

Product Assurance of Software Reuse in the SPICE for Space Framework

João Gabriel SilvaΦ
�

, Manuel Rodríguez
�

, Diamantino Costa
�

, Han van Loon
�

,
Patricia Rodríguez-Dapena

�

, Knud Pedersen
�

, Fernando Aldea-Montero♦

�

Critical Software SA
Parque Industrial de Taveiro, Lote 48

3045-504 Coimbra, Portugal
{jgabriel, mrodriguez, dcosta}@criticalsoftware.com

�

SYNSPACE AG
Hardstrasse 11

CH - 4052 Basel
hvl@synspace.com

�

SoftWcare S.L.
C/ Serafín Avendaño, 18 Int.,

36201 Vigo, Spain
rodriguezdapena@softwcare.com

�

Terma A/S, Space Division
Bregnerødvej 144, DK-3460 Birkerød, Denmark

knp@terma.com

♦
ESA/ESTEC

Noordwijk, Netherlands
Fernando.Aldea.Montero@esa.int

Abstract

This paper describes the main conclusions of the PA-

PDS study1. This is a European Space Agency study about
the reuse of Pre-Developed Software (PDS) in space
projects, using S4S (SPICE for Space) as the framework.
The main objective of this study is to define the product
assurance requirements to support the acquisition,
evaluation, integration and maintenance of PDS to be
reused in a new development of a space system. The
method proposed for reuse of PDS is described,
particularly the main requirements to follow. The project
has considered technical and organisational viewpoints.
Both the perspective of occasional (or informal) reuse
and systematic reuse are addressed.

1. Introduction

Developing large industrial systems with very high
reliability and availability requirements entails enormous
costs. This is the reason why many organizations have
begun to consider implementing such systems using
reusable component repositories. In the framework of the
space domain, the European Space Agency (ESA), like
other government and system developers acquiring
software-intensive space systems, are undergoing a shift in

Φ João Gabriel Silva is a professor at the University of Coimbra,
Portugal, acting in this project as a senior consultant to Critical
Software.
1 PA-PDS (“Product Assurance Support to Pre-developed Software
Proposed for Reuse”) is a study sponsored by the European Space
Research and Technology Centre (ESTEC) of the European Space
Agency (ESA) - ESTEC Contract 15808/01/NL/WK.

emphasis from custom-developed software2 towards the
use of Pre-Developed Software (PDS)3, with the
expectation that:
• It can significantly lower development costs and

shorten development cycles.
• It can lead to software space systems that require less

time to specify, design, develop, test, and maintain, yet
satisfying high reliability and quality requirements.
To achieve this, it is important to define new

requirements and processes within the European space
standards addressing the development of software-
intensive systems. That is the main motivation and
purpose of the PA-PDS study, which has approached the
above observations by focussing on the product assurance
aspects required for making development ‘with’ reuse4 a
success.

The product assurance areas that the study has targeted
are the following:
• Software lifecycle development phases
• Software quality models, metrics and evaluation

methods
• Software product evaluation and certification
• Risk management
• Safety and dependability requirements and techniques

2 Custom-developed software: Software that is specifically developed
under the framework of a project.
3 PDS: Any software component or asset that has been developed
outside the context of the project where it is being considered for reuse,
such as a commercial operating system or a document template.
4 In order to make affordable the scope of the PA-PDS study, neither
development ‘for’ reuse nor domain engineering were considered. Also,
other issues not directly related to technical aspects were left out of
scope, in particular legal and contractual concerns.

• Process assessment (as extensions to SPICE for
Space - S4S5)
A number of technical notes have been produced under

the project, which will be available at
ftp://ftp.estec.esa.nl/pub/tos-qq/qqs/PDS/. Hereafter, we
provide a brief description of the scope of these technical
notes:
• Characterization of PDS for reuse in space projects

and classification of PDS (TN1 [3]).
• Survey and analysis of industry and research literature

– SURPRISE, McClure, ESI-Reuse, SEI PLP, etc. –,
and software standards – IEEE, NASA, ISO, ECSS,
SPEC, etc. (TN2 [4]6).

