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Abstract. We present a method for melody detection in polyphonic musical 
signals based on a model of the human auditory system. First, a set of pitch 
candidates is obtained for each frame, based on a cochlear model and periodic-
ity detection using correlograms. Trajectories of the most salient pitches are 
then constructed. Next, note candidates are obtained by trajectory segmentation 
(in terms of frequency and pitch salience variations). Too short, low-salience 
and octave-related notes are then eliminated. Finally, the melody is extracted 
by selecting the most important notes at each time, based on their pitch sali-
ence. We tested our method with excerpts from 12 songs encompassing several 
genres. In the songs where the solo stands out clearly, most of the melody notes 
were successfully detected. However, for songs where the melody is not that 
salient, the algorithm was not very accurate. Nevertheless, the followed ap-
proach seems promising. 

1   Introduction 

As a result of recent technological innovations, there has been a tremendous growth 
in the Electronic Music Distribution (EMD) industry. Factors like the widespread 
access to the Internet, bandwidth increasing in domestic accesses or the generalized 
use of compact audio formats with CD or near CD quality, such as mp3, have given a 
great contribution to that boom. Presently, it is expected that the number of digital 
music archives, as well as their dimension, grow significantly in the near future, both 
in terms of music database size and in number of genres covered.  

However, any large music database, or, generically speaking, any multimedia da-
tabase, is only really useful if users can find what they are looking for in an efficient 
manner. Today, whether it is the case of a digital music library, the Internet or any 
music database, search and retrieval is carried out mostly in a textual manner, based 
on categories such as author, title or genre. This approach leads to a certain number 
of difficulties, namely in what concerns database search in a transparent and intuitive 
way. Therefore, in order to overcome the limitations described, research is being 
conducted in an emergent and promising field called Music Information Retrieval 
(MIR). 



Query-by-humming (QBH) [1, 4, 6] is a particularly intuitive way of searching for 
a musical piece, since melody humming is a very natural habit of humans. Therefore, 
several technologies have been developed that aim to permit such function. However, 
presently, this work is being carried out only in the MIDI realm, which places impor-
tant usability questions. In fact, usually we look for recorded songs, which can be 
obtained from CDs or are stored in audio formats such as mp3. Looking for musical 
pieces in the MIDI format is a much easier problem, since this is a symbolic format 
where all the notes, as well as their timings, are already available. The main issues 
are, then, to extract the notes from the hummed query (a well-known monophonic 
pitch1 extraction problem,) and to match the query to the melody, usually available in 
the MIDI file (an information retrieval problem).   

Querying “real-world” polyphonic recorded musical pieces requires that some sort 
of melody representation be extracted beforehand, which creates many more difficul-
ties. Polyphonic musical signals can be converted to symbolic formats either manu-
ally or automatically. Manual conversion requires, obviously, a tremendous amount 
of man-work and specialized skills. On the other hand, analyzing polyphonic musical 
waveforms is a rather complex task, since we can have many different types of in-
struments playing at the same time, whose spectra interfere severely with each other. 
This fact makes it very complicated to separate the different sound sources. 

Source separation is a major concern for polyphonic music analysis and automatic 
music transcription systems, and has no general solution yet. One way to approach 
this problem is to build computer models that emulate human auditory processing. 
The human brain processes auditory information in a way called “auditory scene 
analysis” [3]. As an attempt to replicate human behavior, some work has been carried 
out aiming to develop computational auditory scene analysis systems. The results 
obtained are not very accurate yet and are only acceptable for simpler or well-
constrained problems. Namely, Ellis [5] tries to analyze a sound waveform by means 
of competitive theories, where each of them proposes a combination of sounds that 
might have produced the resulting sound. Sound source models are used as a basis for 
the proposed method. Bello et al [2] and Martin [12] have used computational black-
board systems for simple automatic music transcription. The blackboard system is 
composed of a global database, where hypotheses are proposed and developed, a 
scheduler that determines how hypotheses are developed, and knowledge sources, 
corresponding to experts. Scheirer [14] proposes a model based on perceptual issues, 
using dynamic clustering of comodulation data. In contrast to the other systems re-
ferred, this model is designed for analysis of complex music. Klapuri [10] proposed a 
method for multi-pitch estimation where the musical signal is analyzed at separate 
frequency bands. Namely, 18 logarithmic distributed bands from 50 Hz to 6 kHz are 
used. Then at each band, a fundamental frequency likelihood vector is calculated. 
Finally, the results from each band are combined to yield global pitch likelihoods. 
They report results that outperform the average of ten trained musicians. Other mod-
els impose constraints in the number of instruments present or the harmonic interac-
tion between them, as referred in [7]. 

