
Distributed Data Collection through Remote Probing in Windows
Environments

Patrício Domingues Paulo Marques Luís Silva
ESTG – Leiria – Portugal Univ. Coimbra – Portugal Univ. Coimbra – Portugal
patricio@estg.ipleiria.pt pmarques@dei.uc.pt luis@dei.uc.pt

Abstract

Distributed Data Collector (DDC) is a framework

to ease and automate repetitive executions of console
applications (probes) over a set of LAN networked
Windows personal computers. The framework allows
for the remote execution of probes, providing support
for collecting the execution output of probes (standard
output and standard error). Additionally, right after a
probe execution, the output can be parsed and
processed by user defined code (post collecting code)
that can act accordingly to user’s needs. The
framework can be useful to perform repetitive
large-scale monitoring and administrative tasks over
machines with transient availability, that is, machines
that present no guarantees of being available at a
given time.

A major strength of DDC lies in the fact that it does
not require installation of software in remote nodes,
avoiding administrative burdens that remote daemons
and alike normally provoke.

Besides presenting the data collection framework,
the paper discusses the results of a 30-day monitoring
experiment conducted with DDC. The experiment
collected resource usage metrics over 169 Windows
machines from classroom laboratories of an academic
institution.

1. Introduction

Controlling and monitoring a large number of
Windows personal computers can be a challenging and
daunting task. Frequently, administrators and other
power users would like to perform controlling tasks on
a bunch of machines they are in charge of. These types
of tasks might involve the remote execution of probes
on a set of machines and collecting each execution
result to a central repository. Additionally, collected
results might require parsing and processing, and if

needed, appropriate measures such as sending status
report or alerting system administrators can be taken.
Examples of such tasks include checking disks for
suspicious filenames, assessing machine performances
and its evolution over time through execution of
specific tailored benchmarks, measuring system load
on machines in order to quantify per machine usage
and assess possible CPU and other resources
harvesting opportunities, and so on. However if these
tasks are important and can be time saving, for
instance, through the analysis of Self-Monitoring
Analysis and Reporting Technology (SMART) [1]
parameters disk failures can be anticipated, they
usually have low priorities in administrators’ busy todo
lists. Another problem of performing such task lies in
the fact that in a set of machines, at any given time and
depending of the particularities of the environment
(number of machines, user habits, etc.), a percentage of
these machines will be switched off. Thus, to cover as
many machines as possible and to obtain significant
results, a persistent execution environment able to
periodically repeat execution attempts is needed.
Therefore, a framework able to perform active data
collection by way of remote execution of probes in
networked Windows personal computers, supporting
transient availability of machines and allowing results
analysis by user-defined code is a valuable tool for
system administrators. DDC aims to be such a tool.

The remainder of this paper is organized as follows.
Section 2 exposes our motivation. Section 3 describes
DDC, its architecture and its internal organization.
Section 4 presents and briefly discusses the results of a
30-day monitoring experiment conducted with DDC
over 169 classroom machines. Section 5 describes
related work, while in section 6 future work is
discussed. Finally, section 7 concludes the paper.

Owner
Note
Proceedings of the 13th Euromicro Conference on Parallel, Distributed and Network-Based Processing (PDP'05)
Pages: 59 - 65
Lugano, Switzerland, 2005.
Year of Publication: 2005
ISBN ~ ISSN:1066-6192 , 0-7695-2280-7
Publisher
IEEE Computer Society Washington, DC, USA

2. Motivation

DDC development was originally motivated by our
own needs to collect continuous resource metrics about
personal computers usage at our academic institution.
We were interested, amongst other things, in assessing
resource usage (CPU, memory, disk and network) of
several classroom laboratories that run Windows 2000
professional on a total of 169 machines. One important
characteristic of this pool of machines lies in its
transient availability, with no guarantee existing that a
machine will be powered on at a given time.

