEVEL

Base_level
All_level

9 rows

CHANLEVEL

Month_level
Quarter_level
Year_level

TIMELEVEL

24.786.000 rows

24 rows9.000 rows

900 rows

Figure 5: Simplified star schema of APB-1
benchmark.

Typical OLAP queries use aggregation functions
(SUM, COUNT , MAX, MIN, AVG, STDDEV and
VARIANCE) as operators that aggregate a large
number of rows in the fact table and return few rows
as result. Accordingly, our experiences are simple
queries that use these aggregation functions and
return only one row. Another type of usual operation
of OLAP queries is the join of the fact table with one
or more dimensions, which is one of operations
computationally most expensive. The objectives of
these experiences are the evaluation of the speedup

and scaleup of DWS using queries that use
aggregation functions and joins.

The vast majority of queries, using the DWS
approach, can be converted into queries that
compute partial results, independently obtained in
the different computers, and the global result can be
computed very fast from these partial results.
However, for some queries, the independent
calculation of partial results is obtained through
estimation of some steps. This is another important
objective of these experiences, quantifying the error
introduced this way in the final result.

4.2 Performance study

4.2.1 Aggregation performance

In order to evaluate the speedup of DWS using
aggregation functions, the experiments are made
with a simple type of queries, expressed in SQL:

select aggregate_function(unitssold)
from actvars

Different aggregation functions are used (SUM,
COUNT , MAX, MIN, AVG, STDDEV, VARIANCE and ALL
functions simultaneously) in order to evaluate the
impact of the aggregation function in the query
response time. The results query response time using
the different aggregate functions are illustrated in
Figure 6, for the centralized data warehouse (CDW),
using three computers DWS-3, five computers
DWS-5, and ten computers DWS-10.

Aggregation Functions

00:00

02:53

05:46

08:38

11:31

14:24

Query Response Time

T
im

e
(m

m
:s

s) CDW

DWS-3

DWS-5
DWS-10

CDW 08:50 08:22 08:42 08:42 08:50 09:18 09:21 11:22

DWS-3 03:00 02:50 03:00 03:00 03:00 03:09 03:09 03:53

DWS-5 01:45 01:40 01:44 01:45 01:46 01:51 01:52 02:13

DWS-10 00:52 00:48 00:50 00:50 00:51 00:54 00:54 01:04

SUM COUNT MAX MIN AVG STDDEV VARIANCE ALL

Figure 6: Query response time using aggregates.

For each DWS environment the query response
time does not depend significantly on which
aggregation function is used because the same
amount of rows have to be fetched and I/O
dominates the response time. The execution times of
STDDEV or VARIANCE functions are slightly larger,
due to the increased complexity of the operations,
and that of ALL aggregation functions
simultaneously is about 30% larger in CDW.

The speedup is measured by adding more
computers to the DWS system, but keeping the
database size constant. Dividing the query response
time of CDW by the corresponding time of DWS-X

(where X denotes the number of computers)
achieves a theoretical speedup of X. For instance,
we could determine the speedup of the results from
Figure 6 by taking the query response time for the
centralized version (CDW) and dividing it by the
query response time obtained with three, five and ten
computers (DWS-3, DWS-5, DWS-10). The Figure
7b shows the speedup correspondent to query
response time of Figure 7a when we are using ALL
aggregation functions simultaneously.

Query Response Time

00:00

02:53

05:46

08:38

11:31

14:24

T
im

e(
m

m
:s

s)

ALL 11:22 03:53 02:13 01:04

CDW DWS-3 DWS-5 DWS-10

SPEEDUP

0.00

2.00

4.00

6.00

8.00

10.00

12.00

C
D

W
 /

D
W

S
-x

ALL 2.93 5.13 10.66

DWS-3 DWS-5 DWS-10

(a) (b)
Figure 7: Speedup using all aggregation functions

The most surprising result is that we obtained a
speedup of 5.13 and 10.66 for DWS-5 and DWS-10
respectively, which is greater than the theoretical
speedup, suggesting a super linear speedup of DWS
when we distribute the data by more computers. As
we see, this phenomenon is not present when we use
DWS-3 because the workload in individual
computers was approaching the memory limits. This
result also emphasizes the scaleup advantages of
DWS, as distributing the fact table over a larger
number of smaller machines allows DWS system to
cope with very large DW data.