                                                           
1 In this paper, we use the term pitch indistinctly of fundamental frequency, though the former 

is a perceptual variable, whereas the latter is a physical one. 



Melody detection can be seen as a sub-problem of polyphonic pitch detection and 
source separation, where the aim is to detect the main melodic line, regardless of the 
other sources present. This requires the detection of the dominant notes at each time, 
not the whole set of notes present. For instance, when we hear a pop song, we have 
vocals, guitar, bass, percussion and so forth. Yet, in spite of all that information, our 
brains still can retain the main melodic line.  

Only little work has been carried out in the particular problem of melody detection 
in “real-world” songs. One interesting approach is the one followed by Goto [7]. The 
author uses a probabilistic model for the detection of melody and bass lines. The 
sound wave is first band-pass filtered and then a probability density function (pdf) is 
computed for each signal component. The pdfs are generated from a weighted-
mixture of tone models of all possible fundamental frequencies. The more dominant a 
model is in the PDF, the more likely the fundamental frequency belongs to that 
model. The author compared the dominant frequencies detected with hand-labeled 
marked notes and reports an average rate of 88.4% for the melodic pitch line.   

Song et al [19] use a different approach, based on the fact that there is no single 
method that is both accurate and generic. They argue that their method is more prag-
matic when the final goal is QBH: instead of trying to extract the melody, they use a 
mid-level melody representation, which consists of a sequence of audio segments 
where each segment contains a set of note candidates. Then, they use a variation of 
dynamic programming for matching the query with the melody mid-level representa-
tion. 

In this paper, we describe a multi-stage method for melody detection, based on a 
model of the human auditory system [16]. In short, the method works as follows. The 
sound wave is first divided into frames where stationarity can be assumed. For each 
frame, we get a set of pitch candidates, based on a cochlear model and periodicity 
detection using correlograms. We determine pitch candidates by finding relevant 
peaks in a summary correlogram, where peak amplitude gives information regarding 
its salience. Then, we create pitch trajectories, based on frequency proximity. After 
trajectory creation, note candidates are obtained by trajectory segmentation and 
elimination. Short-duration, low-salience and octave-related notes are then elimi-
nated. Finally, the melody is extracted by selecting the most important notes at each 
time, based on their pitch saliences.   

We tested our system on excerpts of 12 songs, encompassing several different gen-
res. The obtained notes were then compared with the correct ones, previously hand-
labeled. In the songs where the solo stands out clearly, most of the melody notes were 
successfully detected. However, for songs where the melody is not that salient, the 
algorithm was not so accurate. Yet, we could say that the obtained results presented 
are encouraging. 

The following sections describe the work carried out in this paper. Section 2 de-
scribes the melody detection method. In Section 3, experimental results are presented 
and evaluated. Finally, in Section 4, conclusions are drawn and possible directions for 
future work are pointed out. 



2   Melody Detection Method 

Our melody detection algorithm is composed of five modules, illustrated in Fig. 1.  
The first module, multi-pitch detection (MPD), receives a raw polyphonic musical 

signal and returns a set of pitch candidates and their respective saliences. Then, pitch 
trajectories are created based on frequency proximity, in the multi-pitch trajectory 
construction (MPTC) module. 

The resulting trajectories are then segmented, based on frequency and pitch sali-
ence variations, leading to an initial set of candidate notes. Since many of the ob-
tained notes are irrelevant, short-duration, low-salience and octave-related notes are 
eliminated. Finally, the notes comprising the detected melody are extracted by select-
ing the most salient notes at each time. 

For the sake of visualization simplicity, we will illustrate the method with a simple 
example: a monophonic saxophone riff. 
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Fig. 1. Melody detection system overview 

2.1   Multi-Pitch Detection  

In the first stage of the algorithm, the objective is to capture a set of candidate 
pitches, which constitute the basis of possible future notes. The MPD algorithm re-
ceives as input a raw musical signal (monaural, sampling frequency fs = 22050 Hz, 16 
bits quantization) and outputs a set of pitch candidates and respective saliences.  

Our goal is to obtain pitch candidates at each time instant. Since we cannot define 
instantaneous time in a computational model, we have to define some sort of time 
granularity. Therefore, we select a small enough time window and perform sound 
wave analysis in a frame-based way. We use a 20 ms frame length, which constitutes 
a good trade-off between time and frequency resolution: it is small enough for the 
assumption of signal stationarity and large enough for accurate detection of pitches 
above 100 Hz. The corresponding number of samples per frame is N = 441. In order 
to allow for a smooth transition between frames, 50% overlap is employed. 