Besides the purpose to collect machines usage data,
we felt the need for a framework that would allow
running a regular console application across a set of
machines. For example, to regularly assess system
performance, a benchmark could periodically be run
with its output parsed and relevant performance data
collected in order to early spot performance drops. Or,
to detect near future possible hard disk failures, a
utility that would return SMART values could be run
every night across the whole set of machines, with
suspicious disks being flagged as possible near
failures. These situations are just examples of what a
remote execution framework could permit to achieve
in a set of networked machines. Therefore, we needed
a distributed collection platform that obeyed the
following restrictions:

- Besides the requirement of being a console
application, no further restriction should be placed on
probes.

- Solutions should be modular and easily
extensible, allowing for easy integration of probes and
associated post collection filters in order to fulfill
further needs and opportunities for data collection.

- No software should be installed at remote
machines in order to avoid administrative and technical
burdens. However, it is acceptable to use a single
dedicated machine (coordinator) for running the data
collection system as long as no special hardware is
required.

- The system should be as autonomous and
adaptive as possible in order to minimize administrator
interventions. For instance, the system should cope
with the transient nature of machines availability,
since, at our institution, no requirement exists for
machines to be permanently switched on. Ideally,
besides producing normal progress reports, the system
should alert administrators only when abnormal events
that require human intervention occur.

- Due to budget restriction and time limitation,
solutions should be based on open source or at least
freeware software.

- The data collector system should support
Windows NT and derivatives (2000 and XP).

- The system should be able to execute probes at
remote nodes in one of two modes: single-shot or
periodic. The former serves for probes that should be
executed only once (e.g. a benchmark) while the latter,
as the name implies, periodically executes the probe
(e.g. resource monitoring). Additionally, single shot
mode has to deal with volatile machine availability,
only terminating when execution of probe(s) has
occurred in all specified machines.

- To keep a low intrusive profile, the framework
should permit remote execution of processes at a low
level of priority.

Since, to the best of our knowledge, no system
complied with our requirements we developed DDC.

3. Overview

3.1. Experiment and iterations

DDC is based on a centralized architecture, with a

central and the only devoted machine (coordinator)
orchestrating the whole execution running the main
module of DDC. All the executions are performed in
the context of an experiment. A DDC experiment is
composed by possibly several binary probes and their
associated post collecting codes plus the set of target
machines where probes execution should occur. In
DDC, a probe is simply a win32 console application
which emits its results via standard output (stdout) and
standard error (stderr) channels.

DDC conducts an experiment in successive
iterations. An iteration consists of the execution
attempt of every defined probes over the whole set of
target machines. DDC uniquely identifies an iteration
with the GMT time in Unix’s epoch format measured
when iteration starts.

An iteration is executed as follows. For every
machine belonging to the execution pool, and
accordingly to the configuration, user defined probes
and their associated post collect codes are sequentially
executed. When execution of all probes have been
attempted at a given machine (an execution might not
be successful, failing for several reasons – for instance
the remote machine might be down), DDC shift
execution to the next machine of the pool. Figure 1
depicts the sequential steps of a probe execution. After
a successful ping test to assess target machine
availability (step a), remote execution is attempted
(step b) and remote output is returned (step c). Finally,
if configured, post collecting code is run on the

probe’s results (step d) with filtered output possibly
archived on disk.

 Mach. 1
(a) Ping test

Data

(d) Post-process

(c) Remote output
Coordinator machine

 Mach. n

...

...

...

...

Remote machines

DDC’s core

(b) Remote execution

Figure 1

At the coordinator machine, the results of the

execution of a probe are cumulatively redirected to text
files (one for stdout, another for stderr) whose names
are based on probe’s own name. These files are stored
under a directory hierarchy (one directory per
machine) with the root directory named after the
experiment name. This default logging behavior of the
outputs can be replaced by user-defined code that gets
executed on the coordinator machine right after remote
execution occurs. This post-collecting code, which is
specific to a probe, receives as input the results of the
probe’s execution and can implement actions that user
defines as deemed appropriate for the given context.
For example, after parsing and processing the
execution output, post-collecting code can decide to
report a particular event via e-mail. Besides the output
of the execution, post-collecting code also inherits the
execution context that contains information respecting
the machine where the probe was executed, the
execution status (exit code from the probe) as well as
the wall-clock execution time elapsed at the remote
machine.