4.2.2 Join performance

We have also tested DWS with queries that join
the fact table with all the dimensions of the star
schema of Figure 5. Four queries have been used in
the experiments that join the fact table (ACTVARS)
with the dimensions PRODLEVEL, TIMELEVEL,
CUSTLEVEL and CHANLEVEL, which corresponds to
1-Join, 2-Join, 3-Join and 4-Join, respectively. For
example, the 4-Join query corresponds to the
following SQL statement:

select sum(unitssold)
from actvars, prodlevel, timelevel,

custlevel, chanlevel
where < join conditions >

The other queries used in the experiments are
similar to this one. Figure 8 shows the query
response times for these four join queries. These
experiments show that queries that take about 11
minutes in the centralized version (CDW) are
executed in less than 4 minutes in DWS-3, about 2
minutes using DWS-5 and 1 minute using DWS-10.

Joins

00:00
02:53
05:46
08:38
11:31
14:24

Query Response Time

T
im

e(
m

m
:s

s) CDW

DWS-3
DWS-5
DWS-10

CDW 09:59 10:51 11:49 12:48

DWS-3 03:32 03:49 04:06 04:25

DWS-5 02:00 02:10 02:20 02:31

DWS-10 00:58 01:04 01:09 01:15

1-Join 2-Join 3-Join 4-Join

Figure 8: Query execution time with joins.

Figure 9a shows the execution time and Figure
9b the corresponding speedup for the 4-Join query.
This query that takes 12:48 minutes in CDW is
executed in 4:25 minutes using DWS-3, 2:31
minutes using DWS-5 and only 1:15 minute using
DWS-10, correspond to speedups of 2.9, 5.09 and
10.24, respectively.

Query Response Time

00:00

02:53

05:46

08:38

11:31

14:24

T
im

e(
m

m
:s

s)

4-Join 12:48 04:25 02:31 01:15

CDW DWS-3 DWS-5 DWS-10

SPEEDUP

0.00

2.00

4.00

6.00

8.00

10.00

12.00

C
D

W
 /

D
W

S
-x

4-Join 2.90 5.09 10.24

DWS-3 DWS-5 DWS-10

(a) (b)
Figure 9: Execution time and speedup using the 4-

Join query.

These results confirms our hypothesis of optimal
speedup of DWS when the computers are not
running near the memory limits as is the case of
DWS-5 and DWS-10. Thus, for computers with the
same characteristics, how much bigger is the data
warehouse better speedup we will obtain using
DWS. This is due to the fact the data set we are
working on is distributed in more manageable data
sets that could be more easily computed using
computers limited by memory space.

4.2.3 Evaluation of dependent queries (DQ)
with estimation procedures

In these experiments we quantify the error
introduced by the estimation of intermediate results
in subqueries, which restrict very much the number
of rows that are selected.

Our experimental set-up is composed of the
CDW, which calculates the exact result and both
DWS-3 and DWS-5 systems. In the experiments we
use the query Q0, defined in the previous section. A
more restrictive query than Q0 is also defined, which
computes the total number of units sold for a product
whose sales are greater than the averages sales of the
same product. We denote this as query Q3 and use it
in the experiments with different product names.

The SQL statement for query Q3 and product name
’GTMO4OPZVEDI ‘ is:

Q3: select sum(unitssold)
from actvars where
product_level ='GTMO4OPZVEDI' and
dollarsales >

(select avg (dollarsales)
from actvars where
product_level ='GTMO4OPZVEDI')

This query selects 1,464 rows out of 24,786,000
from ACTVARS fact table. However, the query Q3 is
modified to restrict even more the number of rows
selected by the aggregation function, inserting an
additional time level restriction. In the query Q4 (not
shown) the time level restriction is inserted only in
the subquery, while query Q5 also inserts the time
level restriction in the main query, as illustrated by
the following SQL statement:

Q5: select sum(unitssold)
from actvars where
product_level ='GTMO4OPZVEDI' and
time_level ='199506' and
dollarsales >

(select avg (dollarsales)
from actvars where
product_level ='GTMO4OPZVEDI'
and time_level ='199505')

Query Q5 is a very selective query that only selects
103 rows from the fact table. Table 1 shows the
results for the experiments done with the different
queries. The columns in Table 1 show the names of
the different products used by the queries, the
number of rows that are selected by each query and
the corresponding selectivity. The CDW column
shows the correct final result of the query and the
other columns DWS-3 and DWS-5 show the result
using DWS with three or five computers and the
relative error contained in these results.

The results show that when the selectivity of the
query is very high, as Q0, the result of the query is
estimated with very small error (0.06% for DWS-5
and no error for DWS-3). Using queries with very
low selectivity, the error was always less than about
5% with DWS-5 and less than 1.2% with DWS-3.

4.3 Scalability of DWS

To analyse the scaleup we keep a constant
hardware configuration and increase the data
warehouse size. In this experiment we increased the
data size 20 times and we measured the increase in
the query response time. If the configuration can
scaleup by a factor of 20 then the query response

time will not increase more than 20 times. As
comparison, we use again ALL the aggregation
functions simultaneously, and the query response
time is shown in Figure 10 (a) and (b) using a CDW
and DWS-5, respectively.