After dividing the musical signal into frames, we perform an auditory model based 
analysis of each frame, in order to detect the most salient pitches in each. This analy-
sis comprises four stages, diagrammed in Fig. 2.: i) conversion of the sound wave-
form into auditory nerve responses for each frequency channel, using a model of the 
cochlea (which creates an image called cochleagram); ii) detection of the main peri-
odicities in each frequency channel using auto-correlation (which produces an image 
called correlogram); iii) detection of the global periodicities in the sound waveform 
by calculation of a summary correlogram; and iv) detection of the pitch candidates in 
the frame by looking for the most salient peaks in the summary correlogram. 
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Fig. 2. Multi-pitch detection module 

Cochlear Model. In the first stage of the multi-pitch detection system, a model of the 
cochlea is implemented, which aims to mimic the tasks carried out by the inner ear in 
the first stages of auditory processing. The cochlea encodes information in the sound 
wave into a multi-channel representation of auditory nerve firing patterns. The output 
of the cochlear model is a two-dimensional representation of a sound waveform that 
permits its visualization as a time-frequency image. In this image, called 
“cochleagram”, each line contains information regarding auditory nerve responses for 
the corresponding cochlear, or frequency, channel.  A good review of the tasks 
carried out in the cochlea and auditory nerve can be found in [8; 9]. 

In the present work, we use the cochlear model proposed by Richard Lyon [11] 
and described and implemented by Malcolm Slaney [16; 17], with some minor adap-
tations. Below, we give a short description of Lyon’s model. For a thorough analysis, 
we refer the reader to [16]. 

The model implements three main tasks: filtering, detection and compression. 
First, a cascade of second-order filters models sound propagation down the basilar 
membrane, which acts as a frequency analyzer. Therefore, each filter corresponds to a 
cochlear channel that best responds to a particular frequency range. Furthermore, 
front filters are also implemented, which constitute a simple model of the responses 
of the outer and middle ears. In the present implementation, using a sampling fre-
quency of 22050 Hz, 96 cochlear filters are used. Fig. 3 depicts every 5th filter re-
sponse, using a logarithmic frequency axis. This figure was created using Slaney’s 
Auditory Toolbox [17]. As for model parameterization, we use the default parameters 



proposed by Slaney, namely a filter Q of 8 and a step factor of 0.25 (which deter-
mines the amount of filter overlap).  
 

10
2

10
3

10
4-60

-50

-40

-30

-20

-10

0

10

20

Frequency (Hz)

A
m

pl
itu

de
 (d

B)

 

Fig. 3. Frequency response of cochlear filters 

After filtering, the movements of the basilar membrane are converted to auditory 
nerve responses. Since inner hair cells only respond to movement in one direction, an 
array of half-wave rectifiers is employed to detect the output of each second order 
filter. This is a simple model of detection that does not account, for instance, for satu-
ration effects. 

Finally, four stages of automatic gain control compress the dynamic range of the 
input into a limited level that the auditory nerve can deal with. The automatic gain 
control is, in fact, a model of ear’s adaptation: the response to a constant stimulus is 
first large and then, as the auditory system adapts to the stimulus, the response be-
comes smaller. Regarding parameterization, we use once again the parameters pro-
posed by Slaney [17], namely target values of 0.0032, 0.0016, 0.0008 and 0.0004 and 
time constants of 640, 160, 40 and 10 ms for the first, second, third and fourth stages 
of automatic gain control.  

Fig. 4 presents a cochleagram for our monophonic saxophone riff example: here, 
the harmonics of the sound waveform are clearly visible by the horizontal striations. 
Recall that higher channels correspond to lower frequencies. This picture has a lim-
ited time resolution, due to displaying purposes. However, the inner hair cells in the 
cochlea are extremely sensitive to the time structure of each component of the sound. 
Thus, a view of the cochleagram for a 20 ms’ time slice is presented in Fig. 5b. In this 
figure, the harmonics are not so clear but a more precise image of auditory nerve 
firing responses in each channel is obtained.  
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Fig. 4. Cochleagram for a 2.5s’ saxophone riff 

Channel Periodicity Detection. After computing the auditory nerve firing responses 
for each frequency channel, the main periodicities in the sound wave are detected. 
Here, this is accomplished by computation of the auto-correlation function (ACF) in 
each channel, resulting in a two-dimensional image of the sound signal, where the 
horizontal axis represents correlation lag and the vertical axis represents frequency. 
This image is called “correlogram” which means, literally, “picture of correlations” 
[16]. Each line of the correlogram contains information regarding the salience of the 
periodicities found for a given frequency channel. Like the cochleagram, the 
correlogram activity is measured by pixel intensity in the image.  