In DDC, a definable experiment parameter is the
interval time that should separate the start of two
consecutive iterations and that defines the data
collection frequency. So, after an iteration has
completed, DDC pauses the execution until its time to
start next iteration. If this specified time interval
cannot be respected (for instance, execution of last
iteration took longer than the defined time interval),
DDC waits for a minimum time gap before starting the
next iteration. This prevents execution loops that
“spin” in an uncontrolled manner.

For every probe of an experiment, DDC maintains a
trace file. At the end of an iteration a text line
summarizing the outcome of the iteration is appended
to the file. This line starts with the iteration’s
timestamp identifier and includes, amongst other items,
a comma separated list with the machine names where
execution was successful, a similar list for failed
executions (executions aborted due to timeouts) and a

third list that holds names of the machines that were
unavailable when execution was attempted. This line
also contains the wall-clock time needed to complete
the iteration. A much trimmed example of a trace line
is shown in listing 1. From this line it can be extracted
that the iteration begun at timestamp 1081948390 with
120 successful executions (machine m01 and others),
no failed executions and 49 unavailable machines
(machine m12 and others) yielding 71.0% successful
executions. The iteration took nearly 382 seconds.

1081948390|120|0|49|71.0|381.9|m1,||m12,...|

Listing 1
The trace file of a probe can be used to conduct an
offline temporal analysis of probe execution. This file
can also be used as a log, and in fact, the periodic mail
reports that are sent by a DDC experiment includes the
trace file (due to its high redundancy, mostly machine
names, the file is highly compressible) as a source of
information about the evolution of the experiment.

3.2. Remote execution

The remote execution mechanism of DDC is based
upon the wealthy set of freeware tools from
sysinternals [2], namely the versatile psexec. Psexec is
a utility that permits the remote execution of an
application given the proper access privileges. Psexec
is a very flexible tool configurable through appropriate
command line switches.

In DDC, psexec is used as follows: an appropriate
command line that includes all the needed psexec
switches and parameters, as well as the probe
executable name with its own command-line
arguments (if any) is formatted and executed in the
context of a separate thread within DDC core. The
need of a separate thread for the remote execution
arises from the possibility of deadlock at the remote
machine that would otherwise stall DDC execution.
Therefore, after a given time interval (configurable for
each probe) if the execution of psexec has not yet
terminated a timeout is triggered with the execution
being aborted by way of cancellation of the execution
thread. Under these circumstances the remote machine
is flagged as having failed the probe execution with a
new attempt to be tried in the next iteration.

Since a target machine can be unavailable at a given
time (powered off, unplugged from the network, etc.)
before attempting the execution of a probe, the target
machine connectivity is tested with ICMP pings. If no
answer to ping is received the remote machine is
assumed to be unavailable and thus no remote
execution is attempted in the current iteration. The
advantage of using ping over immediately attempting

execution is that ping timeout can be controlled and
thus set to a lower value (for instance, hundredth of
milliseconds) than the time length it would take psexec
to detect remote machine unavailability (in the range
of seconds). This way detection of an unavailable
machine is much faster.

3.3. Post-collecting code

An important element for DDC flexibility lies in its
ability to execute user defined code right after the
execution of a probe allowing the processing of output
channels (stdout and stderr). For that purpose,
post-collecting code needs to be written in the form of
a python class that extends DDC_cmd class,
implementing the method ParseResult(). This method
is run by the main core of DDC at the coordinator’s
machine right after remote probe execution has
terminated. It receives as parameter, besides probe’s
stdout and stderr contents, an object representing the
remote machine that actually executed the probe, the
execution exit code of the probe, the iteration identifier
as well as other context data (e.g. storage directory
path at coordinator’s where output files of current
execution are). Even if post-collecting code is free to
act on probe’s results, it is limited by a time frame,
since the next execution only starts after
post-collecting code has concluded.

