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Abstract. This paper presents an approach to implement large data warehouses 
on an arbitrary number of computers, achieving very high query execution per-
formance and scalability. The data is distributed and processed in a potentially 
large number of autonomous computers using our technique called data ware-
house striping (DWS). The major problem of DWS technique is that it would 
require a very expensive cluster of computers with fault tolerant capabilities to 
prevent a fault in a single computer to stop the whole system. In this paper, we 
propose a radically different approach to deal with the problem of the unavail-
ability of one or more computers in the cluster, allowing the use of DWS with a 
very large number of inexpensive computers. The proposed approach is based 
on approximate query answering techniques that make it possible to deliver an 
approximate answer to the user even when one or more computers in the cluster 
are not available. The evaluation presented in the paper shows both analytically 
and experimentally that the approximate results obtained this way have a very 
small error that can be negligible in most of the cases. 

1   Introduction 

Data warehousing refers to “a collection of decision support technologies aimed at 
enabling the knowledge worker (executive, manager, analyst) to make better and faster 
decisions” [6]. A data warehouse is a global repository that stores large amounts of 
data that has been extracted and integrated from heterogeneous, operational or legacy 
systems. OLAP is the technique of performing complex analysis over the information 
stored in a data warehouse [8]. The data warehouse coupled with OLAP enable busi-
ness decision makers to creatively analyze and understand business trends since it 
transforms operational data into strategic decision making information. Typical ware-
house queries are very complex and ad hoc and generally access huge volumes of data 
and perform many joins and aggregations. Efficient query processing is a critical re-
quirement for data warehousing because decision support applications typically re-
quire interactive response times.  



In this paper, we assume that a multidimensional database is based on a relational 
data warehouse in which the information is organized as a star schema [12]. A star 
schema is composed by a set of dimension and fact tables where the fact table ac-
counts for most of the space occupied by all the tables in the star for most of the cases 
[13]. However, this table is highly normalized, which means that it really represents 
the most effective (concerning storage space) relational way to store the facts. The 
dimension tables are very denormalized, but these tables usually represent a small 
percentage of the space in the star. The star schema is also particularly optimized for 
the execution of complex queries that aggregate a large amount of data from the fact 
table.  

We use a new round-robin data partitioning approach for relational data warehouse 
environments proposed in [5]. This technique, called data warehouse striping (DWS), 
takes advantage of the specific characteristics of star schemas and typical data ware-
house queries profile to guarantee optimal load balance of query execution and as-
sures high scalability. In DWS, the fact tables are distributed over an arbitrary number 
of workstations and the queries are executed in parallel by all the workstations, guar-
anteeing a nearly linear speedup and significantly improving query response time.  

In spite of the potential dramatic speedup and scaleup that can be achieved by using 
the DWS technique, the fact that the data warehouse is distributed over a large number 
of workstations (nodes) greatly limits the practical use of the technique. The probabil-
ity of having one of the workstations in the system momentarily unavailable cannot be 
neglected for a large number of nodes. The obvious solution of building the system 
using fault tolerant computers is very expensive and will contradict the initial assump-
tion of DWS technique of using inexpensive workstations with the best 
cost/performance ratio. Nevertheless, high availability is required for most data ware-
houses, especially in areas such as e-commerce, banks, and airlines where the data 
warehouse is crucial to the success of the organizations.  

In this paper, we propose a new approximate query answering strategy to handle 
the problem of temporarily unavailability of one or more computers in a large data 
warehouse implemented over a large number of workstations (nodes) using the DWS 
technique. In the proposed approach the system continues working even when a given 
number of nodes are unavailable. The partial results from the available nodes are used 
to return an estimation of the results from the unavailable nodes. Currently, we pro-
vide approximate answers for typical aggregation queries providing the user with a 
confidence interval about the accuracy of the estimated result. The analytic and ex-
perimental study presented in this paper show that the error introduced in the query 
results can be really very small.  