The main objective of the correlogram is to summarize the temporal activity at the 
output of the cochlea [17]. In fact, many sounds, and particularly musical sounds, are 
periodic in time, or at least pseudo-periodic. The correlogram is, then, a powerful tool 
for detecting and visualizing the referred periodicities. As a result, all channels will 
show peaks at the horizontal positions corresponding to correlation lags that match 
the periods of repetition present in the signal. 

Slaney [16] argues that the correlogram is biologically plausible. In fact, despite 
the separation of sound into broad cochlear channels, the temporal properties of the 
original signal are still kept. It is likely that the brain measures periodicities using a 
neural delay line, a case that is supported by the cross-correlator structures found in 
the brains of owls and cats. Furthermore, the detection of periodicities is also inspired 
by the “timing theory” of auditory nerve firing described above. 

In terms of computer implementation, here, the periodicities in the cochleagram 
are obtained by computing the short-time ACF of the neural firing responses in each 
cochlear channels for a particular time window. As was referred previously, the 



sound wave must be divided into frames where stationarity can be assumed. This is 
equivalent to multiplying the signal by a sliding rectangular window. However, in 
order to smooth the correlation, a Hamming window is used instead. In order to im-
prove efficiency, the ACF in each window is implemented via de fast Fourier Trans-
form (FFT) algorithm, which is equivalent to performing circular auto-correlation 
[18]. 

It is common to normalize the ACF so that its value at zero lag is equal to one, in 
order to reduce is dynamic range. However, this procedure eliminates any indication 
of the relative power in different cochlear channels. Therefore, the correlations are 
partially normalized by the square root of the power [17]. In this way, its dynamic 
range becomes comparable to the one of the cochleagram, keeping the relative pow-
ers between channels [16]. An example of a 20 ms’ correlogram frame for our saxo-
phone riff is presented in Fig. 5b. This picture shows the utility of correlograms for 
the analysis of periodic signals: there are clear vertical lines at particular auto-
correlation lags, indicating instants when a large number of cochlear channels fire at 
the same period. This in turn is a clear indication of the pitch periods present in the 
signal. 

Periodicity Summarization. As we referred above, the vertical lines across several 
cochlear channels show evidence of pitch. Therefore, a summary correlogram (SC) is 
built by summing the ACFs across all channels at each time lag. This measures the 
likelihood that a periodicity corresponding to a particular time lag is present in the 
sound waveform.  

In order to enhance the peaks in the SC, we extract its envelope. This is carried 
out, typically, by half-wave rectifying and low-pass filtering the SC.  We also per-
form squaring, so that the peaks are emphasized. Since the correlograms in the previ-
ous stage are all non-negative, the SC will also be non-negative and so does not need 
to be rectified. Therefore, only squaring and filtering are carried out. Moreover, 
unlike Slaney who normalizes the summary correlogram in each frame (dividing it by 
the value at zero lag) [17], we use its exact values, since they are useful for trajectory 
segmentation, as will be explained in Section 2.3. 

An example of a summary correlogram is presented in Fig. 5d, where the deter-
mined pitch candidates are marked, as will be described below. 

Salient Peak Detection. The final stage of the multi-pitch detection module consists 
of finding a set of pitch candidates based on the most salient peaks in the summary 
correlogram. To accomplish this task, we first look for all peaks in the SC, excluding 
the one at zero lag, and obtain their respective saliences, i.e., their amplitudes. Then, 
we eliminate all peaks that are not salient enough. To accomplish this task, we find 
the highest peak salience, maxPeakSal, and determine the minimum allowed peak 
salience, minPeakSal, using the minimum salience ratio parameter, minSalRatio 

The detection of the main periodicities for our example is illustrated in Fig. 5d, 
where the most salient peaks, i.e., pitch candidates, are marked. The frequencies for 
the pitch candidates are then obtained by inverting the periods corresponding to the 
found peaks. Finally, the pitch saliences in all frames are normalized to the [0; 100] 
interval, for comparison in the following stages of the melody detection system. 
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Fig. 5. Illustration of the four stages of the MPD algorithm  

The four stages of the MPD algorithm are illustrated in Fig. 5: panel a) presents a 
20 ms frame of our saxophone riff; panels b) and c) depict the corresponding coch-
leagram and correlogram images; and panel d) shows the summary correlogram, 
where the candidate pitch periods are marked. The summary correlogram was nor-
malized for this graphic since it is easier to get a picture of pitch likelihoods, though 
our implementation does not perform normalization, as was referred before. 

