
Busy Beaver – An Evolutionary Approach

Francisco B. Pereira*, Penousal Machado*, Ernesto Costa** , Amílcar Cardoso**

* Instituto Superior de Engenharia de Coimbra

Quinta da Nora

3030 Coimbra, Portugal

E-mail: {xico, machado}@dei.uc.pt
*, ** Centro de Informática e Sistemas da Universidade de Coimbra

Polo II da Universidade de Coimbra, Departamento de Engenharia Informática

3030 Coimbra, Portugal

{ernesto, amilcar}@dei.uc.pt

The Busy Beaver is an interesting theoretical problem proposed by Tibor Rado in 1962. Since then, it has attracted
the attention of many researchers and several contests were organised trying to produce good solutions. In this paper,
we propose an evolutionary approach to the problem. Our experimental results prove that this technique is very
effective in attacking Busy Beaver, since we were able to find several Turing machines that outperform previous
best-known solutions.

Keywords: Genetic Algorithms, Turing Machines, Non-computable Functions

1. Introduct ion

One of the most important results of theoretical computer
science deals with the existence of non-computable
functions. This fact can be easily established showing that
there are functions, which are not Turing computable:
there are more functions than Turing Machines to
compute them.

In 1962 Tibor Rado proposed one such function based
on what is known today as the “Busy Beaver Game or
Problem” [11]. It can be described as follows: Suppose a
Turing Machine (TM) with a two way infinite tape and a
tape alphabet = {blank, 1}. The question Rado asked was:
What is the maximum number of 1’s that can be written
by an N-State (N does not include the final state) halting
TM, when started on a blank tape? This number, which is
function of the number of states, is denoted by ∑(N). A
machine that produces ∑(N) non-blank cells is called a
Busy Beaver (BB).

The problem with ∑(N) is that it grows faster than any
computable function, i.e., ∑(N) is non-computable. Some
values for ∑(N), and the corresponding TMs are known
today for small values of N. We have, for instance,
∑(1) = 1, ∑(2) = 4, ∑(3) = 6, ∑(4) = 13. As the number of
states increases the problem becomes harder, and, for
N >= 5, we have several candidates (or contenders) which
set lower bounds on the value of ∑(N). This is partially
due to the fact that there is, neither a general, nor a
particular theory about the structure of a BB. The only
available technique for finding such machines is to
perform an exhaustive search of all N-state TM. Current
used techniques perform a partial search on the solution
space, looking for TMs that produce the best lower bound
for the value of ∑(N). Some of the best contenders were
obtained be Marxen [10] (E.g., he established that
∑(5) >= 4098). His approach involves enumeration and
simulation of (nearly) all N-state TMs, using several
techniques to reduce the number of inspected machines,
accelerate simulation and determine non-termination.

In the original setting, the problem was defined for
5-tuple TMs. With this definition, machines, given a
current state and the symbol being scanned in the tape,
write a symbol over it, enter a new state and move the
read/write head left or right. One of the main variants
consists in considering 4-tuples TM. The main difference
from the others is that, during the transition to a new
state, a TM either writes a new symbol to the tape or
moves the head (both actions are not simultaneously
allowed).

In this paper we will address the problem of finding
promising candidates for the 4-tuple seven state Busy
Beaver, BB(7). Our approach uses Genetic Algorithms
(GA) with learning and proved to be extremely effective.
The previous best candidate [9] produced 37 ones. We
found several machines with higher productivity,
showing that ∑(7)>= 102. This machine was found in less
than one day, using a 300MHz Pentium II computer.
Only (8.5e-11)% of the search space (4(N+1))^(2N) was
evaluated, and, during the process we also found TM with
productivity 37, 39, 41 and 100.

Several researchers attempted to find good solutions to
the BB problem using a broad variety of techniques. The
previous 4-tuple BB(7) best candidate was obtained using
an abstract representation of TMs [9]. Terry Jones used
GA to attack 5-tuple BB [7], [8], and concluded that
techniques inspired in hill-climbing achieved better
results.

The paper has the following structure: Section 2
comprises a formal definition of five and 4-tuple TMs,
and the specification of the rules of the Busy Beaver
problem for each of these variants. In Section 3 we
introduce our approach. Next, in Section 4, we present
and analyse the experimental results. Finally, in Section
5, we state some overall conclusion and suggest some
directions for future work.

2. Problem Definition

A deterministic TM can be specified by a sextuple
(Q,Π,Γ,δ,s,f), where[12]:

• Q is a finite set of states

• Π is an alphabet of input symbols

• Γ is an alphabet of tape symbols

• δ is the transition function

• s in Q is the start state

• f in Q is the final state.