• Creation and extension of processes, base practices
and work products in S4S that consider software reuse
(TN3.1 [5]).

• Definition of product assurance requirements and
guidelines for reuse (TN3.2 [6]).

• Technical specification of tools supporting reusable
component repositories (TN3.3 [7]).

• Pilot projects to demonstrate the applicability of the
results of the PA-PDS study, based on the reuse of
SCOS 2000 [15] and OBOSS-II [18] in the Herschel-
Plank satellite missions (TN4 [9] and TN5 [10]).

• Proposed changes to the European Co-operation for
Space Standardisation (ECSS) standards, the Software
Product Evaluation and Certification (SPEC) method
[13] and other ESA related studies [8].

• Tutorial materials for managers and technical
personnel both from industry and ESA [11][12].

The main contributions of the PA-PDS study are:
• Definition of Product Assurance (PA) requirements

and PDS types to support the acquisition, evaluation,
integration and maintenance of Pre-Developed
Software to be reused in a new space system
development. This contribution is basically covered by
technical notes [3] and [6].

• Reuse process assessment additions to SPICE for
Space (S4S)7. This contribution is basically covered
by technical note [5].
The second contribution (the proposed extensions to

S4S) was already described in a previous paper presented
in the SPICE conference [1].

This paper focuses on the first contribution of the
project, namely the definition of product assurance

5 SPICE for Space (S4S) is an extension of ISO 15504 to include
requirements specific to the space industry [14].
6 Since this technical note is just an intermediate result leading to [5][6],
it will probably not be made available in our FTP site, but can be
provided under request.
7 These additions are only proposed extensions (their inclusion has not
been decided upon yet).

requirements. They naturally depend on the circumstances
of reuse, because it is not the same to reuse e.g. a real-
time kernel that runs on a satellite, or a mathematical
routine that processes off-line data received from that
satellite. We call these different reuse scenarios PDS types
(they are described in section 2) and indicate for each
individual requirement to which PDS type does it apply.
The defined requirements also take into account
organisational concerns when PDS is used, and
complement the ISO12207 organisational process
requirements. They also target different groups, including
software engineers, product assurance personnel and
project managers, within industry as well as within ESA.

The paper is structured as follows. Section 2 introduces
the classification of the different PDS types. Section 3
presents the fundamental (or top) requirements that allow
an organisation to move from no reuse to occasional reuse
to systematic reuse. This transition is necessary so as to
achieve a significant benefit from PDS reuse. Section 4
covers the main organisational issues that allow for such a
transition. Finally, Section 5 concludes the paper and
gives future directions of this work.

2. Pre-Developed Software types

An important activity of the PA-PDS study consisted
of establishing a characterisation of the existing PDS, and
defining a set of reuse types.

The characterisation of PDS was made according to
various attributes, which were grouped into four global
categories called perspectives. These are described
hereafter:
1. Space domain perspective. The analysis of the domain

brought forward four major types of systems where the
PDS could be part of: spacecraft/on-board, ground
segment, EGSE8, and support software.

2. Criticality perspective. It corresponds to the criticality
level of the functions to be implemented by the PDS.
This is based on an overall hazard analysis of the
overall system. The rational for the different criticality
levels is given hereafter:
– Criticality level A: Software potentially leading to

‘catastrophic’ consequences (loss of life). For
example, the collision avoidance software in a man
transfer vehicle.

– Criticality level B: Software potentially leading to
critical consequences (loss of mission, major
damage to the system). For example, the attitude
and orbit control software of a launcher vehicle.

– Criticality level C: Software potentially leading to
major consequences. For example, the entire on-
board software of a communication satellite.

8 Electrical Ground Support Equipment

– Criticality level D: Software potentially leading to
significant consequences. For example, the ground
software for data reception and archiving of a
satellite instrument.

– Criticality level E: Software potentially leading to
negligible consequences. For example, most off-
line software, like ground software to process
scientific data.

3. Level of reuse perspective. It corresponds to the
different levels at which reuse may be applied, namely:
reuse of basic operations (e.g. mathematical
functions), reuse of data types (e.g., stacks and lists),
reuse of utilities (e.g. a Kalman filer), and reuse of
entire subsystems (e.g., attitude and orbit control
software of a spacecraft).