At this point, the motivation for extracting multiple pitches when we are only in-
terested in the melodic line deserves a better explanation. In fact, extracting a single 
pitch would be both easier and more intuitive. However, since we are performing 
pitch detection in a polyphonic context, it often happens that the pitch corresponding 
to the melody is not the most salient one in each frame. Therefore, selecting several 
pitch candidates at this stage allows for the detection of lower-salience melody notes, 
which might not be captured if only a single pitch was extracted. We performed some 
experiments, to be reported in a future publication, which confirmed our assumption. 
The issue of note salience in a mixture of simultaneous notes is then dealt with in the 
following stages of the melody detection system. 

The methodology for multi-pitch detection is summarized in Algorithm 1. Parame-
ter definition is presented in Table 1. The parameters for the cochleagram are not 
presented, since we used the default values defined by Slaney [17], as referred above.  



Algorithm 1. Multi-pitch detection 

1. Compute the cochleagram for each time frame 
   1.1. Apply Lyon’s cochlear model 
2. Compute the correlogram for each time frame 
   2.1. Multiply each line of the cochleagram frame by  
        a Hamming window 
   2.2. Determine the ACF function for each channel via 
        FFT 
   2.3. Normalize the ACF 
3. Compute the summary correlogram for the each time 
   frame 
   3.1. Sum the ACF across all channels 
   3.2. Enhance peaks: squaring + low-pass filtering 
4. Detect salient peaks in the summary correlogram 
   4.1. Determine minimum allowed peak value (salience) 
        - maxPeakSal  maximum peak value 
        - minPeakSal  maxPeakSal × minSalRatio 
   4.2. Eliminate pitches with low salience 
        4.2.1. If peak salience < minPeakSal, eliminate  
               peak 
   4.3. Convert pitch periods to frequencies 
5. Normalize pitch saliences in all frames to the  
   [0; 100] interval 
6. Return pitch frequencies and saliences for all  
   frames. 

Table 1. MPD parameters 

Parameter Name Parameter Value 
frame length 20 ms 
frame overlap 50% 
minSalRatio 0.2 

 
Unlike automatic music transcription systems, this algorithm does not deal with the 

well known and complex “octave problem”. In fact, at this stage it is not important to 
analyze if a given pitch candidate corresponds to a real note or appears as a ghost 
note, whose fundamental frequency is a harmonic of some real note, a few octaves 
above. Some of the ghost notes will be eliminated already at this stage based on the 
pitch salience threshold, whereas others will be eliminated in the following stages of 
the melody detection algorithm. 

2.2   Trajectory Construction 

The second stage of the melody detection algorithm aims at creating a set of pitch 
trajectories, formed by connecting consecutive pitch candidates with similar frequen-
cies. The idea is to find regions of stable pitches, which indicate the presence of mu-
sical notes. The MPTC algorithm receives as input a set of pitch candidates, charac-



terized by their frequencies and saliences, and outputs a set of pitch trajectories, 
which constitute the basis of the final melody notes.  

We follow rather closely Serra’s peak continuation algorithm [15]. However, since 
we have a limited set of pitch candidates per frame, our algorithm is much lighter. In 
fact, Serra looks for regions of stable sinusoids in the signal’s spectrum, which leads 
to a trajectory for each harmonic component found. Therefore, a high number of 
trajectories have to be processed, which makes the algorithm much heavier, though 
the basic idea is the same. Another difference is that we first quantize frequencies to 
the closest MIDI note. We found that peak continuation based on MIDI note numbers 
allows for a more robust trajectory build up. One reason for this seems to come from 
the fact that the location of peaks oscillates somewhat due to interference from other 
sources in the sound mixture. Furthermore, the representation of notes using MIDI 
numbers simplifies an eventual representation of the sound waveform in MIDI format 
(e.g., for generation of a MIDI file).  