4. Monitoring experiment

In order to assess the ability of DDC to gather resource
usage metrics we conducted a 30-day DDC monitoring
experiment over 169 windows machines of 11
classroom laboratories. Machines ranged from Pentium
III@650 MHz (128 MB memory, 14.5 GB disk) to
Pentium 4@2400 MHz (512 MB memory, 74.5 GB
disk), being connected via 100 Mbps Fast Ethernet.
Combined together, the resources of the machines are
impressive: 6.58 TB total disk space and 52.46 GB of
RAM. Besides serving classes, all aforementioned
machines are used by students to perform their
practical assignments and homework, as well as for
personal use (e-mail, etc.). To avoid change of
behaviors that could false results, regular users were
not informed about the monitoring experiment.

For the purpose of this monitoring experiment a
probe named W32Probe was developed. W32probe
outputs a wealthy set of information about the
Windows system where it is executed. The probe
captures static metrics such as CPU type, operative
system information (name, service pack, version,
installation date), amount of existing RAM,

characteristics of hard disks, as well as network
interface(s) properties. Besides static elements,
W32Probe also collects dynamic metrics like machine
uptime, CPU idleness percentage since boot time,
physical and virtual memory load, free disk space,
SMART parameters such as start/stop cycles and
power on hours count, as well as network interface(s)
sent and received bytes and rates. The probe also
exposes several metrics about current interactive login
sessions (if any), namely user name, domain name and
login session’s uptime. The sampled metrics are
returned in text format via the standard output channel.

The post-collected code associated to W32probe
logs the captured samples in a single text format for
further analysis. Due to its nature, static metrics are
only saved once, right after the first successful
execution, while dynamic metrics are recorded after
every execution. Finally, after DDC experiment has
terminated all saved data are processed offline and
inserted in a relational database. The offline processing
is driven by W32probe’s trace file produced during the
experiment.

4.1. Results

DDC was set to run an iteration every 15 minutes to
sample the machines. A total of 235298 samples were
collected over the 2867 iterations run. The average
time for carrying out a whole iteration was 386.99
seconds. The experiment was interrupted twice
because of global power failures, and a third time due
to a local power failure that disrupted network
connectivity of the coordinator machine. It is important
to note that no shutdown policy of the machines is
enforced, that is, after usage, users are free to left
machines powered on, since other classes or users
might follow.

Main results of the experiment are summarized in
Table 1. The column “Without users” shows results
captured when no interactive user-session existed,
while the column “With users” depicts samples
gathered at user-occupied machines. The final column
“Both” combines all results.

Table 1: Main results.

 Without
users With users Both

Samples 129036 106262 235298
Avg. uptime (%) 26.63 21.93 48.56
Avg. CPU idle (%) 98.82 95.92 97.51
Avg. RAM load (%) 53.45 63.35 57.92
Avg. SWAP load (%) 24.53 29.56 26.80
Avg. disk free (MB) 27.81 35.66 31.35
Avg. sent bytes (Bps) 313.35 2229.55 1178.72
Avg. recv. bytes (Bps) 322.57 7441.13 3537.36

Of the 484523 probe executions attempted, 235298
were successful corresponding to a 48.56% uptime.
The high CPU idleness percentage (98.82% when no
user is logged on, 95.92% when interactive login
session exists) confirms similar studies carried out in
Windows [3] and in Unix [4][5], strengthening
attractiveness of academic laboratories for CPU
scavenging.

As expected, average RAM memory load increases
from 53.45% to 63.35% when an interactive login
session exists. Interactive login sessions also increase
the SWAP load from 24.53% to 29.56%. This came as
no surprise since an interactive login session means
that more applications are being used and consequently
more memory is required. The significant amount of
free RAM – nearly 47% when no login exists –
confirms results of [6] and makes the evaluated
computers attractive for idle memory exploiting
systems such as network RAM and temporary network
RAM disks schemes [7].

