
Evolving Creativity

Penousal Machado1,2, Jorge Tavares1, Amı́lcar Cardoso1,
Francisco B. Pereira1,2, and Ernesto Costa1

1 Instituto Superior de Engenharia de Coimbra,
Quinta da Nora, 3030 Coimbra, Portugal

2 Centre for Informatics and Systems of the University of Coimbra,
Pólo II - Pinhal de Marrocos, 3030 Coimbra, Portugal
{machado, jast, amilcar, xico, ernesto}@dei.uc.pt

Abstract. Transformational creativity requires a change of the search
space. As such, Evolutionary Computation (EC) approaches are inca-
pable of transformational creativity. In this paper, we discuss how canon-
ical EC techniques can be extended in order to yield the potential of
transformational creativity. We present a formalized description of how
this can be attained, and the experimental results achieved with a meta-
evolutionary scheme.

1 Introduction

In her works on creativity, Margaret Boden (e.g. [1]) identifies two types of cre-
ativity: exploratory and transformational (for short: e-creativity and t-creativity),
and considers the latest as more important. A typical EC approach is thought to
yield the potential for e-creativity. However, it is deemed as being incapable of
t-creativity. In this paper we propose several extensions of EC, which we consider
to confer to EC the potential for t-creativity.

In section 2 we make a synthesis of key concepts related with creativity, and
of a formalization of some of Boden’s ideas. In the next section we present a
generic EC algorithm, and propose the evolution of some of its components.
Then, in section 4, we make a short overview of EC systems in which some
of these items are evolved. In section 5 we establish a relation between the
evolution of EC components and t-creativity. The experimental results attained
with a meta-evolutionary approach are presented and discussed in section 6.
Finally, we draw some conclusions and present future research directions.

2 Exploratory and Transformational Creativity

In this section we introduce some key concepts related with creativity that are
relevant for the remainder of the paper. We do not address most of the questions
in detail, since that is clearly beyond the scope of the paper.

Boden [1] establishes two axis for the characterization of creativity. The first
relates with proprieties of the product, and establishes a distinction between His-
torical and Psychological creativity: creating something that was never created

before versus creating something that is novel only to the eyes of the agent. This
distinction, although important from a social perspective, is of little consequence
for our study.

The second axis characterizes the type of creativity – exploratory versus
transformational – and has wider implications. Boden views the creative process
as a search of new objects in a conceptual space. This space can be extremely
convoluted, and therefore some of its points hard to reach. The discovery one
point of this type is deemed as e-creativity. While e-creativity is an exploration
of a conceptual space, t-creativity refers to the change of the conceptual space
itself. As such, great breakthroughs that provoke paradigm shifts fit into this
class of creativity [1].

Wiggins [2] formalized some of the ideas presented by Boden. This formaliza-
tion – which sheds a new light into the somewhat vague description provided by
Boden, making it more clear and precise – will be described in the next section.
For a more thorough description we refer the reader to the original paper.

2.1 Formalization

The formalization proposed by Wiggins [2] includes the following elements:

– U – The space of all possible concepts. Or, for parsimony, the set of all
possible concepts relevant to a given domain.

– L – A language that enables the definition of constraints and construction
rules.

– [[.]] – An interpreter for selecting concepts from U according to a set of
constraints specified in L.

– 〈〈.〉〉 – A search engine for traversing U , or one of its subsets, according to
rules specified in L.

– R – A set of rules, in L, that defines a subset of U .
– T – A set of rules, in L, defining the search strategy.
– E – A set of rules, in L, which allow the evaluation of concepts.

These elements allow the modelling of Boden’s ideas with more precision. Lets
represent by C the conceptual space that experts in a given area usually consider
in the search for new concepts. This space is a subset of U , defined by the rules
in R.