4. Reuse perspective. Three reuse perspectives are
considered: (i) commercial aspect (e.g., in-house
developed software, third party software), (ii) types of
component (e.g., design documentation, source code,
object code), and (iii) intended reuse (e.g., stand-alone
component, integrated ‘as is’, embedded in hardware).
From these four perspectives and the corresponding

attributes, multiple combinations are possible that lead to
different PDS types. The PDS types are meant to tailor the
proposed reuse requirements [6]. After several iterations,
we arrived at the four PDS types presented in Table 1,
which we consider to be the relevant ones for the tailoring
of requirements.

Table 1. PDS types

Perspectives

Criticality Space domain Source code
available

PDS types

Yes 1
On-board

/Ground SW
No 2 A/B/C

Support SW - 3

D/E All - 4

It is worth noting that the PDS types ordering
presented in Table 1 does not imply any ranking.

According to Table 1, the reader will notice that from
the last two perspectives considered in the beginning (i.e.,
level of reuse and reuse perspectives), only the COTS9
attribute (from the reuse perspective) has a significant
impact on the tailoring of the requirements. Therefore, the
key attributes for the definition of the PDS types are the
criticality level, the space domain, and the availability of
source code. The availability of source code is a key

9 COTS: In the context of this study, COTS is defined as a software
component whose source code is not available.

criterion when deciding what activities to apply to PDS
compared to custom developed software (test suites,
safety and dependability analyses, etc. – see requirement
#1 of Section 3). This attribute is more relevant than other
attributes (e.g., public domain vs. commercially
supported, configurable software vs. a piece of code to be
reused ‘as is’). Indeed, in order to validate most space
systems, the source code is needed so as to check issues
like ‘dead code’10, unreliable software constructs, or
timing and performance issues, and perform various
verification and validation activities like software
inspections.

Hereafter, we provide a rationale for each PDS type of
Table 1:
• PDS types 1 and 2. They consist respectively of on-

board and ground software of criticality levels A, B or
C, whose source code may be available or not. The
failure of such software may lead to catastrophic or
critical consequences. For on-board software, it will
typically consist of software of small size, with limited
reuse. For ground software, it includes software
development tools, whose outputs are of criticality
level A, B or C. These tools should be of the same
criticality level as the software they are generating.
Examples of PDS of type 1 are the Spacecraft Control
and Operation System SCOS 2000 [15], as well as the
RTEMS [16] and ORK [17] operating systems. An
example of PDS of type 2 consists of the CTREE
component of SCOS 2000.

• PDS type 3. It consists of support software of
criticality level A, B or C. PDS belonging to this type
may be a publicly available case tool for which object
code (and maybe also source code) is available.
Examples are compilers, linkers, and loaders used to
generate onboard software of criticality level A, B or
C (e.g., the GNAT/ORK compiler, which is used for
on-board software).

• PDS type 4. It consists of all software of criticality
level D or E. A large spectrum of PDS belongs to this
group. Examples are the software validation facility
(SVF) tools used to perform independent software
validation. These tools are meant to find errors in
onboard software (although they cannot introduce
errors, they may fail to discover an error).
As already stated, the proposed reuse requirements [6]

are tailored according to these PDS types. Figure 1
presents a straightforward example of this tailoring.

The next section presents a summary of the most
important (or top) requirements.

10 Dead code: It is executable object code (or data) which, as a result of
a design error, cannot be executed (code) or used (data) in a operational
configuration of the target computer environment and is not traceable to
a system or software requirement.

Figure 1. Tailoring per PDS type of a requirement

3. Top requirements

This section presents the fundamental (or top)
requirements that allow an organisation to move from
occasional reuse to systematic reuse. This transition is
necessary so as to achieve a significant benefit from PDS
reuse.

A major conclusion drawn from the survey of existing
practice within space projects, was that reuse is performed
occasionally or informally, rather than systematically.
Indeed, the reuse that has occurred to date in space
contractors is quite often performed through the ‘reuse’ of
personnel from other (earlier) projects, who informally
select and reuse various items, such as templates, plans,
documents or code. This same mechanism has also led to
the reusing of other types of items like test suites, safety
and dependability analyses, design documentation, etc.