This algorithm is based on the definition of a maximum frequency deviation (in 
semi-tones in our case) for continuing trajectories. We define a value of one semi-
tone, motivated by the fact that some songs comprise glissando and vibrato regions, 
as well as by the frequency oscillations that may result from interference of other 
sources. Therefore, in this way, all these phenomena are kept within a common track, 
instead of being separated into a number of different trajectories, e.g., one trajectory 
for each note that one glissando may traverse. The drawback of allowing a larger 
frequency deviation is that a single trajectory can contain more than one note. This is 
the reason why we perform trajectory segmentation, in the next stage of the melody 
detection algorithm. 

Also, we specify a maximum number of frames where a trajectory can be inactive, 
i.e., when no continuation peaks are found. If this number is exceeded, the trajectory 
is stopped. Here, we define a maximum of five inactive frames. 

Finally, any trajectory must be longer than a minimum trajectory length. Therefore, 
all finished trajectories that are shorter then this threshold, are eliminated. The mini-
mum trajectory length in our implementation is nine frames. 

We present a detailed description of the implemented algorithm in [13]. 
The result of the MPTC algoritjm is illustrated in Fig. 6, for our saxophone riff 

example. There, we can see that some of the obtained trajectories comprise glissando 
regions. Also, some of the trajectories include more than one note and should, there-
fore, be segmented. 
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Fig. 6. Illustration of the MPTC algorithm 

2.3   Trajectory Segmentation 

As we mentioned previously, the trajectories that result from the MPTC algorithm 
may contain more than one note and, therefore, must be segmented. This is the task of 
the third stage of the melody detection method. The trajectory segmentation algorithm 
receives as input a set of trajectories of pitch candidates and outputs a set of seg-
mented trajectories, i.e., note candidates. 

Two types of segmentation have to be conducted. The most intuitive one is fre-
quency segmentation, where the goal is to separate all the different frequency notes 
that are present in the same trajectory. The other one, salience segmentation, aims at 
separating consecutive notes that have the same fundamental frequencies, which the 
MPTC algorithm may have interpreted as forming only one note. This requires seg-
mentation based on salience minima, which mark the limits of each note. Here, it is 
important to the say that the salience value depends both on the evidence of pitch for 
that particular frequency and on the intensity of the frequency component. Conse-
quently, a salience curve consists of a growing region, corresponding to note onset, a 
more or less stable zone, corresponding to the steady part of the note, and a decreas-
ing region, corresponding to note offset. Thus, notes can be segmented by detecting 
clear minima in the salience curve. 
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Fig. 7. Illustration of the trajectory segmentation algorithm 

As for frequency segmentation, the main idea is to find sufficiently long sequences 
of the same note number. Only then trajectories are segmented. When note transitions 
are found but the current note sequence is not long enough, i.e., larger than nine 
frames (as defined in the MPTC algorithm), the trajectory is not segmented, since it 
may correspond to the start of a glissando region. Furthermore, when we find short 
sequences delimited by the same note number, e.g., {70, 71, 71, 71, 71, 70}, these are 
interpreted as possible modulation regions, and so no segmentation takes place. 

After frequency segmentation, the obtained candidate notes must be analyzed so as 
to check whether they should be further divided. In fact, there may be consecutive 
distinct notes at the same fundamental frequency that, erroneously, form a unique 
long note. In this situation, those notes must be divided.  In order to accomplish this 
task, salience segmentation takes place. The main idea is to find clear salience min-
ima that suggest the presence of more than one note. This is implemented using a 
recursive procedure. 

Finally, after all notes are segmented, their onset and offset times are adjusted. For 
each note, we get its maximum salience value and then define the onset as the first 
frame were the salience rises above 20% of the maximum salience found. The proce-
dure is the same for the offsets, i.e., the note offset corresponds to the first frame 
where the salience rises above 20% of the maximum salience, starting from the end. 

A detailed description of the implemented algorithm is presented in [13]. 
Fig. 7 illustrates trajectory segmentation, using the initial trajectories from the 

MPTC algorithm (Fig. 6). The obtained notes are depicted with thick lines. We can 
see that glissando and modulation regions are properly dealt with (check notes start-
ing approximately at time 1.5s). Furthermore, some trajectories are truncating as a 
consequence of the assumption for offset detection. 