C = [[R]](U) (1)

Additionally, T is a set of rules encoding a search engine that allows the traversal
of C, thus defining the connectivity between points of the space:

ci+1 = 〈〈R ∪ T 〉〉(ci) (2)

E-creativity is modelled as an exploration of the search space C, using the search
methodology specified by T , that leads to new points of C which are highly
valued by E. One can add the additional constraint of these points being hard
to reach, but this is not strictly necessary. Moreover, E can take into account
aspects other than adequacy (e.g. novelty). According to the formalization, t-
creativity can be achieved in several ways, namely:

– By changing the set of rules, R, that defines the elements of C, thus creating
a new conceptual space, C ′.

– By changing T , the rules governing the traversal of C. In this case the ele-
ments of C do not change, what is changed is the connectivity between the
points of C.

This distinction only became clear due to the formalization [2]. Wiggins also
notices that: “...a change in E opens up a whole new area of conceptual space,
and possibly of universe, for consideration.” [2]. In a human society a change in
E is probably not easy to achieve. Nevertheless, we put forward the possibility
of this being yet another way of achieving t-creativity.

Wiggins’ formalization allows the definition of t-creativity in precise terms.
Simply put, t-creativity is e-creativity at the meta-level. An exploratory creative
system can be described by a sextuple:

〈U,L, [[.]], 〈〈.〉〉, R, T, E〉 (3)

T-creativity is the search for a new R or T or both. Since they are both expressed
in L, L becomes the space of all possible concepts. A new language LL is needed,
to allow the definition of constraints and rules for traversing this space. We also
need RL, a set of constraints in language LL that specifies the search space of
R’s and T’s that will be considered, and TL a set of rules in LL for traversing
that space. Additionally, we have the corresponding interpreters: [̂[.]] and 〈̂〈.〉〉.
Finally we need an evaluation function EL, also in LL, that assesses the quality
of the R’s and T’s. Thus, t-creativity can be described by the following sextuple:

〈L,LL, [̂[.]], 〈̂〈.〉〉, RL, TL, EL〉 (4)

Hence the argument of t-creativity being e-creativity at the meta-level [2]. This
also gives rise to the possibility of considering further meta-levels of creativity.
There are, of course, practical implications, which include how to build: RL, TL,
and EL. We will return to these issues later.

3 Evolutionary Computation

Historically EC is divided into four families namely: Evolution Strategies (ES);
Evolutionary Programming (EP); Genetic Algorithms (GA); and Genetic Pro-
gramming (GP). In spite of their differences they can all be seen as particular
instances of the Generic Evolutionary Algorithm (GEA) presented in figure 1.

The first step is the creation of a random set of genotypes, G(0). These
genotypes are converted to phenotypes through the application of a mapping
function (map). In most cases there is not a clear distinction between genotype
and phenotype, so this step is typically omitted. The next step consists on the
evaluation of the individuals. This is performed at the phenotype level using a
fitness function, eval. The main evolutionary cycle follows. A set of parents is
selected, using sel, followed by the application of genetic operators, op, which

t ← 0
G(0) ← generate random(t)
P (0) ← map(G(0))
F (0) ← eval(P (0))
while stop criterion not met do

G′(t) ← sel(G(t), P (t), F (t))
G′′(t) ← op(G′(t))
G(t + 1) ← gen(G(t), G′′(t))
P (t + 1) ← map(G(t + 1))
F (t + 1) ← eval(P (t + 1))
t ← t + 1

end while
return result

Fig. 1. Generic Evolutionary Algorithm.

yields a new set of genotypes, G′′(t). The next steps consist in the generation
of the phenotypes and their evaluation. The evolutionary cycle continues until
some termination criterion is met.

We are now in position to return to the original motivation for this paper:
“How can transformational creativity be achieved by means of Evolutionary
Computation?”. Assuming that EC has the potential to achieve e-creativity,
which seems to be the case; and that t-creativity is e-creativity at the meta-level,
which follows from the work of Wiggins [2]; then meta-evolution should yield
the potential to perform t-creativity. More precisely, what we propose evolving
the following aspects of the evolutionary algorithm: mapping function, genetic
operators, selection procedure, replacement strategy, and evaluation function.