This informal practice of performing reuse does not
allow for the systematic reduction of time-to-market and
development costs. This conclusion forms the basis for
how the top requirements are presented in Figure 2: they
are shown against an implementation scale from
occasional to systematic reuse.

#1 PDS shall be applied the same product assurance
activities applied to custom developed software

O
cc

as
io

na
l

re
us

e

#2 Black-box PDS shall be avoided for criticality levels A
and B

#3 The deactivated11 and dead code10 of a reused PDS
shall be controlled/removed

#4 Reused software shall consist of much more than just
code

 #5 In-service history shall be used to tailor requirements
#6 Reuse shall be considered when system and software

requirements are defined

Sy
st

em
at

ic

re
us

e

#7 Reuse shall imply new processes at the
organisational level

Figure 2. Requirements reflecting the transition from occasional
to systematic reuse in an organisation

The successive application of these requirements is
meant to help make the transition from occasional reuse to

11 Deactivated code: It is executable object code (or data) which by
design is either (a) not intended to be executed (code) or used (data), or
(b) only executed (code) or used (data) in certain configurations of the
target computer environment.

systematic reuse. In the sequel, we give the rationale for
each requirement.

As stated by requirement #1 of Figure 2, the driving
idea behind a method for reusing software in space
projects, is that one should apply to PDS exactly the same
activities that are applied to custom developed software,
be it verification and validation, risk assessment or
quality/certification metrics measurement. This is a direct
consequence for instance of clause 6.4.3.1 "Analysis of
potential reusability" of the space standard ECSS-E40B
[2], and results from the fact that people are not willing to
compromise on the quality assurance methods applied, as
the reuse scenario is never exactly the same as the one
where the reused asset was originally developed, and even
tiny differences can lead to big disasters, as the accident in
the maiden flight of Ariadne 5 has clearly shown. It might
seem at first analysis that this jeopardizes the potential
benefit of reuse, but that is not necessarily so, as also the
support documentation required to apply those quality
assurance methods can largely be reused, as stated in
requirement #4, described below.

Requirement #2 of Figure 2 states that black-box
PDS12 as operational SW should be avoided for criticality
levels A and B (see Section 2 for the definition of the
different criticality levels). If such PDS does have to be
used at all, then an analysis of possible failures shall be
carried out and a strategy shall be defined so as to detect
failures of the black-box PDS and protect the system from
these failures, e.g. through wrapping by code that
intersects all communication between that asset and the
outside world, and filters misbehaviours. The protection
strategy shall also be subject to validation testing. Error
logs shall exist and shall be evaluated. As far as
practicable, only the simplest functions of the black-box
PDS shall be used.

Special cases (requirement #3 of Figure 2), such as
unreachable code or deactivated code11 of a PDS shall be
carefully controlled. Unreachable code should only be
allowed to remain in the final application where it can be
shown that the risks of leaving it in are less than the risks
of modifying the code to remove it. Deactivated code shall
be disabled for the environments where its use is not
intended, or removed when used in critical software. An
analysis should be performed to assess both the effect of
such a removal and the need for re-verification. Removing
dead code or unused variables allows the design errors
that caused them to be recovered from in the final
software product. It also precludes its inadvertent
execution, which may result in a system hazard.

The most interesting software to be reused should
consist of much more than just code (requirement #4 of

12 Black-box PDS: Assets for which the source code is not available to
the reusers.

Figure 2). The reused PDS should consist of a package
containing not only code, but also design documentation,
test suites, safety/dependability analyses, quality metrics,
etc. Otherwise, the cost savings may be significantly lower
than initially expected, or not relevant enough to justify
reuse. Note that the customer will be contrary to the idea
of accepting intensive reuse of software in highly critical
systems unless it is provided with enough safety and
dependability evidence. An interesting conclusion was
drawn from the pilot projects of the study [9][10], which
is related to this requirement. The pilot projects
demonstrated that reusing PDS not originally developed to
be reused, is of little profit and can even be counter-
productive, due to the need to perform a comprehensive
extra set of activities (e.g., provision of missing safety
evidence or functionalities by significantly modifying the
PDS).