On average a machine has more than 30 GB of hard
disk space free (average disk size is 39 GB). Several
factors contribute to this high amount of free disk
space. First, machines are reinstalled at the beginning
of each semester and only hold the needed software for
classes and student practical assignments. Second, an
interactive regular user is not allowed to locally install
software and has a disk quota ranging from 100 MB to
300 MB of temporary storage at the machine she is
logged on (the actual size depends on the machine hard
disk drive capacity). These two factors combined with
the fast growing hard disk drive size yield the high
amount of free disk space. Such high quantity of
unused disk space can be explored, for instance, for
distributed backups [18]. However, in these
mechanisms data confidentiality must be rigorously
assured, and even more difficult, confidence of users
must be gained before they entrust their data to such
systems. The fact that samples collected from
machines with interactive session present an higher
free disk space than samples gathered from free
machines (35.66 MB versus 27.18 MB) might be
motivated by the fact that newer machines with bigger
disk drives (and consequently with more free space
disk) are more used for interactive sessions than older
and consequently smaller disk machines.

Respecting network usage, the existence of a user
session increases more than twenty times the rate of
received bytes in a machine, from 322.57 Bps to
7441.13 Bps. The same applies to outgoing traffic, but
with lower rates (from 313.35 Bps to 2229.55 Bps).
The network rates also demonstrate the client role of
machines, with the incoming traffic rate roughly three
times higher than the outgoing traffic rate.

5. Related work

Even if many open source or freeware monitoring
tools exist for distributed systems like network of
personal computers, few of these tools support the
Windows platform, although Windows machines
accounts for more than 90% of desktop machines.
And, to our knowledge, none of the tools aimed at
Windows platforms provided supports for remote data
collection and post-collecting processing of collected
data without the need of remote software installation.

Simple Network Management Protocol (SNMP) [8]
is a standard protocol used to exchange information,
allowing remote monitoring and management of
networked devices that support the protocols.
Although SNMP could be used to retrieve monitoring
metrics, SNMP does not allow the execution of
arbitrary probes at remote nodes. So, while DDC
permits the use of any console application as probe,
data collected via SNMP are restricted to the agent
capabilities. Another major drawback of SNMP
comparatively to DDC lies in its deployment and
maintenance administrative overhead. In fact, due to its
client-server structure SNMP requires software agents
to be installed and configured in all machines,
something that DDC avoids completely. Also, SNMP
acceptance among system administrators is hindered
by its weak security fame [9].

The Remote Monitoring (RMON) [8, 10] protocol
extends SNMP with new and more flexible
Management Information Base (MIB) definitions.
However, regarding our needs for remote data
collection RMON is hindered by the same drawbacks
and limitations of SNMP.

Windows Management Interface (WMI) is an
implementation of Web Based Enterprise Management
(WBEM) for win32 environments [11]. WMI
technology offers a set of services and makes
accessible a rich set of data regarding many aspects of
win32 systems. An interesting feature of WMI lies in
its ability to execute processes at remote machines [12]
although at the expenses of some code complexity and
resource consumption. Thus, WMI could be used as a
possible replacement for psexec remote execution
mechanism. Comparatively to WMI, DDC focuses
toward acquisition, processing and storage of remotely
collected data, while WMI is oriented toward
monitoring and administration tasks.