4 Related Work

The area of Adaptive Evolutionary Computation (AEC) focuses on the evolution
of specific parameters of EC algorithms. Angeline [3] makes a formal definition
and classification of AEC, proposing three levels of adaptation: population-level,
individual-level and component-level.

There are several AEC approaches that allow the dynamic resizing of the
genotype, allowing its expansion and contraction according to environmental
requirements. Angeline and Pollack [4] propose the co-evolution of: a high-level
representational language suited to the environment; and of a dynamic GA where
the genotype size varies. Also related to genotype-phenotype mapping, is the
work of Altenberg [5] about the notion of “evolvability” - the ability of a popu-
lation to produce variants fitter than previous existing ones. In [6, 7] Altenberg
explores the concept of Genome Growth, a constructional selection method in
which the degree of freedom of the representation is increased incrementally.
This work is directly connected to the concepts presented by Dawkins in [8],
where he clearly differentiates genetics, the study of the relationships between

genotypes in successive generations, from embryology, the study of the relation-
ships between genotype and phenotype in any one generation. This leads us to
the concept of embryogeny, the process of growth that defines how a genotype
is mapped onto a phenotype, and to the work of Bentley. In [9], the use of such
growth processes within evolutionary systems is studied. Three main types of
EC embryogenies are identified and explained: external, explicit and implicit. A
comparative study between these different types, using an evolutionary design
problem, is also presented.

The evolution of the genetic operators is the obvious next step. In [10], Teller
describes how genetic operators can be evolved using PADO, a graph based GP
system. In [11] GP is extended to a co-evolutionary model, allowing the co-
evolution of candidate solutions and genetic operators. Another approach to the
evolution of genetic operators is described in [12]. In this study, an additional
level of recombination operators is introduced, which performs the recombination
of a pool of operators. In [13] Spector and Robinson discuss how an autocon-
structive evolutionary system can be attained using a language called Push.

5 Evolutionary Transformational Creativity

In this section we analyze the consequences of evolving several components of
the traditional EC, and propose propose several alternatives for their evolution.

5.1 Transforming the Search Space

We start by analyzing what kind of transformation of the search space can be
achieved by changing the map function. This function is responsible for the map-
ping between genotype and phenotype. A phenotype is a fully grown individual,
or, from a more computational point of view, a candidate solution to a given
problem. A genotype, is a piece of genetic code that once expressed via the map
function, results in a phenotype. The genotype has no independent meaning, it
only gains meaning after the application of a mapping function.

We can establish a connection between the map function and Wiggins’ for-
malization. Considering that map is expressed in some language, that [[.]] is an
interpreter for that language, and that u is the set of all genotypes – we have:

c = [[map]](u), (5)

where c is the space of all possible phenotypes under map. Thus, map is roughly
equivalent to R.

To be totally equivalent we would have to consider the space of genotypes,
u, to be equivalent to U . According to Wiggins’ formalization C and U are both
concept spaces, and C should be a subset of U . In general, these propositions
do not hold for c and u. In the typical scenario u and c are sets of different
types, genotypes and phenotypes. Thus, we can establish a parallelism between
C and c, however, in general, the same parallelism cannot be established be-
tween U and u. Nevertheless, for particular cases, e.g. when there is an identity

relation between genotypes and phenotypes, u can be considered equivalent to
U . Moreover, establishing an equivalence between u and U is not strictly neces-
sary. Since t-creativity is about the transformation of C (or T), the equivalence
between C and c is, from our view point, sufficient to be in accordance with
Wiggins’ formalization.

Additionally, and due to the genetic operators being applied at the genotype
level, a transformation of map may also lead to a change of the connectivity of
the space, and thus of T .

The way the space is traversed depends, mostly on the operators employed.
They are the main ingredient in the definition of the connectivity of the space.
In a less direct way, the connectivity also depends on the selection procedure,
and on the replacement strategy (gen). As such, a change of op, sel, or even gen,
can be seen as a transformation of T – the rules governing the traversal of C.