In-service history (requirement #5 of Figure 2) can be
used to tailor project requirements, especially when it is
not possible to satisfy them directly (e.g., due to the lack
of source code or design documentation) or when
significant costs may be saved. However, in-service
history always requires negotiation between the
developers and the customer/certification authority/system
safety responsible. In particular, it should be determined
whether the previous usage profile of the candidate PDS is
relevant enough to the reuse scenario.

To benefit from reuse, there needs to be a systematic
consideration of reuse aspects during the requirements
specification phases of a project lifecycle (requirement #6
of Figure 2), which in European space projects is normally
the responsibility of ESA. At least, flexibility for waivers
should exist. The customer (e.g., ESA) should be ready to
accept non-compliances to accommodate reuse aspects on
issues like functional requirements (e.g., performance) and
non-functional requirements (e.g., design/programming
language, V&V tools). During this negotiation, the
supplier should demonstrate that the acceptance of non-
compliances is also profitable for the customer (e.g.,
because of a reduction of effort and development costs).
The development organisation has also to be adapted for
development with reuse, as it has different needs than
custom development. The European Space Agency, being
interested in reuse, should foster it from the beginning
(e.g., internal project proposals), explicitly including reuse
at the system requirements level and being flexible enough
to accommodate a reuse offer (e.g., by considering how
requirements can be waived/adjusted).

Systematic reuse needs the definition of new processes
at organisational level (requirement #7 of Figure 2). The
organisational processes considered are illustrated in
Figure 313.

13 These organisational processes have been adapted from
ISO12207/AMD2002 [19] and IEEE 1517 [20].

Asset Management process

Domain Engineering process

Domain
analysis

Domain
design

Asset
development

Asset
maintenance

Asset storage and
retrieval

Asset
classification

Templates

Requirements
Tests

Reuse Application Engineering processes (activities within each primary life cycle
process)

Requirements Design Coding and
testing

Validation

Reuse program
management

processes

Reuse
planning

Reuse
assessment

Reuse
implementation

Reuse strategy

Reuse monitoring
and control

Figure 3. Reuse processes within an organisation

• Reuse program management process (for reuse at the
organization level). This process is used to plan,
establish, manage, control, and monitor an
organization’ s reuse program (see Section 4.2 for more
details).

• Asset management process (for assets libraries). Asset
management is the process of applying administrative
and technical procedures throughout the life of an
asset (see Section 4.3 for more details).

• Domain engineering process (for assets definition).
The purpose of this process is to develop and maintain
models, architectures and assets for a particular
domain. It includes the acquisition, development and
maintenance of assets belonging to the domain. Note
that this process was out of scope of the PA-PDS study
(see footnote 4).
These processes form the basis of the proposed

extensions to the S4S model for reuse, which is the second
main contribution of the PA-PDS study [1].

Note that Figure 3 also contains other processes,
namely the reuse application engineering processes.
These correspond to generic engineering activities that
should be performed at every project lifecycle phase, so as
to consider the potential reuse of any kind of asset (e.g.,
requirements, documents, templates, code, etc.). These
activities consist of searching for assets, selecting assets,
assessing assets, integrating assets, and providing
feedback.

Next section provides more details about the
fundamental organisational issues.

4. Organisational issues

This section describes the organisational issues an
organisation needs to consider to fully achieve systematic
reuse of PDS. It comprises procurement organisation,
reuse program and asset management system. The related
roles and actors are also described.

4.1. Procurement organisation

For big projects with a complex project organisation,
e.g. with multiple subcontractors, as is usually the case in
space industry, the following issues shall be considered
when planning for the reuse of PDS components:
• The need for a global or individual procurement

planning at the programme level.
• The need for a project procurement plan for each

software project.
• The opportunity to develop in common the

qualification package when the same software product
is acquired in several software projects.
The procurement planning should document the

programme policy for software procurement. Such
planning should be elaborated as early as possible and
should be submitted for review at system level. The
rationale for this approach is to be able to share
information about procurement of software products in the
whole programme in a controlled way. It should also
contain up-to-date information related to the certification
status of the considered products (e.g., safety analyses).

