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ABSTRACT 
Studies focusing on Unix have shown that the vast majority of workstations and desktop computers 
remain idle for most of the time. In this paper we quantify the usage of main resources (CPU, main 
memory, disk space and network bandwidth) of Windows 2000 machines from classroom laboratories. 
For that purpose, 169 machines of 11 classroom laboratories of an academic institution were monitored 
over 77 consecutive days. Samples were collected from all machines every 15 minutes for a total of 
583653 samples. 
Besides evaluating availability of machines (uptime and downtime) and usage habits of users, the paper 
assesses usage of main resources, focusing on the impact of interactive login sessions over resource 
consumptions. Also, recurring to Self Monitoring Analysis and Reporting Technology (SMART) 
parameters of hard disks, the study estimates the average uptime per hard drive power cycle for the whole 
life of monitored computers. The paper also analyzes the potential of non-dedicated classroom Windows 
machines for distributed and parallel computing, evaluating the mean stability of group of machines. 
Our results show that resources idleness in classroom computers is very high, with an average CPU 
idleness of 97.93%, unused memory averaging 42.06% and unused disk space of the order of gigabytes 
per machine. Moreover, this study confirms the 2:1 equivalence rule found out by similar works, with N 
non-dedicated resources delivering an average CPU computing power roughly similar to N/2 dedicated 
machines. These results confirm the potentiality of these systems for resource harvesting, especially for 
grid desktop computing schemes. However, the efficient exploitation of the computational power of these 
environments requires adaptive fault-tolerance schemes to overcome the high volatility of resources. 
 
Keywords: monitoring, resource usage, cycle stealing, desktop grid-computing. 

1. Introduction 
In the last two decades personal computers (PCs) have invaded organisations, becoming essential 

working tools in offices, laboratories and classrooms. The continuous and somewhat massive deployment 

of more and more powerful PCs means that more resources go unused, especially since many machines 

are primarily devoted to low-demanding electronic office applications. At the same time, affordable and 

fast network technology, especially for local area network, permits distributed resource harvesting to 

focus not only on CPU, but also on idle main memory and in otherwise unused disk space. 

Today, academic institutions frequently have large dozens of PCs in their classrooms and 

laboratories, with a large percentage of these PCs devoted mostly to teaching activities. However, it is 

known that much of this computing power simply goes unused. In fact, considering that these PCs are 

only used during extended office work, say from 8.00 am to 8.00 pm on weekday, this means that more 
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than half of the time these machines are simply unused. If we sum up the unexploited idle CPU cycles we 

could count a considerable computing power, available to the companies, academia and institutions at 

free-costs, except for the additional electric power consumption [1]. In fact, numerous environments exist 

to harness idle resources. Examples ranges from academic projects such as Bayanihan [2], BOINC [3], 

Charlotte [4], Condor [5], GLUnix [6], Harmony [7], I-Cluster [8], Intergrade [9], Javelin [10], JET [11], 

SuperWeb [12], XtremWeb [13] to commercial solutions like Entropia [14], United Devices [15], 

Platform [16] and Data Synapse [17]. More recently, some desktop grid schemes have emerged relying on 

virtual machines [18]. Examples include Virtual Cluster [19] and Non-Dedicated Distributed 

Environment (NDDE) [20]. 

PCs of classrooms have an attractive characteristic for resource harvesting: no individual user owns 

the PCs. Office’s computers are generally affected to an individual user (after all they are called 

“personal” computers). The owner of the machine controls it, being very suspicious about possible 

invasion of the machine by foreign programs. In fact, frequently, individual owners do not tolerate 

resource stealing schemes. So the use of individual PCs for distributed and parallel computing has to deal 

with social issues, beside engineering and technology [21]. Being centrally managed, classroom 

computers have no individual owner, and thus social issues involving their use in resource harvesting are 

weaker. However, even without individual owner, care must be taken to avoid undermining regular user 

comfort, since resources are primarily devoted to interactive users. Gupta et al. [22] analyse the relation 

between resource borrowing and interactive usage comfort concluding that resource stealing schemes can 

be quite aggressive without disturbing user comfort, particularly in the case of memory and disk. 

Our main motivation for this study was to characterize the availability and pattern usage of academic 

classroom computers, quantifying the portion of important resources such as CPU, RAM, disk space and 

network bandwidth that is left unused. In particular, we were interested in differentiating resource usage 

according to the existence of interactive login sessions, and their impact on resource usage.  

Windows operating system variants hold an important part of the desktop market. Statistics gathered 

from browsers usage [23] show that 89.7% of requests come from machines running Windows. Similarly, 

statistical data from the SETI@Home project reveals that 81.5% of the results received were computed by 

Windows machines. Figure 1 plots the percentage distribution of computed workunits of the 

SETI@Home projects in the month of December 2004.  