Like we stated before, the genetic operations are performed at the genotype
level. This causes no conflict with the formalization. Equation 2.1 clearly states
that the interpreter 〈〈.〉〉 is applied to R ∪ T .

Changing sel or gen does not appear to be as interesting as changing the
genetic operators. Nevertheless, a change of these functions has the potential to
change the search method, and as such yield t-creativity.

The relation between the fitness function, eval, and E is obvious. In section
2.1 we suggested that a change in E could also be a type of t-creativity. In the
case of a EC approach this is certainly the case. The sel of the progenitors takes
into account their fitness value. Therefore, a change in E can change the way
the space is traversed.

5.2 Evolving EC Components

The most obvious approach to the evolution of EC components is the use of
Meta-Evolution. Lets assume we are interested in evolving one of the components
of EC, for instance the mapping function, and that we resort to GP to evolve
populations of these functions.

Each genotype, Gmap
i , is an encoding of a candidate mapping function; once

expressed, via mapmap, it results in a phenotype, Pmap
i . Thus, the phenotypes

are mapping functions expressed in some language Lmap. For simplicity sake, we
can assume that this language to be Turing Complete, which implies that any
computable mapping function can be evolved.

We also need to define: selmap, opmap and genmap. Like mapmap and evalmap

these functions are static. Therefore, we can use standard GP selection, operators
and replacement strategy.

Moreover, we need to develop a way to assign fitness to different mapping
functions, evalmap. One possibility is to use a set of rules that specify the charac-
teristics that are considered desirable in a mapping function, and assign fitness
based on the accordance with those rules. Although technically possible, this can
be both difficult and pointless. To attain t-creativity we must be e-creative at
this level. The chances of finding an interesting, innovative, and adequate map-
ping function, with a search procedure guided by a pre-established set of rules,

or heuristics, seems slim. Moreover, in most scenarios, we might not even have a
good idea about the kind of mapping function we are interested in. Additionally,
EC is usually good at finding holes in the fitness function.

There is, however, something that we usually can take for granted: we are
mainly interested in mapping functions that promote the discovery of good solu-
tions for the original problem. We can, for each individual being evaluated, run
an EC algorithm in which Pmap

i is used as mapping function. By changing the
GEA presented in figure 1 so that we can pass as arguments one, or several, of
the following functions: map, sel, op, gen and eval, we can use an evalmap such
as the one presented in figure 2. The fitness of each phenotype is the result of
a lower level EC. This result can indicate, for instance: the fitness of the best
individual (at the lower level); the time necessary to reach the optimum; the
average fitness of the last population; etc.

evalmap(P map)
for i = 1 to #(P map) do

F map
i ← AEG(P map

i)
endfor
return F map

Fig. 2. Meta-level fitness function.

We have stated that the evolved mapping functions could be expressed in
some Turing Complete language. If this is the case, since the lower level EC runs
Pmap

i , we must deal with the Halting Problem. The typical solution is to impose
a time constraint. Thus, if Pmap

i does not halt after a pre-specified amount of
time it is assumed that it will never stop and, accordingly, its fitness value will
be low.

It should be more or less obvious that we can employ the exact same strat-
egy to evolve: sel, op, gen or eval. If we are evolving evaluation functions, the
lower level EC is guided by P eval

i . However, we are interested in a P eval
i which

allows the discovery of individuals which are fit accordingly to some original
fitness function. As such, the return value of GEA should reflect its performance
according to this original function.

There is, of course, the possibility of adding more levels enabling the evolution
of several components. Alternatively, we can also evolve several components
simultaneously. In this case, each genotype would be an encoding of several
functions, and the phenotype a set of functions, which are passed to the lower
level EC. For instance, considering that all components are being evolved, we
would have P

{map,sel,op,gen,eval}
i .