The rest of the paper is organized as follows. In the next section, we give an over-
view of related work and discuss the problems associated with approximate answering 
in data warehouses. Section 3 briefly describes the DWS approach and section 4 dis-
cusses approximate query answering using DWS in the presence of node failures. 
Section 5 analyzes the experimental results and the final section contains concluding 
remarks and future work. 



2   Related Work 

Statistical techniques have been applied to databases in different tasks for more than 
two decades (e.g. selectivity estimation [14]). Traditionally, researchers are interested 
in obtaining exact answers to queries, minimizing query response time and maximiz-
ing throughput. In this work, we are interested in analyzing and giving solutions to the 
failure of one or more workstations in a DWS system. Thus, it has some similarities 
with approximate query answering research, where the main focus is to provide fast 
approximate answers to complex queries that can take minutes, or even hours to exe-
cute. In approximate query answering the size of the base data is minimized using 
samples, which is analogous to the failure of a workstation inhibiting the access to the 
part of the base data that resides in that workstation. A survey of various statistical 
techniques is given by Barbara et al [4]. 

Recently, there has been a significant amount of work on approximate query an-
swering [1, 10, 16]. One of the first works was [11] where the authors proposed a 
framework for approximate answers of aggregation queries called online aggregation, 
in which the base data is scanned in random order at query time and the approximate 
answer is continuously updated as the scan proceeds. The Approximate Query An-
swering (AQUA) system [9] provides approximate answers using small, pre-computed 
synopses of the underlying base data. Other systems support limited on-line aggrega-
tion features; e.g., the Red Brick system supports running COUNT, AVG, and SUM  [11].  

Our work is also related to distributed processing in data warehouses. The fact that 
many data warehouses tend to be extremely large in size [6] and grow quickly means 
that a scalable architecture is crucial. In spite of the potential advantages of distributed 
data warehouses, especially when the organization has a clear distributed nature, these 
systems are always very complex and have a difficult global management [2]. On the 
other hand, the performance of distributed queries is normally poor, mainly due to 
load balance problems. 

In this context, the DWS concept provides a flexible approach to distribution, in-
spired in both distributed data warehouse architecture and classical round-robin parti-
tioning techniques. The data is partitioned in such a way that the load is uniformly 
distributed to all the available workstations and, at the same time, the communication 
requirements between workstations is kept to a minimum during the query computa-
tion phase. This paper marries the concepts of distributed processing and approximate 
query answering to provide a fast and reliable relational data warehouse. 

3   Data Warehouse Striping 

Star schemas provide intuitive ways to represent the typical multidimensional data of 
businesses in a relational system. In the data warehouse striping (DWS) approach, the 
data of each star schema is distributed over an arbitrary number of workstations hav-
ing the same star schema (which is the same schema of the equivalent centralized 
version). The dimension tables are replicated in each machine (i.e., each dimension 
has exactly the same rows in all the workstations) and the fact data is distributed over 



the fact tables of each workstation using a strict row-by-row round-robin partitioning 
approach (see Figure 1). Each workstation has 1/N of the total amount of fact rows in 
the star, with N being the number of workstations. 
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Fig. 1. Data Warehouse Striping 

Most of the queries over a star schema can be transformed into N independent par-
tial queries due to their nature (and because the fact rows are partitioned in a disjoint 
way: i.e., the rows stored in a workstation are not replicated in other workstation).  

Although this is not the main point of this paper, it is important to mention that 
DWS achieves an optimal speedup. We have made experiments with 3, 5 and 10 
workstations using a set of typical queries from APB-1 benchmark [3] and we ob-
tained an average speedup of 3.01, 5.11 and 11.01, respectively. These results show 
an optimal speedup for all configurations. In fact, the speedup is higher than the theo-
retical value, because the centralized data warehouse that was used as the reference 
experiment worked near the workstation memory and I/O limits. Although the speedup 
increases as the number of workstations used in a DWS system increases, the prob-
ability of unavailability of a subset of those workstations also increases proportionally.   