The project procurement planning consists of a specific
plan for each type of product to be acquired at the project
level. Such a plan should specify the process to be applied
for the acquisition of the needed software product. When
tool qualification or software safety assessment is needed,
the analysis of its feasibility should be planned as early as
possible in the procurement process. The actors of this
possibly centralised PDS acquisition or procurement
process within a project are the prime contractor
(responsible for the overall co-ordination and
harmonisation of all procurement activities), the
purchasing contractor (responsible for implementing and
monitoring the procurement process at its level), and the
vendor/supplier (the provider of the product).

4.2. Reuse program management

The reuse program management process is meant to
plan, establish, manage, control, and monitor an
organisation’ s reuse program. The entity employing and
performing this organisational process shall implement
and support the practice of systematic reuse in the
organisation in accordance with other project lifecycle
processes. Successful implementation of systematic reuse
at the organisation level requires careful planning and
proper management. The main outputs of this process are
the organization’ s reuse strategy, the organization’ s
systematic reuse capability assessment, and a set of
feedback, communication and notification mechanisms

The main steps of the reuse program management are
illustrated in Figure 4.

Process: Reuse program
management process

Activity: -

Domain
identification

Planning

Inputs:
Business needs

Outputs: Reuse strategy; Reuse domains; Assessment report; Reuse
recommendations; Reuse program plan¸ Problems/Non conformances

Business
Needs

Reuse domains

Reuse program
plan

Perspective: Organisational
processes

Reuse assessment report

Reuse recommendations
Reuse progress report

Problems and non
conformances

Reuse improvements

Reuse improvements

Reuse strategy

Reuse assessment report

Reuse recommendations
Reuse

capability
assessment

Initiation
Execution

and
control

Figure 4. Reuse program management process
The reuse program management process starts with

some initiation activities, which are driven by the
organisation’ s business needs. After the reuse strategy is
defined, the identification of the domains and the
assessment of the organisations’ capabilities are optional
activities. The planning activities are performed
considering inputs like the reuse strategy, and results from
the capability assessment and domain identification (if
performed). After the plan is defined, the reuse program is
implemented, managed and controlled. A reuse capability
assessment (including not only the reuse process, but also
personnel, organisational abilities, etc.) may be performed
at any time, and its results used to control the program
execution in relation to the performance of any
recommendation and improvement.

4.3. Asset management

Regardless of their overall quality and potential for
reuse, assets have little value to an organization unless
potential re-users know of their existence and can easily
locate and understand them.

Asset management is the process of applying
administrative and technical procedures throughout the
life of an asset so as to: (i) identify, define, certify,
classify, and baseline the asset; (ii) track modifications,
migrations, and versions of the asset; (iii) record and
report the status of the asset; and (iv) establish and control
storage and handling of the asset, delivery of the asset to
its re-users, and retirement of the asset.

The main steps of the asset management process are
illustrated in Figure 5.

Outputs: Asset classification schema requirements, Asset storage
and retrieval mechanism, Asset management plan; Assets

Business
Needs

Process
implementation

Asset
mngt. and

control

Parent: Asset
management process Activity: Perspective:

Organisational process

Asset
maintenance

Asset

ACQ

Asset Asset

Asset classification schema requirements
Asset storage and retrieval mechanism

Asset management plan

Inputs:
Business needs

Asset
acquisition or
development

Asset
storage and

retrieval

Problem report /
modification request

Asset
Asset request

Asset
request

Figure 5. Asset management process

The activities start with the process implementation,
which consists of the planning of the asset management
process in the organisation. This planning activity is based
on the business needs. The assets acquisition activity is
driven by asset requests. The storage and retrieval of
assets is respectively driven by incoming assets and asset
requests, and is performed on the basis of the asset
classification schema, the asset storage and retrieval
mechanism and the asset management plan. The asset
management and control activity is performed by the asset
management system, while the asset maintenance activity
is performed on the basis of the arrival of problem reports
and modification requests from re-users.