Despite this predominance, few studies analyze real resource usage of Windows machine, and even 

fewer quantify resource idleness existing in classrooms fitted with Windows machines.  
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Figure 1: Percentage of SETI@Home’s computed workunits distributed by operating systems  
(source: SETI@Home, December 2004) 

The remainder of this report is organised as follows. Section 2 describes related work, while section 

3 describes our monitoring methodology. Section 4 presents the monitoring experiment, with results 

being discussed in section 5. Finally, section 6 concludes the report and outlines future work. 

2. Related work 
Evaluation of computer resources usage has been a research topic since the wide acceptance of 

networked computers in the late 80’s. In fact, soon it was noticed that computer resources, noticeably 

CPU, were frequently underused, especially in machines primarily used for tasks dependent on human 

interaction, such as text processing or spreadsheet computations.  

Several studies have assessed the high level of resources idleness in networked computers, not only 

about CPU [24] [25] but also memory [26] and disk storage [27]. 

Through simulation Arpaci et al. [24] study the interaction of sequential and parallel workloads. 

They conclude that for their workloads a 2:1 rule applies, meaning that N non-dedicated machines are 

roughly equivalent to N/2 dedicated machines. 

The study presented in [25] focuses on the potentiality of using non-dedicated Solaris machines to 

execute parallel tasks in otherwise idle times, evaluating the machines availability and stability based 

upon a 14–day trace of computers primarily assigned to undergraduate students. The authors conclude 

that reasonably large idle clusters are available half the time noting, however, that such set of machines 

are not particularly stable, that is, machines frequently go down. 

Acharya and Setia [26] analyze main memory idleness and assesses its potential utility resorting to a 

two-week memory usage trace from two sets of Solaris workstations. One set includes machines fitted 

with a high amount of main memory (total of 5.2 GB for 29 machines), while the other set is more modest 

(total of 1.4 GB for 23 machines). The study shows that, on average, a large fraction of the total memory 

installed on a machine is available, with idle machines presenting around 50% of unused main memory. 
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Ryu et al. in [28] aims to harvest idle resources from what they define as non-idle machines, that is, 

machines that are lightly loaded by interactive usage. They conclude that a vast set of idle resources can 

be harvested without much interference on interactive users. However, their methodology requires 

modification at the kernel level and therefore seems impractical for closed operating systems like 

Windows. 

All of the aforementioned cited studies focus on UNIX environments and rely on somewhat reduced 

traces to draw their conclusions. Our work targets Windows machines, monitoring a medium-sized set of 

up-to-date machines over a relatively long period of time (11 consecutive weeks).  

Bolosky et al. [27] study a vast set of Microsoft Corporate desktop machines, reporting availability, 

CPU load and file system usage in a corporate environment. The study is oriented toward the 

demonstration of the viability of a serveless distributed file system. Thus important issues such as main 

memory load, network usage and interactive sessions and its impact over resource usage are not reported. 

In contrast, our work focuses on categorizing resources usage, obtaining results substantially different, 

especially respecting a much lower CPU load than observed in the corporate environment depicted in 

[27]. 

Heap [29] studied the resource usage of Unix and Windows servers, through 15-minute periodic 

gathering of monitoring data. He found out that Windows servers had a CPU idleness average near 95%, 

while Unix servers averaged 85% CPU idleness. 

The study of P. Cicotti et al. [30] evaluates CPU availability from the perspective of grid desktop 

computing, running a benchmark probe as a regular task in the grid desktop computing system Entropia. 

Since the task only gets scheduled at Entropia clients when required idleness threshold conditions are 

met, this methodology measures effective resources availability from the perspective of a grid desktop 

system. A drawback of this approach is that the analysis is dependent on the used grid desktop, Entropia 

in this case.  

Our approach is distinct from previous works by focusing on academic classrooms fitted with 

Windows desktop machines. The workload traces were collected for 11 weeks over a medium-sized set of 

169 up-to-date desktop machines (Pentium III and Pentium 4). An analysis of main resource usage is 

conducted with emphasis in differentiating resource usage between machines occupied with interactive 

users and free machines, assessing the effect of interactive user over resources consumption. 

We also present a novel approach to assess machines availability, combining collected samples with 

data extracted from the Self Monitoring Analysis and Reporting Technology (SMART) counters of 

machines’ hard disks, namely the “power on hour counts” and “power on cycle” [31] counters. Coupled 
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with the collected traces, these SMART values permit to infer about machines “power on pattern” 

allowing a rough estimation of machines availability since hard disk was installed, which is, for most of 

the computers, the date they were built. 