In practice, this means that DWS could not be used with a large number of worksta-
tions because the DWS will be unstable. This problem therefore would impair the use 
of this simple technique. However, we propose a radical solution to this problem, 
which allows even ordinary computers to be used as DWS computing units (without 
any special characteristic of hardware or software fault tolerance). In the proposed 
solution, the system continues running normally, even if one or more workstations are 
unavailable, and an approximate answer is computed from those that are available. 
Additionally, confidence intervals are also returned with the estimated result. 

We experimentally analyzed our proposal with different configurations (different 
number of workstations) and in different scenarios of unavailability. The extreme case 
of unavailability will also be analyzed (when the user can only access his own work-
station), as the approximate result obtained this way can still be useful when s/he is in 
the phase of “digging” the data and the precision of the result is not a crucial issue.  



4   Approximate Query Answering in the Presence of Node Failures 

Our proposal consists of providing the user with an answer even when one of the 
machines in the DWS system has a failure. In this case the answer will be approxi-
mate, because some partial results of the failed machines are unavailable. DWS is 
working normally with approximate answers until we manually recover the work-
station. However, we show that this solution is acceptable for the following reasons: 

•  The error is very small, as will be shown in this paper and a small error is not 
relevant for the decision support activities in most of the cases; 

•  It is possible to provide the user with a confidence interval that gives him/her 
an idea of the amount of error in the approximate result. 

For queries using aggregation functions an approximate answer is simply an esti-
mated value for the answer given together with an accuracy value in the form of con-
fidence intervals. We provide confidence intervals based on large sample bounds [10]. 

4.1   Estimated Values 

In this section, we will see how DWS compute the approximate aggregation values 
when one or more workstations cannot contribute to the final result. Consider the 
number of workstations used in DWS to be N = Nu + Na, where Nu is the number of 
workstations that are unavailable and Na is the number of workstations that are avail-
able, contributing to compute the estimated aggregation value. If the aggregations 
functions to compute are average, sum or count and one or more workstations are 
unavailable the approximate average, sum and count are simply given by 

aCOUNT
aSUM

estimatedAVERAGE = , 
aN

N
aSUMestimatedSUM = , 

aN
N

aCOUNTestimatedCOUNT =  (1) 

where SUMa and COUNTa represents the partial sum and count from the available work-
stations and N is the number of workstations used in the DWS system. Intuitively, the 
overall estimated average is equal to the average taken from the available nodes. 
These are the formulas that will be used in our experiments to compute the estimated 
values of the queries. 

4.2   Analysis of the Error Incurred in DWS Estimations 

When one or more workstations are unavailable, approximate query answers must be 
given. Although it is not possible to return exact answers in those cases, the estimation 
is extremely accurate for an important subset of typical query patterns consisting of 
aggregations of values into categories. The estimation is based in statistical inference 
using the available data as samples. We assume that the random sample is taken from 
an arbitrary distribution with unknown mean µ and unknown variance σ2. We make 
the additional assumption that the sample size ns is large enough (ns>30) so that the 
Central Limit Theorem can be applied and it is possible to make inferences concern-
ing the mean of the distribution [7]. As σ is unknown, we replace it with the estimate 



s, the sample standard deviation, since this value is close to σ with high probability for 
large values of ns. Thus, bounds on the confidence interval for the mean of an arbitrary 
distribution are given by X ±Error, where 

Error = ± zα/2 × 
1−

−
n

snn

sn

s  . (2) 

In this expression, s is the standard deviation of the sample and n is the population 
size. The term zα/2 is the corresponding percentile in the normal distribution. This 
expression shows that the error decreases significantly as the sample size ns increases 
and eventually reaches extremely small values for very large sample sizes (ns ≈ n). 