4.4. Roles

The following roles are identified within the PDS reuse
processes, where the customer could play several of them,
depending on the European Space Agency and the
certification authority requirements:
• Asset manager. The asset manager is responsible for all

asset (PDS) management activities in case there is an asset
management process within an organisation or project.
The asset manager party may be an individual or a group
of people. The customer (e.g., ESA) could play this role.
Other related roles are: asset librarian, maintainer, etc.

• Reuse program administrator. The reuse program
administrator has the responsibility to define and
monitor the overall reuse program within an
organisation or a big project with a centralised reuse
program. The European Space Agency, the prime
contractor or a top-level supplier could assume this
role.

• Reusers. This role corresponds to those reusing a PDS.
Reusers interact with the asset manager for searching
assets, selecting assets, etc. The customers and the
suppliers can play this role.

• Operator. The operator is the responsible for the
operation activities, which can be partitioned into
operations preparation, training, system validation,
operation execution, disposal, and post-operation
activities. In case there is an asset management process
in the organisation or project, the operator interacts
with the asset manager for the search, selection, usage
and feedback of operation plan templates and
procedures.

• Maintainer. The project appoints a maintainer to
correct software errors, improve software products,
migrate software to different operating environments,
and retire software products. The maintainer passes
any problem/non-conformance to the asset manager
(when the asset management process is in place). The
latter evaluates the request and modifies assets
accordingly, sending a new version to the maintainer.

When the maintainer needs to migrate or retire assets,
it also notifies the asset manager, who will migrate or
retire them. In case there is no asset management
process in place, the maintainer maintains assets by
applying the maintenance process.

5. Conclusions and future work

The PA-PDS study has shown that careful reuse of
assets has the potential to lower development costs and
shorten development cycles, while fulfilling the stringent
dependability and safety requirements. The main results of
the study are a set of product assurance requirements to
support the reuse of pre-developed software (PDS) of
different types (e.g., critical open source software, tools
with no visibility of the source code, etc.), together with a
reuse software process assessment specifying the
definition of requirements and guidance material for each
reuse type.

The PA-PDS study has made significant contributions
regarding the different aspects to be considered for the
reuse of PDS. Other aspects were left out of scope of the
study, such as legal issues and domain engineering. These
issues definitely need to be addressed in the future if the
European Space Agency and industry aims at obtaining a
significant benefit from the commercial exploitation and
implementation of PDS reuse in the space domain.

As we already stated, from a subcontractor viewpoint,
although reuse can improve productivity and quality, there
might be some resistance to implement reuse for several
reasons: (i) reuse currently entails an extra effort to
‘prove’ the product meets the project requirements (both
domain and product assurance aspects), (ii) reuse means
any customer has an expectation to pay less for the work,
(iii) investment is restricted due to project-by-project
funding and cost pressures, (iv) significant productivity
and quality gains are only achieved when items are used
several times for space project software (at least 3 - 4
times when systematic reuse is occurring). Indeed, the
implementation of systematic reuse, which is necessary for
companies to obtain significant benefits from reuse in the
long term, is not an easy task to put into practice. That is
the reason why customers should promote systematic
reuse with the main aim of helping industry from moving
from occasional or informal reuse to systematic reuse.
This matter of implementation of reuse can be divided
into three steps: (i) study of current reuse practices in
industry, (ii) collection of available reusable information
(e.g., quality metrics, candidate assets, etc.), and
(iii) establishment of a roadmap on how to progress from
occasional reuse to systematic reuse. These ideas set the
basis for future projects and studies. Further ideas for
future studies are summarised hereafter:

• Application of the PA-PDS results in the framework of
real space projects being undertaken by the European
space industry. It will complement the pilot projects
[9][10].

• Development of a catalogue of products that may be
suitable for reuse in space industry. This catalogue
would be practically supported by an asset repository,
centralising reusable assets for the space domain.

• A study covering domain engineering for space.
Domain engineering aspects are crucial to maximise
the benefit of both development ‘with’ reuse and
development ‘for’ reuse. Indeed, the products issued
from development for reuse projects will be the most
suitable assets to be included in a centralised asset
repository.