The main problem of the architecture presented in this section is its high
computational cost. There are several other alternatives to the evolution of EC
components, among which: Dual-Evolution and Co-Evolution. Due to space re-

strictions these approaches will not be analyzed in this paper, for a brief overview
please consult [15].

6 Experimental Results

To test our ideas we decided to apply meta-evolution to evolve mapping func-
tions. We use a two level meta-evolution scheme composed by a GP algorithm
and a GA. At the higher level we have the GP algorithm, which is used to evolve
the mapping functions. At the lower level we have the GA, whose task is finding
the maximum value of a mathematical function. The goal is to evolve mappings
that help the GA to accomplish its task.

The function being optimized by the GA, f(x), is defined over the interval
[0, 1], and is the sum of fpeak(x) and fwave(x), which are specified as follows:

fpeak(x) = max(0, |1− 2|x− peak| − (1− 1
r
)| × 0.1× r) (6)

fwave(x) = cos(2π × r × (x− peak)) (7)

fwave creates a sine wave with r repetitions in the [0, 1] interval, returning
values between −1 and 1. By adding fpeak we change the values of one of the
repetitions, making it reach a maximum value of 1.1. In figure 3 we present a
graph of f(x). To increase the complexity of the problem, variable r is set to
100, which means that the wave function repeats itself 100 times in the [0, 1]
interval.

Fig. 3. Test function, r = 5, peak = 0.5

By changing the value of the variable peak we can change the coordinate of
the maximum of f(x). This ability to change the maximum is fundamental. If
this value does not change the GP algorithm could find programs that output a
constant x value corresponding to the maximum of f(x). This is not, obviously,
the desired behavior. What we aim to achieve is a GP program that transforms
the search space in a way that helps the GA to find the maximum value. Thus,
for each value of x the GP programs should compute a new value, x′. The re-
organization of the search space induced by the x to x′ transformation should
make the task of finding the optimum easier.

To ensure that it is possible to find a good mapping function we decided to
design one by hand. We were able to develop the following function:

goptimal(x) =
x + floor(frac(x× 10000)× r)

r
(8)

Where frac returns the fractional part. This function has the effect of folding
the space r times, and then expanding it back to [0, 1]. By using this mapping
function the topology of the search space is changed, resulting in a less convo-
luted fitness landscape. In figure 4 we present a chart of this mapping function,
goptimal(x), and of the search space resulting from its application, f(goptimal(x)).
Since goptimal maps [0, 1] to [0, 1], R is not changed. Instead, what is changed is
the connectivity of the points of the space and, as such, T . This becomes possible
due to the genetic operations being performed at the genotype level.

Fig. 4. On the left goptimal(x); on the right f(goptimal(x)), r = 5.

To assign fitness, we run, for each GP individual, mappingj a GA. Each GA
genotype, Gsol

i , is a binary string of size 50, encoding a value, G′sol
i , in the [0, 1]

interval. The GP individual is used as mapping function for the GA. The value
G′sol

i will be mapped to x′i (thus, x′i = mappingj(G′sol
i)). x′i is then used as the

x coordinate for the function being optimized by the GA, f .
In order to get a good estimate of the quality of the mapping functions we

perform 30 runs of the GA for each GP individual. To prevent the specialization
of the GP individuals, the value of peak is randomly chosen at the beginning of
each GA run. The fitness the GP individual is equal to the average fitness of the
best individual of the last population of the lower level GA.

We use the following function and terminal sets: {+,−,%,×, f loor, frac},
where % is the protected division; = {G′sol

i , 1, 10, 100}, where G′sol
i is a variable

holding the value of the GA genotype that is currently being mapped.
The settings for the GP algorithm were the following: Population size =

100; Number of generations 500; Swap-Tree crossover; Generate Random Tree
mutation; Crossover probability = 70%; Mutation probability=20%; Maximum
tree depth = 10. The settings for the GA where the following: Population size
= 100; Number of generations = 30,100; Two point crossover; Swap Mutation;
Crossover probability = 70%; Mutation probability={1%, 2.5%, 5%}.