The original definition proposed by Rado [11],
considered deterministic 5-tuple TMs with N+1 states (N
states and an anonymous halting state). In each transition,
the machine writes a symbol to the tape and moves its

head either left or right, i.e., the transition function has
the following format:

δ: Q×Γ → Q×Γ×{L,R}

where L denotes move left and R move right. A
common variation consists in considering 4-tuple TMs,
where the transition function has the following format:

δ: Q×Γ → Q×{ Γ∪{L,R}}

i.e., a 4-tuple TM either writes a new symbol on the
tape or moves its head before entering the new state.

The productivity of a Turing Machine (TM) can be
defined as the number of ones present on the (initially
blank) tape when the machine halts. Machines that do not
halt have productivity zero. The function ∑(N) is defined
to be the maximum productivity that can be achieved by a
N-state TM. This TM is called a Busy Beaver [11].

In the 4-tuple variant, productivity is usually defined
as the length of the sequence of ones produced by a TM
when started on a blank tape, and halting when scanning
the leftmost one of the string, with the rest of the tape
blank. Machines that do not halt or do not halt in this
configuration have productivity zero [2].

3. Our Approach

Genetic Algorithms are probabilistic search procedures,
inspired by mechanisms that exist in biological systems,
such as natural selection and genetics [3], [6]. They have
been used to solve hard problems (those with a huge and
multimodal search space), because, typically, they only
need to explore a small portion of the space. A GA
maintains an evolving population of individuals (points
from the landscape), which are subject to selection forces
in the presence of several genetic operators, like
crossover and mutation. Hopefully, this process will lead
to the discovery of new and fitter populations.

Representation

Each individual, defined by its chromosome, is a possible
solution to the problem. In the BB(7), all TM with 7
states are potential solutions, since they belong to the
fitness landscape. In our approach, the chromosome of
each individual is codified as a binary string with the
following format:

N ew S ta te A ction N ew S ta te A ctionN ew S ta te A ction N ew S ta te A ction

S ta te 1 S ta te N

B y b lank B y 1 B y b lank B y 1

...

Each block, with 5 bits, has information about a
particular transition of the TM: 3 bits representing the
new state (7 states plus the halting state) and 2 bits
representing the action performed (write a blank, write a
one, move left, move right).

With this codification we can apply standard genetic
operators for crossover and mutation and be sure that the
descendants are always legal TMs.

Evaluation

The evaluation phase comprises interpretation of each
chromosome and simulation of the resulting TM.

During the process of simulation, we convert each TM
to its Tree Normal Form [10]. It is clear that there are
several TMs with the same behaviour that can be
considered equivalent. If we could construct sets of
machines with equivalent behaviour we would only need
to run one of the machines of the set. The most important
equivalent class is known as the Tree Normal Form
(TNF) [10]. Using a TNF representation ensures that
machines differing only in the naming of the states or in
transitions that never are used, are represented in the
same way.

We believe that one of the most important factors in
genetic optimization, and more specifically in the BB
problem, is the assignment of fitness. One possible
approach [8] is to consider as fitness the productivity of
the TM. We think that this evaluation can be improved.
Therefore, we contemplate the following factors in order
of importance:

1º Halting before reaching a predefined number of
steps.

2º Accordance to the rules [2].

3º Productivity.

4º Number of used transitions.

5º Number of steps made before halting.

The idea is to establish and explore the differences
between “bad” individuals, e.g. a machine that never
leaves state 1 is considered worse than one that goes
trough all the states, even if they have the same
productivity.

Learning

We give to several individuals of each generation the
ability to learn. Individual learning, in this context, is
implemented as an iterative local search algorithm. The
fitness of the learning individual will be improved by
searching for better points in its neighborhood. This will
lead to a better understanding of the individual’s quality.
Fitness will be a measure, not only of the initial quality of
the individual, but also, of its ability to evolve [1]. In our

approach we use Lamarckian learning, implemented
trough a hill-climbing algorithm [5].

4. Experimental Results

The experiments were performed with Genesis 5.0 [4].
We expanded the package by integrating the hill-climbing
learning procedure. The parameters of the GA were the
following: Population Size = {200, 1000}, Number of
Evaluations = 25000000, two point crossover with
rate = 70%, single point mutation with rate = {1%, 5%,
10%}, Learning rate =25% (25% of the individuals in
each generation will learn) and learning length = 15. The
learning length specifies the number of steps that the
hill-climber makes, each of these steps counting as an
evaluation.

We used probabilistic selection and both Elitist and
non-Elitist strategies. The results presented are averaged
over sets of ten runs, performed with the same initial
conditions and with different random seeds.

A summary of the results is presented in Table 1.

Learning Without LearningPop.
Size

Mutation

Elitist Non
Elitist

Elitist Non
Elitist

200 1% 18 16 14 13

200 5% 23 18 18 17

200 10% 22 21 20 18

1000 1% 18 16 12 12

1000 5% 20 18 17 14

1000 10% 22 20 20 19

Table 1 – Best solution in the last generation averaged
over 10 runs

From the results achieved it is clear that,
independently of the learning and elitism strategies,
experiments with high mutation rates attain better results.
This can be explained by the importance of keeping
genetic diversity while searching a highly irregular
landscape. There is a strong pressure for the GA to
converge to local optima and mutation may help to
escape from such points. The GA showed to be relatively
insensible to population size variations.