CDW Query Response Time

00:34

11:22

00:00
01:26

02:53
04:19
05:46

07:12
08:38
10:05

11:31
12:58

D W DWx20

T
im

e(
m

m
:s

s)

DWS-5 Query Response Time

00:07

02:13

00:00
00:17

00:35
00:52
01:09

01:26
01:44

02:01
02:18
02:36

D W DWx20

T
im

e(
m

m
:s

s)

(a) (b)
Figure 10. Scaleup effect when the DW increases 20

times using CDW (a) and DWS-5 (b)

Calculating the respective scaleup, we obtain a
scaleup of 20.06 for the CDW and 19.00 for DWS-5.
For the CDW this value of scaleup means that when
we increase the size of the DW the query response
time is always slightly bigger than this increment.
Using five computers (DWS-5) we see an interesting
effect because the increment is only 19 times; less
than then the theoretical increment of 20 times. This
confirms our hypothesis of “the bigger the better” as
increasing the size of the DW and distributing it by
more computers the gain is even better.

5. CONCLUSIONS

The experimental results using aggregation and
join queries show an optimal or even super linear
speedup and also sow that DWS is scalable. This is
due to the fact that, when we distribute the data, we
are working with more manageable amounts of data
that do not stress memory and computing resources
so much. The manipulation of subqueries in an
independent way is also possible with an error that
can be negligible in most of the cases.

We believe that our modular approach can be
incorporated into a commercial relational DBMS
with little effort. However, there are still some open

questions: one of the identified problems is big
dimensions. Typically, dimensions are small in size
but there are exceptions to this rule. In that case the
space overhead of the strategy becomes more
significant. Another future direction is to solve the
problem of momentarily unavailability of one or
more computer in a DWS.

REFERENCES

[Agrawal00] S. Agrawal, S. Chaudhuri, V. R. Narasayya,
“Automated Selection of Materialized Views and
Indexes in SQL Databases”, Proceedings of
VLDB’2000, Cairo, Egypt, pp 496-505

[Albrecht98] J. Albrecht, H. Gunzel, W. Lehner, “An
Architecture for Distributed OLAP”, Int. Conf. on
Parallel and Distributed Processing Techniques and
Applications PDPTA’98, 1998.

[APB98] APB-1 Benchmark, Olap Council, November
1998. Available at www.olpacouncil.org.

[Bernardino00] J. Bernardino, H. Madeira, “A New
Technique to Speedup Queries in Data Warehousing”,
ABDIS-DASFAA, Prague. 2000.

[Chauduri97] S. Chauduri and U. Dayal, “An overview of
data warehousing and OLAP technology”, SIGMOD
Record, 26(1), March 1997, pp.65-74.

[DeWitt92] D. J. DeWitt and Jim Gray, “Parallel Database
Systems: The future of high performance database
systems”, Com. of ACM, 35(6), June 1992, pp.85-98.

[Kimball96] "The Data Warehouse Toolkit", Ralph
Kimbal, Ed. J. Wiley & Sons, Inc, 1996

[Lu94] Hongjun Lu, Beng Chin. Ooi, and Kian Lee Tan.
Query Processing in Parallel Relational Database
Systems. IEEE Computer Society, May 1994

[Oracle97] “Star queries in Oracle 8”, White paper,
Oracle, 1997

[RedBrick98] Red Brick Systems, Inc. “Star Schema
Processing for Complex Queries”, White Paper, 1998

[Srinivasan00] J. Srinivasan et al., “Oracle8i Index-
Organized Table and Its Application to New
Domains”, Proc. of VLDB’2000, Egypt, pp.285-296

[Wu98] M. Wu, A. Buchmann, “Encoded Bitmap
Indexing for Data Warehouse”, ICDE Conf., 1998

DWS-3 DWS-5
Query Product

No of
rows sel Selectivity CDW

result result Error result error

Q0 All 8956764 36.13% 90955602 90955602 0.00% 91009415 0.06%
Q3 GTMO4OPZVEDI 1464 0.0059% 15416 15323 0.60% 15729 2.03%
Q3 JNVFUDO2QKIE 1397 0.0056% 14223 14110 0.79% 14155 0.48%
Q4 GTMO4OPZVEDI 1359 0.0055% 14445 14489 0.30% 15178 5.07%
Q4 JNVFUDO2QKIE 1345 0.0054% 13839 13813 0.19% 14022 1.32%
Q5 GTMO4OPZVEDI 103 0.0004% 1060 1049 1.04% 1039 1.98%
Q5 JNVFUDO2QKIE 100 0.0004% 979 968 1.12% 973 0.61%

Table 1: Error for the different queries when Dependent Queries (DQ) are executed as Independent Queries (IQ).