2.4   Note Elimination 

The objective of the fourth stage of the melody detection algorithm is to delete some 
of the note candidates, based on their saliences, durations and on the analysis of oc-
tave relations. The note elimination algorithm receives as input a set of note candi-
dates and outputs a reduced set of notes, relevant for melody extraction.  
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Fig. 8. Illustration of the note elimination algorithm 

First, low-salience notes are deleted. A note is low-salience if its average salience 
is below a value of 20 and if the number of frames whose salience is above that 
threshold is not enough, i.e., less than five frames. Next, all the notes that are too 
short, i.e., whose duration is below the minimum of nine frames, defined in the 
MPTC algorithm, are also deleted. Finally, we look for octave relations between all 
notes, based on the fact that some of the obtained pitch candidates are sub-harmonics 
of real pitches in the sound wave.  If two notes have approximately the same onset 
and offset times and are harmonically related, it is possible that the lower one is just a 
sub-harmonic of the higher one. Therefore, we compare their respective saliences in 
order to take a decision: if the salience of the lower note is less than 60% of the sali-
ence of the higher note, the lower one is eliminated. We describe this algorithm in 
greater detail in [13]. 

Fig. 8 illustrates note elimination, based on the note candidates of Fig. 7. The ob-
tained notes are depicted with thick lines. It can be seen that many of the note candi-
dates are eliminated at this point. 



2.5   Melody Extraction 

In the final stage of the present melody detection system, our goal is to obtain a final 
set of notes comprising the melody of the song under analysis. The melody extraction 
algorithm receives as input the set of notes returned by the note elimination algorithm 
and outputs the final melody notes.  

This stage of the proposed system, being probably the most important one, is also 
the most difficult one to carry out. In fact, many aspects of auditory organization 
influence the perception of melody by humans, for instance in terms of the role 
played by the pitch, timbre and intensity content of the sound signal. In our approach, 
we do not attack the problem of source separation, as would normally be the case. 
Instead, we base our strategy on the assumption that the main melodic line often 
stands out in the mixture. 

This algorithm starts by analyzing intersections between notes. The beginning and 
end of intersection regions is used to segment the sound signal, as illustrated in Fig. 9, 
where si stands for the i-th obtained segment.  
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Fig. 9. Segmentation based on note intersection 

Then, for each segment, we determine the three most salient notes, based on the 
average pitch salience of each note in each segment. Notes below MIDI note number 
50 (143.83 Hz) are excluded. This procedure is motivated by the fact that the notes 
comprising the melody are, usually, in a middle frequency range.  

Next, we eliminate all the notes that are not dominant, i.e., that are not in the three 
most salient notes for more than 2/3 of their total number of frames or do not have the 
highest salience for more than nine frames. Finally, we do not allow any simultaneous 
notes. Therefore, we truncate notes that end after the next note starts (or vice-versa, 
depending on their respective saliences in the common segments), eliminate notes 
included in larger duration notes and, for notes with approximate onsets and offsets, 
keep only the most salient one.  



Our melody extraction algorithm is described in detail in [13]. 
Fig. 10 illustrates melody extraction, based on the example in Fig. 8. The final 

melody notes are depicted with thick lines. 
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Fig. 10. Illustration of the melody extraction algorithm 

3   Experimental Results 

One difficulty regarding the evaluation of MIR systems results from the absence of 
standard test collections and benchmark problems. Therefore, we created our own test 
database, having care regarding its diversity and musical content. We collected ex-
cerpts of about 6 seconds from 12 songs, encompassing several different genres. The 
selected songs contain a solo (either vocal or instrumental) and accompaniment parts 
(guitar, bass, percussion, other vocals, etc.).  

The obtained results are summarized in Table 2. There, “V” stands for vocals and 
“I” stands for instrumental.  

Fig. 11 shows an example of the results of the melody detection system for an ex-
cerpt of the song “Thank You”, by Dido.  



Table 2. Results of the melody detection system 

Song Title Genre Solo 
Type 

#Total 
Notes 

#Correct 
Notes 

Pachelbel’s Kanon Classical I 16 8 (50%) 
Handel’s Hallelujah Choral V 15 n. r. 
Enya – Only Time Neo-Classical V 11 10 (90,9%) 
Dido – Thank You Pop V 16 13 (81.25%) 
Ricky Martin – Private Emo-
tion Pop V 10 6 (60%) 

Avril Lavigne – Complicated Pop/Rock V 14 9 (64.3%) 
Rua Dona Margarida Jazz I 19 18 (94.7%) 
Mambo Kings – Bella Maria 
de Mi Alma Bolero I 12 8 (75%) 

Compay Segundo – Chan 
Chan Latin V 10 n. r. 