A GA with elitism outperforms a standard GA and the
same effect is visible (and amplified) when we add a
learning procedure. Combining both strategies further
enhances the results. The learning strategy decreases the
influence of the mutation rate. This can be explained by
the fact that learning, by performing several conditional
mutations, gives the opportunity to bad individuals to
climb to a higher point.

The results presented here are not as conclusive as we
desire and can be considered preliminary. Further testing,

with longer runs and with different configurations are
necessary. In Figure 1 we present our best 4-tuple TM
candidate and its transition table.

δ By blank By one
State New

State

Action New

State

Action

1 2 1 f L

2 3 R 2 R

3 4 R 2 0

4 5 R 5 L

5 4 1 6 L

6 2 R 7 L

7 1 1 3 R

Figure 1: A seven state 4-tuple TM and its corresponding
transition table. The blank symbol is represented by 0.
This machine is the best known 4-tuple BB(7) candidate.

5. Conclusions and Future Work

We applied GA with learning to the BB problem, a
theoretical non-computable problem interesting by itself.
This technique proved to be effective in attacking BB(7),
since we regularly achieved machines with productivities
higher than 37 (the previous known maximum). GA
proved to be an efficient way for minimizing the number
of inspected TMs.

We also have applied this approach to BB(6) and
BB(8). In BB(6), we found machines equivalent to the
current best known candidate (productivity 21). In BB(8),
our current best candidate writes 384 ones. This is the
best one known, but we are confident on the existence of
better machines. We found that the increase in the
number of GA evaluations needed to find good

candidates, when passing from BB(6) to BB(7) was not
significant. This indicates that the evolutionary approach
handles the scalability issue efficiently.

As future work, we intend to test new selection
methods (e.g., tournament selection) and new learning
models (e.g., Baldwin Effect). We are also considering a
distributed GA implementation, with several populations
and migration mechanisms.

To attack BB(N), N >= 9, we need to make several
improvements to the simulation of the TM in order to
decrease the simulation time. Some of the possibilities
are: using macro-transitions, avoid the evaluation of
equivalent machines and early detection of non-halting
machines [10].

6. Acknowledgments

This work was partially funded by the Portuguese
Ministery of Science and Technology, under Program
PRAXIS XXI.

References

[1] Belew R. and Mitchell, M. (1996). Introduction. In Belew,
R. and Mitchell, M. (Eds.), Adaptive Individuals in Evolving
Populations: Models and Algorithms, Proceedings Volume
XXVI Santa Fe Institute, Studies in the Sciences of
Complexity, Addison-Wesley, pp. 1-22.

[2] Boolos, G., and Jeffrey, R. (1995). Computability and Logic,
Cambridge University Press.

[3] Goldberg, D. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning, Addison-Wesley.

[4] Grefenstette, J. (1990). A User’s Guide to Genesis 5.0.

[5] Hart, W. and Belew, R. (1996). Optimization with Genetic
Algorithm Hybrids that Use Local Search. In Belew, R. and
Mitchell, M. (Eds.), Adaptive Individuals in Evolving
Populations: Models and Algorithms, Proceedings Volume
XXVI Santa Fe Institute, Studies in the Sciences of
Complexity, Addison-Wesley, pp. 483-496.

[6] Holland, J. (1975). Adaptation in Natural and Artificial
Systems, University of Michigan Press.

[7] Jones, T. (1995). Crossover, Macromutation, and
Population-based Search, Santa Fe Institute WP 95-02-24.

[8] Jones, T., Rawlins, G. (1993) Reverse HillClimbing,
Genetic Algorithms and the Busy Beaver Problem, In
Forrest, S. (Ed.), Genetic Algorithms: Proceedings of the
Fifth International Conference (ICGA-93). San Mateo, CA:
Morgan Kaufmann, pp 70-75.

[9] Lally, A., Reineke, J., and Weader, J. (1997). An Abstract
Representation of Busy Beaver Candidate Turing Machines.

[10] Marxen, H. Buntrock, J. (1990). Attacking Busy Beaver 5,
Bulletin of the European Association for Theorethical
Computer Science, Vol 40.

[11] Rado, T. (1962) On non-computable functions, The Bell
System Technical Journal, vol. 41, no. 3, pp.877-884.

[12] Wood, D. (1987). Theory of Computation, Harper and
Row, Publishers.

2

3

4 5

67

1 0 ,1

1 ,0

0 ,R

1 ,R

0 ,R

1 ,0

0 ,R

0 ,1

1 ,L

0 ,R

1 ,L

0 ,1

1 ,R

1 ,L

ff