• Study of the legal and commercial aspects involving
reuse. These aspects shall clearly cover the intellectual
property, usage, payment rights, and exportation
issues.

• Improvement of the reuse process capability
assessment model and method. It would encompass the
actions needed to obtain profit from systematic reuse.
The results would include specific processes,
practices, work products, and S4S capability levels
needed for systematic reuse.

References

[1] Han Van Loon, Robert Dietze, Fernando Aldea-Montero,

"Software Reuse and SPICE for Space", Proc. of SPICE
2003 - Joint ESA - 3rd International SPICE Conference
on Process Assessment and Improvement, 17-21 March
2003, ESTEC, Noordwijk, The Netherlands.

[2] ECSS Secretariat, “ECSS-E-40B, Space Engineering,
Software”, ESA-ESTEC Requirements & Standards
Division, Noordwijk, The Netherlands, February 2002
(http://www.ecss.nl/).

[3] PA-PDS, “TN1 Characterisation of PreDeveloped
Software Reuse and Definition of Reuse Types”, Issue 3,
PA Support to Pre-Developed Software, ESTEC Contract
Number: 15808/01/NL/WK, 19.09.2003.

[4] PA-PDS, “TN2 Survey and analysis of standards, PA
Support to Pre-Developed Software”, ESTEC Contract
Number: 15808/01/NL/WK, Issue 1, 21.06.2003.

[5] PA-PDS, “TN3.1 Definition of software reusability
assessment process”, Issue 2, PA Support to Pre-
Developed Software, ESTEC Contract Number:
15808/01/NL/WK, 17.09.2003.

[6] PA-PDS, “TN3.2 Definition of PA requirements for
different reuse types”, Issue 2, PA Support to Pre-
Developed Software, ESTEC Contract Number:
15808/01/NL/WK, 19.09.2003.

[7] PA-PDS, “TN3.3 Technical Specification for tool(s)
supporting the asset management process”, Issue 1, PA
Support to Pre-Developed Software, ESTEC Contract
Number: 15808/01/NL/WK, 24.07.2003.

[8] PA-PDS, “List of Change Requests from TN3.1 and
TN3.2”, Issue 2, PA Support to Pre-Developed Software,
ESTEC Contract Number: 15808/01/NL/WK, 12.12.2003.

[9] PA-PDS, “TN4 SCOS 2000 Evaluation report”, Issue 1,
PA Support to Pre-Developed Software, ESTEC Contract
Number: 15808/01/NL/WK, 19.09.2003.

[10] PA-PDS, “TN5 OBOSS-II Evaluation Report”, Issue 2,
PA Support to Pre-Developed Software, ESTEC Contract
Number: 15808/01/NL/WK, 19.09.2003.

[11] PA-PDS, “Training for technical personnel”, Issue 1, PA
Support to Pre-Developed Software, ESTEC Contract
Number: 15808/01/NL/WK, 17.11.2003.

[12] PA-PDS, “Training for managers”, Issue 1, PA Support to
Pre-Developed Software, ESTEC Contract Number:
15808/01/NL/WK, 17.11.2003.

[13] SPEC TN3, “Space Domain Specific Software Product
Quality Models, Requirements and Related Evaluation
Methods, SPEC/TN3”, Issue 3.4, 20.2.2002.

[14] European Space Agency PASCON/WO6 CCN4/TN7:
ISO/IEC TR 15504 Conformant Method for the
Assessment of Space Software Processes. C. Völcker, A.
Cass, Technical Note No. 7, Issue 1.0, Draft C, 19.02.00.

[15] http://descanso.jpl.nasa.gov/RCSGSO/Proceedings/Paper/
A0009Paper.pdf

[16] http://www.rtems.org/
[17] http://polaris.dit.upm.es/~ork/
[18] http://spd-web.terma.com/Projects/OBOSS/Home_Page/
[19] ISO/IEC 12207:1995/Amd 1:2002, Standard for

Information technology – Software life cycle processes
(Amendment 1)

[20] IEEE 1517-1999, Standard for Information Technology –
Software Life Cycle Processes - Reuse Processes