6.1 Analysis of the Results

The main objective of our approach is to find a mapping function that consis-
tently improves the performance of the GA algorithm. To evaluate the experi-
mental results we need some reference points. Therefore, we conducted a series
of experiments in which the mapping function was not subjected to evolution.
In these tests we used the following static mapping functions: goptimal, already
described; and gidentity with gidentity(x) = G′sol. These results will be compared
with the ones obtained using as mapping functions the best individuals of each
GP run, gevolved.

Table 1 shows the average fitness of the best individual of the last population
of a traditional GA (Number of generations = 100) using as mapping functions
gidentity, goptimal and gevolved. The results are averages of 100 runs for the static
mappings and of 3000 runs for the evolved mappings (100 runs per each evolved
mapping).

Table 1. Average fitness of the best individual of the last population. The entries in
bold indicate a statistically significant difference between these values and the corre-
sponding gidentity values (α = 0.01).

Mutation gidentity goptimal gevolved30 gevolved100

1% 1.0134617 1.0806543 1.0647961 1.0632421
2.5% 1.0242724 1.0942163 1.0843632 1.0821193
5% 1.0323492 1.0982930 1.0993311 1.0946481

As expected using goptimal considerably improves the performance of the
algorithm, yielding averages close to the maximum attainable value, 1.1. Table
1 shows that the use of the evolved mapping functions significantly improves
the performance of the GA. However, the results attained are usually inferior to
the ones achieved using goptimal. This difference diminishes as the mutation rate
increases. Additionally, using a smaller number of generations in the lower level
GA leads to better overall results. The higher evolutionary pressure increases
the need for the transformation of the search space.

To get a better grasp of how the use of the evolved mapping functions alter
the GA, we present, in figure 5, the evolution of the fitness of the best individual
during the GA run. For static mappings the fitness increases abruptly in the first
generations, stagnating for the remainder of the run; with the evolved mappings
the fitness increases steadily during the entire run. An analysis of the evolution
of the average fitness of the GA populations gives insight to how the evolved
mappings are improving the GA performance. The use of evolved mappings de-
creases significantly the average fitness of the populations. These results indicate
that the evolved mappings improve the performance of the GA by promoting
phenotypic diversity, preventing the early stagnation of the GA runs.

The evolved mappings are not similar to goptimal, which cannot be considered
surprising. As is often the case when analyzing the results of a GP program, it

%HVW�)LWQHVV��0XWDWLRQ���

1

1.02

1.04

1.06

1.08

1.1

0 20 40 60 80 100
��� � � � � � � � �

	
�
�
��

Identity Optimal Evolved30 Evolved100

%HVW�)LWQHVV��0XWDWLRQ�����

1

1.02

1.04

1.06

1.08

1.1

0 20 40 60 80 100
��� � � � � � � � �

	
�
�
��

Identity Optimal Evolved30 Evolved100

%HVW�)LWQHVV��0XWDWLRQ���

1

1.02

1.04

1.06

1.08

1.1

0 20 40 60 80 100
��� � � � � � � � �

	
�
�
��

Identity Optimal Evolved30 Evolved100

$YHUDJH�)LWQHVV��0XWDWLRQ���

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
��� � � � � � � � �

	
�
�
��

Identity Optimal Evolved30 Evolved100

$YHUDJH�)LWQHVV��0XWDWLRQ�����

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
��� � � � � � � � �

	
 �
�
��

Identity Optimal Evolved30 Evolved100

$YHUDJH�)LWQHVV��0XWDWLRQ���

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100
��� � � � � � � � �

	
�
�
��

Identity Optimal Evolved30 Evolved100

Fig. 5. Evolution of the fitness of the best individual and of the average fitness of the
GA populations.

is not clear how the evolved mappings solve the problem of improving the GA
performance. The charts suggest that reducing the number of GA generations
used in the GP fitness assignment procedure, thus increasing the difficulty of the
evolved mappings task, leads to better results. Taking into account the average
of the GA populations when assigning a fitness value for the GP individuals,
may also prove useful to achieve mappings closer to goptimal.