Condor [13] is a well-known and mature framework
for opportunistic execution of applications (“tasks” in
Condor language) in otherwise idle resources of pools
of networked computers. Condor supports several
operative systems, including Win32 platforms. The

framework acts as a batch system, scheduling user’s
tasks to available computing nodes. Execution at a
remote node occurs when the task requirements are
matched with node availability. However, using
Condor system for remote execution of probes
(submitted as condor’s tasks) does not fit our purposes
due to several reasons. First, even if Condor can be
instructed at submit time to run a task in a given
machine, due to its opportunistic scheduling strategy it
cannot guarantee when the task will actually be run.
Second, under Windows, Condor’s tasks are executed
under least execution privileges, a recommended
security measure in distributed systems, but that
renders impossible the execution of probes that require
administrative credentials. Finally, deployment of
Condor requires the installation at the remote nodes of
Condor’s client software, a demand that violates our
requirements for zero-software installation.

Grid desktop computing framework like BOINC
[14] can also be used for executing user-defined
probes in network of personal computers although this
is a deviation from their main purpose of supporting so
called “embarrassingly” distributed @Home projects
such as SETI@Home and Folding@Home [15].
Besides the need of setting the BOINC infrastructure,
which requires the installation of client-side software
on every target machines and setting a machine for the
server-side, probes must be programmed accordingly
to the platform rules and limitations, using the
supported languages. Since the platform is geared
toward the execution of long-running applications,
some of the requirements like checkpoint support are
inappropriate for short-run probes. DDC has a much
more flexible approach since it can use any existing
console executable as probe, easily supports multiple
probes, requiring only a minimal setup and no remote
installation. A potential advantage of grid desktop
computing frameworks over DDC arises from having
their execution distributed over the participating
computers. This makes possible a simultaneous
execution of a probe, while DDC only supports
sequential execution. In practice the scheduling policy
of grid desktop computing tools that schedule
execution only when host resources are near idleness
makes a synchronized execution difficult to achieve. A
more real advantage of BOINC usage over DDC lies in
its support across Internet, while DDC is restricted to
LAN environments.

Finally, remote desktop tools are a possible way of
remotely executing probes. Several of such tools exist
for the Win32 platform. For instance, utilities such as
VNC [16] and variants, telnet server and Microsoft’s
remote desktop permit remote access to a windows
machine. However, these tools are aimed to provide

graphical remote login interactivity and thus are not
suitable for automatic execution of programs in a way
such as DDC provides.

6. Future work

An important area for improvement in DDC relates
to security. Although very versatile, psexec does not
have, according to its authors, a strong security
structure. A possible replacement for psexec could be
the open-source XCmd [17] which is a similar tool for
remote execution with the added bonus of source code
availability.

Some probes might require exclusive access to a
machine, that is, no interactive login session can exist
at the given machine. This exclusive access might be
required for assuring results precision (for instance, in
a benchmark run), non-intrusiveness for interactive
user of the remote machine or both. To accommodate
this requirement, the detection of user login prior to
execution attempt would be needed. However, this
method does not prevent nor detect situations when
interactive login occurs during the execution of a
possibly lengthy probe. For such cases and if the probe
execution cannot tolerate interferences like interactive
login, then the probe itself should detect such
situations, for instance setting WMI for event
notification when a login is detected.

Currently, a limitation of DDC respects the
execution of post-collecting code that is carried out
sequentially in DDC main execution path, effectively
delaying next remote execution until the
post-collecting code has completed. This effectively
limits actions that can be carried out in post-collecting
phase, since a fast post-collecting execution is
required. A possible improvement would be to create a
separate thread to execute the post-collecting code,
allowing DDC to chain remote executions without
having to wait for post-collecting executions.
Finally, if the need arises, DDC can be ported to UNIX
environments. Since DDC is written in python,
portability should not be a major issue. Also, the
psexec remote execution mechanism could easily be
replaced by SSH with the added bonus of improved
security.

7. Conclusions

This paper presented a simple yet effective framework
that eases repetitive executions of multiple probes over
a set of LAN networked Windows machines. DDC can
be especially useful for administrative purposes that

can benefit from remote data collection, namely
monitoring operations.

We used DDC and a specially developed probe to
evaluate computing resource usage over 30-day on 169
classroom Windows personal computers. All
monitoring operations were conducted from the
coordinator machine, with no software being installed
at the monitored machines. In fact, we never needed to
log on interactively on any of the monitored machines,
with all operations being conducted remotely.