The distribution of the fact table rows into N workstations is considered pseudo-
random because a round-robin approach is used. As a result, we assume the values in 
any aggregation pattern to be evenly distributed by all the workstations. For simplic-
ity, we consider that an average is being computed over each aggregation group. We 
also consider that Nu workstations are unavailable (cannot contribute with partial val-
ues to the final query result). Some reasonable assumptions can be made concerning 
the values taken by these variables, 

•  1 < N ≤ 100  
•  Nu is typically a small fraction of N  

Consider also an aggregation of ng values into one of the group results, with ng be-
ing reasonably large (e.g. ng ≥ 100). The number of values available in the sample 
when Nu workstations are unavailable is ng – ng/N × Nu = ng (1–Nu/N) and the error is: 

Error = ± zα/2 × 
1

)/1(

)/1( −
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This value is typically extremely small for the type of queries considered, because 
the number of values aggregated into a specific group (ng) is at least reasonably large 
(e.g. more than 100 values) and the fraction Nu/N is usually small. In other words, a 
sufficiently large sample is usually available, resulting in very accurate estimations. In 
these formulas we are concerning about the mean of the distribution but if we would 
like to compute the sum or count is only multiply the formulas above by the number of 
elements in each group (ng). Figure 2 shows the 99% interval for the error taken as a 
function of the fraction of workstations that are unavailable (x axis) and considering 
also different numbers of values aggregated in a group. These results were obtained by 
considering the standardized normal distribution N(0,1). 
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Fig. 2. 99% Confidence intervals for the error 

 

The results of the left picture show that the error is very small when the fraction of 
workstations that are unavailable is reasonably small or the number of values aggre-



gated into the group is sufficiently large. Additionally, although the increase in the 
fraction of workstations that are unavailable results in larger errors, as shown in the 
right picture, those errors are not very large in many cases and decrease significantly 
as ng increases. For instance, it can be seen from the left picture that the error is ex-
tremely small when the fraction of unavailable workstations is less or equal to 10% 
and the number of values aggregated into the group is larger than 200. 

5   Experimental Results 

In these experiments we evaluate the error and test if it is within the estimated confi-
dence intervals in a large variety of cases. We are also interested in analyzing the 
influence of group-by queries with different sizes of groups. 

The TPC-H benchmark [15] was used as an example of a typical OLAP applica-
tion. It consists of a suite of business oriented ad hoc queries illustrating decision 
support systems that examine large volumes of data, execute queries with a high de-
gree of complexity and give answers to critical business questions. Therefore, in ac-
cordance with the above criteria, we concentrated our attention on queries Q1, Q6 and 
Q7 of TPC-H benchmark. These queries have the characteristics shown in Table 1, 
where the first column represents the number of rows processed in average for each 
group, the second column show the number of groups and the third represents the 
average group selectivity when the data warehouse is centralized in one workstation.  

Table 1. Characteristics of queries Q1, Q6 and Q7 

 number of rows/group number of groups selectivity 
Q1 1,479,417 4 14.6 % 
Q6 114,160 1 1.9 % 
Q7 1,481 4 0.025 % 

5.1   Experimental Testbed 

The experimental evaluation of approximate query answering in DWS is conducted in 
a workstation environment where all are linked together in an Ethernet network with 
Oracle 8 database management system installed in each of them. 

The TPC-H was implemented with a scale factor of 1 for the test database, which 
corresponds, to approximately 1 GB for the database size. This corresponds to a big 
fact table LINEITEM (6,001,215 rows) and the dimension tables ORDERS (1,500,000 
rows), CUSTOMER (150,000 rows), SUPPLIER (10,000 rows) and NATION (25 rows).  

In these experiments we apply our technique to one workstation, simulating a cen-
tralized data warehouse and denote it as CDW (Centralized Data Warehouse), and to 
N=5, 10, 20, 50 and 100 workstations, which corresponds to DWS-5, DWS-10, DWS-
20, DWS-50 and DWS-100, respectively.  