7 Conclusions and Further Work

In this paper we discussed how the canonical EC algorithm can be extended in
order to yield the potential for t-creativity. The proposed changes involve the
evolution of several components of EC which are typically static. We establish
a relation between the evolution of these components and the change of R and
T , introduced in Wiggins’ formalization of t-creativity [2]. Additionally, the evo-
lution of these components may prove useful in improving the EC performance,
lessen the burden of researchers, and provide indications about the characteris-
tics of the problems being solve.

The attained results are promising, and provide pointers for the improvement
of the approach. Future research will include: making a wider set of experiments;
applying the proposed approach to a different set of domains; and using dual-
evolution and co-evolution to evolve EC components.

References

1. Boden, M.A.: The Creative Mind: Myths and Mechanisms. Basic Books (1990)
2. Wiggins, G.: Towards a more precise characterisation of creativity in ai. In: Proc.

of the ICCBR 2001 Workshop on Creative Systems, Vancouver, Canada (2001)
3. Angeline, P.J.: Adaptive and self-adaptive evolutionary computations. In: Com-

putational Intelligence: A Dynamic Systems Perspective. IEEE Press (1995)
4. Angeline, P.J., Pollack, J.B.: Coevolving high-level representations. In: Artificial

Life III. Volume XVII of SFI Studies in the Sciences of Complexity. (1994) 55–71
5. Altenberg, L.: The evolution of evolvability in genetic programming. In Kinnear,

K.E., ed.: Advances in Genetic Programming. MIT Press (1994) 47–74
6. Altenberg, L.: Evolving better representations through selective genome growth.

In: Proceedings of the 1st IEEE Conference on Evolutionary Computation. Part 1
(of 2), Piscataway N.J., IEEE (1994) 182–187

7. Altenberg, L.: Genome growth and the evolution of the genotype-phenotype map.
In Banzhaf, W., Eeckman, F.H., eds.: Evolution as a Computational Process.
Springer-Verlag, Berlin (1995) 205–259

8. Dawkins, R.: The evolution of evolvability. In: Artificial Life, SFI Studies in the
Sciences of Complexity. Volume VI., Addison-Wesley (1989) 201–220

9. Bentley, P., Kumar, S.: Three ways to grow designs: A comparison of embryo-
genies for an evolutionary design problem. In: Proceedings of the Genetic and
Evolutionary Computation Conference. Volume 1. (1999) 35–43

10. Teller, A.: Evolving programmers: The co-evolution of intelligent recombination
operators. In Angeline, P.J., Kinnear, Jr., K.E., eds.: Advances in Genetic Pro-
gramming 2. MIT Press, Cambridge, MA, USA (1996) 45–68

11. Edmonds, B.: Meta-genetic programming: Co-evolving the operators of variation.
CPM Report 98-32, Centre for Policy Modelling, Manchester Metropolitan Uni-
versity, UK, Aytoun St., Manchester, M1 3GH. UK (1998)

12. Kantschik, W., Dittrich, P., Brameier, M., Banzhaf, W.: Meta-evolution in graph
GP. In: Genetic Programming: Second European Workshop, Springer (1999) 15–28

13. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution
with the push programming language. Genetic Programming and Evolvable Ma-
chines 3 (2002) 7–40

14. Koza, J.R.: Genetic programming: A paradigm for genetically breeding populations
of computer programs to solve problems. Technical Report STAN-CS-90-1314,
Stanford University (1990)

15. Tavares, J., Machado, P., Cardoso, A., Pereira, F.B., Costa, E.: On the evolution
of evolutionary algorithms. In Keijzer, M., O’Reilly, U.M., Lucas, S.M., Costa, E.,
Soule, T., eds.: Genetic Programming 7th European Conference, EuroGP 2004,
Proceedings. Volume 3003 of LNCS., Coimbra, Portugal, Springer-Verlag (2004)
389–398