Juan Luis Guerra – Palomita 
Blanca Rumba V 10 8 (80%) 

Battlefield Band – Snow on 
the Hills Scottish Folk I 26 20 (76,9%) 

Saxophone riff (monophonic) I 6 6 (100%) 
 
 

0 1 2 3 4 5 6
45

50

55

60

65

70

75

80

Time (s)

M
ID

I n
ot

e 
nu

m
be

r

 
Fig. 11. Detected melody for “Dido - Thank You” excerpt 

In this example in Fig. 11, we can see that the correct notes (thick lines) match the 
obtained melody notes (thin continuous lines) in most of the cases. The undetected 
notes are marked with circles. As can be seen, two of the three missing notes were 



present in the notes obtained after elimination (dotted lines). One of the missing 
notes, approximately at time 5.8s, corresponds to erroneous trajectory segmentation. 
There are also other minor segmentation errors. The detected melody notes were 
compared with the correct notes, previously hand-labeled. In the absence of the mel-
ody line, the system detected the dominant accompaniment part, since sound sources 
are not discriminated. This can be seen in Fig. 11, by the thin continuous lines. This is 
consistent with the way humans seem to memorize melodies: a mix of solo regions 
with accompaniment regions, in the absence of a solo. However, we decided to ignore 
the notes where the accompaniment part dominates, in the same way as Goto does 
[7]. In order to extract only the melody, we would need a means of separating notes 
according to their sources. The most intuitive, but complex, way to accomplish this 
task would be to use timbre models. Other possibilities would be to separate notes 
according to their frequency ranges, note intensity levels (since the intensity of a solo 
varies usually in a smooth way) or duration of notes (e.g., it is not likely that a short 
duration note in the middle of two long notes belongs to the same source as them).  

In our test cases, we observed that some of the notes were erroneously segmented 
(too much or too little segmentation) and others were shorter than the original ones. 
This resulted from noise in both the frequency and salience sequences, as well as 
frequency deviations in the MPTC algorithm, which lead to excessive trajectory seg-
mentation. The noise in the salience sequences results often from interference from 
other sources in the sound mixture, namely percussive instruments. One possible way 
to deal with this issue would be to smooth the frequency and salience sequences be-
fore segmentation. Another possibility would be to filter out percussive sounds from 
the mixture, which seems to be a challenging task. We also observed a few semi-tone 
deviations (a small number of them). These errors resulted from the previous one and 
so should diminish after we deal with the problems coming from segmentation. We 
decided to ignore these small errors since our goal is to check whether a note is pre-
sent or not, no matter in how many sub-notes the algorithm divides it. These errors 
can be reduced as was referred. 

We can see that the algorithm could not find any reasonable melody in some ex-
cerpts (“#Correct Notes = n. r.: not reasonable”). However, in the cases where the 
melody stands clearly out of the background and percussion is not too intense, good 
results were achieved, which matches Goto’s results [7]. In two of examples, we the 
system achieved an accuracy close to 100% (only one missing note). Furthermore, the 
results obtained for pop/rock and rumba songs surprised us positively, since they 
have strong percussion (Juan Luis Guerra), as well as intense guitars (Ricky Martion) 
with distortion (Avril Lavigne). 

It is also worthwhile to say that, in the tested examples, many of the missing notes 
were still present after the note elimination stage. This suggests that a more robust 
melody extraction module could lead to better results. 

We also tested our system with a simple monophonic saxophone riff, as referred 
throughout this paper. In this example, the results were very good in terms of detec-
tion of glissandos, vibratos and note onsets and offsets. Consequently, we hope our 
system could be used as a robust monophonic pitch detection tool. 



4   Conclusions 

We have presented a system for melody detection in polyphonic musical signals. This 
is a main issue for MIR applications, such as QBH “real-world” music databases. The 
work conducted in this field is presently restricted to the MIDI realm, and so we 
guess we make an interesting contribution to the area, though our results were not 
satisfactory enough for real applications. However, the achieved results are encourag-
ing, since we have not exploited the full potential of our approach yet. Furthermore, 
to our knowledge, only Goto [7] addresses the issue of melody detection in poly-
phonic music, but without trying to explicitly extract notes. Also, our system is rea-
sonably simple and light, except for the multi-pitch detection module, due to cochlear 
modeling and auto-correlation computation. 

Regarding future work, we plan to further work out some of the described limita-
tions, namely devising a more robust algorithm for melody extraction. Additionally, 
we plan to apply some sort of pre-processing in order to filter out percussive sound 
components, which seems a to be a very demanding task. Therefore, we plan to 
evaluate the feasibility of Independent Component Analysis for source separation. 
The main idea would be to separate the solo and accompaniment parts (namely, per-
cussive ones) and then detect the melody in the solo part using our proposed ap-
proach. 
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