The use of N workstations was simulated by dividing the n_fact_rows (6,001,215) 
of LINEITEM fact table, into N partial fact tables (LINEITEM_1,…, LINEITEM_N). Each 



workstation has n_fact_rows/N rows and the dimensions are replicated in each work-
station. For example, DWS-100 simulates the use of 100 workstations (N=100) having 
100 partial fact tables (LINEITEM_1, … ,LINEITEM_100) with each one having 
600,121±1 fact rows, while the dimensions are equivalent to those of the CDW sys-
tem. 

5.2   Approximate query answers 

In these experiments we evaluated the error obtained with typical OLAP queries when 
some of the workstations are unavailable and proved that we can give very tight confi-
dence intervals such that users know about the accuracy of the result. The influence of 
group-by queries with different sizes of groups will also be analyzed. 

Estimation accuracy. The unavailability of each individual workstation was 
simulated by not taking into account the partial results that corresponded to the failed 
workstation. Finally, we compute the average and maximum of all these errors for 
each configuration. For example, using the DWS-100 configuration, we determine the 
error when one of the 100 workstations is unavailable and determine the average and 
maximum of these errors. 

The average and maximum error obtained for Q1, Q6 and Q7 queries of TPC-H 
benchmark using DWS-5, DWS-10, DWS-20, DWS-50 and DWS-100 and consider-
ing only one unavailable workstation are illustrated in Figure 3, where the x axis rep-
resents the number of workstations used. 
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Fig. 3. Average and maximum error for Q1, Q6 and Q7 when one workstation is unavailable 

As can be observed, the average error obtained for these queries is extremely small 
because we only simulate the unavailability of one of the workstations that comprise 
each configuration. Additionally, this error decreases when we use more workstations, 
due to the fact that the number of missing rows is smaller. The average error obtained 
for Q7 query is larger than the error corresponding to the other queries because the 
average number of rows aggregated by group is smaller. This is due to the fact the 
query Q7 has a higher selectivity (as shown in Table 1), meaning less elements in each 
aggregation group, which in case of failure of one workstation has more impact in the 
precision of the result obtained. 

The maximum error is higher than average error because it is the worst-case. We 
compute the maximum error obtained for each query and for each group. However, as 
illustrated in the right picture of Figure 3, this error was always smaller than 2.5% 
even when 1/5 of workstations were unavailable. 



In the results shown before only one workstation was unavailable, but we are also 
interested in studying the results when the number of unavailable workstations is much 
larger. For instance, in DWS-5 we can simulate the failure of 2, 3 or 4 workstations, 
which corresponds to an unavailability of 40%, 60% or 80%, respectively. The aver-
age and maximum error for all possible combinations is shown in Figure 4 for queries 
Q1, Q6 and Q7, where the x axis represents the number of workstations unavailable. 
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Fig. 4. Average and maximum error on DWS-5 when one to four workstations are unavailable  

In these experiments, using DWS-5 configuration, the error increases with the 
number of workstations that are unavailable (as expected). However, this error is not 
very large in average, as it does not exceed 4% (Q7 query) or even less. Furthermore, 
the average error is not higher than 0.3% for queries Q1 and Q6, which is a very good 
approximation of the result for most of the cases. These very good results are due to 
the fact that our partitioning strategy is pseudo-random resulting in a uniform random 
distribution of the data over the workstations.  

The maximum error obtained using all the possible combinations of workstation 
unavailability is about 10%. It must be pointed out this is the extreme case of unavail-
ability because the user is only accessing his own workstation. Interestingly, the 
maximum error of Q1 query is higher than the maximum error of Q6 even though Q1 
aggregates more rows in average than Q6 (see Table 1). However, this is due to the 
influence of a very small group in Q1. This group has 38,854 rows, which is a much 
smaller number of rows than those from query Q6 (see Table 1). Therefore, we could 
conclude that the precision of our results is highly influenced by the number of rows 
processed in each group of a group-by query. However, even in the case of unavail-
ability of 80% of the workstations we obtain an error less than 10% in the worst case 
meaning that approximate results are not harmful. 