As expected in such environments, resources
idleness is quite high, not only CPU but also disk and
in a lesser level, main memory. This confirms the
opportunity for resource scavenging on computing
environments like laboratory classrooms. Indeed, idle
resources exploitation in such environments is
strengthened by the fact that machines have no real
personal “owner”, being centrally and thus more
closely managed avoiding social issues that normally
arise in personal computers resource sharing schemes.

The source code and further documentation about
the framework can be obtained from
http://ww2.estg.ipleiria.pt/~patricio/DDC/.

Acknowledgements
This work was partially supported by PRODEP III –
Acção 5.3 and by the Portuguese Foundation for
Science and Technology under the POSI programme
and the FEDER programme of the European Union,
through the R&D Unit 326/94 (CISUC).

References

[1] B. Allen, "Monitoring Hard Disks with SMART,"
in Linux Journal, vol. Nº117, January 2004.

[2] M. Russinovich and B. Cogswell, "Sysinternals -
PsTools (http://www.sysinternals.com)," 2004.

[3] P. Domingues, L. Silva, and J. G. Silva,
"DRMonitor - A Distributed Resource Monitoring System,"
presented at 11th Euromicro Parallel, Distributed and
Network-Based Processing, Genova, Italy, 2003.

[4] R. Arpaci, A. Dusseau, A. Vahdat, L. Liu, T.
Anderson, and D. Patterson, "The interaction of parallel and
sequential workloads on a network of workstations,"
presented at ACM SIGMETRICS joint international
conference on measurement and modeling of computer
systems, Ottawa, Ontario, Canada, 1995.

[5] T. E. Anderson, D. E. Culler, D. A. Patterson, and
N. team, "A Case for NOW (Network of Workstations)," in
IEEE Micro, February 1995, pp. 54-64.

[6] A. Acharya and S. Setia, "Availability and utility
of idle memory in workstation clusters," presented at ACM
SIGMETRICS international conference on Measurement and
modeling of computer systems, Atlanta, Georgia, United
States, 1999.

[7] M. Flouris and E. Markatos, "Network RAM," in
High Performance Cluster Computing, vol. 1 (chapter 16), R.
Buyya, Ed., 1999, pp. 383-508.

[8] W. Stallings, SNMP, SNMPv2, SNMPv3, and
RMON 1 and 2, 3rd ed: Addison-Wesley Pub. Co., 1999.

[9] CERT, "CERT Advisory CA-2002-03: Multiple
Vulnerabilities in Many Implementations of the Simple
Network Management Protocol -
http://www.cert.org/advisories/CA-2002-03.html," CERT,
2003.

[10] S. Waldbusser, "RFC2021 - Remote Network
Monitoring Management Information Base," IETF January
1997.

[11] M. Lavy and A. Meggitt, Windows Management
Instrumentation (WMI): New Riders, 2001.

[12] T. Huckaby, "An Introduction to WMI," in
Windows & .Net, October 2000.

[13] M. Litzkow, M. Livny, and M. Mutka, "Condor -
A Hunter of Idle Workstations," presented at 8th
International Conference of Distributed Computing Systems,
San José, California, 1988.

[14] BOINC, "Berkeley Open Infrastructure for
Network Computing - http://boinc.berkeley.edu," 2004.

[15] K. Pearson, "Internet-based Distributed Computing
Projects - http://www.aspenleaf.com/distributed/," 2004.

[16] VNC, "RealVNC homepage project,
http://www.realvnc.com/," 2002.

[17] Z. Csizmadia, "XCmd - Execute Applications on
Remote Systems - http://www.codeguru.com/Cpp/I-
N/network/remoteinvocation/article.php/c5433/," 2001.

[18] L. Cox and B. Noble, "Pastiche: Making backup
cheap and easy," presented at Fifth USENIX Symposium on
Operating Systems Design and Implementation, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