Confidence intervals. We provide accuracy measures as confidence intervals for each 
estimate, for some confidence probability.  

The next figures analyze the confidence interval that is returned using our tech-
nique for queries Q1 and Q7 using various configurations of DWS. Each graphic 
shows three curves, two of them representing the sum of the exact value with the con-
fidence interval (exact_value+error and exact_value-error), corresponding to the 
upper and lower curves in the figures. The middle curve is the estimated_value ob-
tained with the respective configuration.  

Figure 5(a) shows the confidence interval for query Q1 using DWS-100 and the 
aggregation avg(l_extendedprice) for one of the groups of the result. As we are simu-
lating the unavailability of only one workstation, the x axis legend indicates which 



workstation is unavailable and the y axis shows the value of the aggregation as well as 
the confidence interval bounds. This example shows that the confidence intervals do a 
good job determining boundaries for the error. These intervals are computed using the 
formula 3 of section 4.2, with a probability of 99%. 

Figure 5(b) shows the confidence intervals for query Q7 and all possible combina-
tions of unavailability of three workstations using DWS-5. The value computed by 
query Q7 is the aggregation sum(volume). The x axis represents all possible combina-
tions of unavailability of three workstations. The query Q7 returns four groups, but for 
simplicity is only shown the result of one in the figure 5(b). In this case confidence 
intervals are computed with a probability of 95%. 

Confidence Intervals for Q1

38200
38220
38240
38260
38280
38300
38320
38340

1 10 19 28 37 46 55 64 73 82 91 100

DWS-100

AV
G

exact+error
exact-error
estimated_avg

 

Confidence Intervals for Q7

46000000
48000000
50000000
52000000
54000000
56000000
58000000
60000000

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

DWS-5

SU
M

exact+error
exact-error
estimated_sum

 
(a) Unavailability of one       

workstation 
(b) Combinations of unavailability 

of three workstations 

Fig. 5. Confidence interval for queries Q1 and Q7 using DWS-100 and DWS-5 

The experimental results show that confidence intervals are very useful to deliver 
convenient error bounds for a given confidence level and the errors are very small. 
Thus, we can give the user very tight confidence intervals of the approximate answers 
when one or more workstations are unavailable. The artificial nature of the TPC-H 
benchmark data could influence the results but we argue that this highly-accurate 
answers are mainly due to our round robin data partitioning which provides random-
ness of our facts which would not be the case if we have used range partitioning. 

6   Conclusions and Future Work 

In this paper, we have proposed a distributed data warehousing strategy that is able to 
answer typical OLAP queries when component workstations are unavailable. Data 
Warehouse Striping (DWS) is a scalable technique that divides data warehouse facts 
into a number of workstations to solve data warehouse limitations related to heavy 
storage loads and performance problems. With the proposed modular approach, sim-
ple workstations without any special hardware or software fault tolerance can be used 
and very accurate approximate answers are returned even when a substantial number 
of the component workstations are unavailable.  We have proposed a formula to quan-
tify estimation error of the answer and proved that this error is very small when the 
fraction of workstations that are unavailable is reasonably small or the number of 
values aggregated into the groups is sufficiently large. 

The proposed technique is a cost-effective solution that could be applied in almost 
all types of organizations, taking advantage of the availability of computer networks to 



distribute the data and their processing power, avoiding the need of very expensive 
servers. The experimental results show a linear or even super linear speedup of DWS, 
due to the fact that, when we distribute the data, we are working with more manage-
able amounts of data that do not stress memory and computing resources so much. 

The experimental results of this paper have also shown that the DWS technique 
provides approximate query answers with very small errors, even when most of the 
workstations are unavailable. The confidence intervals are promising, as the technique 
is able to return strict confidence intervals with important information to the user 
concerning the amount of error of the estimations. We propose a more complex statis-
tical analysis as future work. 
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