3. Methodology 
Our monitoring methodology resorts on periodically probing the remote machines. Every 15 minutes 

an attempt is made to perform a remote execution of a software probe (W32Probe) sequentially over the 

whole set of machines. W32Probe is a simple win32 console application that outputs, via standard output 

(stdout), several metrics such machine’s uptime, CPU time consumed by the idle thread of the operating 

system since machine boot-up, existence of an interactive user session, amongst other metrics (see section 

3.1). 

The need to automate the periodic data collection over the machines to survey fostered us to develop 

a framework to support remote data collection in local area networked Windows machines. The 

framework was named Distributed Data Collector (DDC) [32] and aims to cover the needs that arise in 

distributed data collection at the scale of local area networks of Windows PCs.  

The remote probing solution was chosen in part because it avoided the installation of software in 

remote nodes, thus eliminating administrative and maintenance burdens that remote daemons and alike 

normally provoke. Another motivation for the remote probe approach was the possibility of tailoring the 

probe to our monitoring needs, capturing only the wanted metrics. Windows built-in remote monitoring 

capabilities like perfmon and Windows Management Interface (WMI) [33] were discarded for several 

reasons. First, both mechanisms have high timeout values (order of seconds) when the remote machine to 

be monitored is not available. Also, both impose a high overhead on the network and on the remote 

machine. Perfmon’s overhead is caused mostly by the need to transfer the remotely read data to the local 

machine while WMI’s overhead is a consequence of its dependence over Distributed COM (DCOM) for 

accessing a remote machine. 

DDC schedules the periodic execution of software probes in a given set of machines. The execution 

of probes is carried out remotely, that is, the probe binary is executed at the remote machine. For that 

purpose, DDC uses Sysinternal’s psexec utility [34] that executes application in remote windows 

machines if appropriate access credentials are given. All executions of probes are orchestrated by DDC’s 

central coordinator host, which is a normal PC.  

As stated above, a probe is a win32 console application that uses its output channels (both stdout and 

stderr) to communicate its results. One of DDC tasks is precisely to capture the output of the probe and to 

store it at the coordinator machine. Additionally, DDC allows the probe output to be processed by 
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so-called post-collecting code which is a supplied by DDC’s user and specific to a probe. This code needs 

to be written in the Python programming language. If defined, post-collecting code is executed at the 

coordinator site, immediately after a successful remote execution. This code receives as input arguments 

the content of both standard output and standard error channels, besides other context information such as 

the name of the remote machine and coordinator’s file system directory used to store data respecting 

remote executions. The purpose of the post-collecting code is to permit analysis of probe’s output 

immediately after its execution, so that relevant data can be extracted and, if deemed necessary, saved in 

an appropriate format for future use.  

Figure 2 schematizes DDC execution. In step (1), the probe W32Probe is executed in a remote 

machine. Next (2), output results are returned to the coordinator machines. These results are 

post-processed at the coordinator’s (3) and stored. 

 
Figure 2: Overview of DDC architecture 

DDC schedules probe executions in iterations. An iteration consists of the execution attempt of every 

defined probe (DDC supports multiple probes) and attached post-collecting code (if any) over the whole 

pool of configured machines. After having completed an iteration by processing all defined machines, 

DDC waits until a timer expires to start the next iteration.  

One of the strengths of DDC lies in its support for data collection over machines with transient 

availability, that is, machines that have no requirement of being permanently powered on and that offer 

no guarantee of being switched on at a given moment. For that purpose, before an execution is attempted, 

DDC pings a machine with a sub-second timeout. This way, an unavailable remote machine is quickly 

detected with execution attempt being switched to the next machine.  

The overhead induced by DDC is mostly dependent on the probe, since the remote execution 

mechanism requires minimal resources from the remote machine. Since W32Probe gathers its monitoring 

data mostly through win32 API calls, the probe requires practically no CPU and minimal memory for its 

execution. Also, to minimise network traffic, the output produce by the probe contains only the data 

deemed necessary for the monitoring experiment. 

DDC was a central piece in the monitoring infrastructure, allowing us to collect the whole trace 

usage without installing any software at remote machines.  
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DDC software is available under the GNU Public License (GPL) For a more complete description 

interested readers are referred to [32]. 

3.1 Monitored metrics 
For the purpose of this study we developed W32Probe. This probe collects several metrics 

characterizing the current state of the machine that is being monitored. These metrics are grouped in two 

categories: static and dynamic. Static metrics describe fixed characteristics that typically remain constant 

over time. Examples of such metrics include CPU name and type and amount of installed main memory. 

Dynamic metrics are related to current computing activity, measuring target machine main resources 

usage. Dynamic metrics include CPU idleness percentage, memory load, available free disk space and 

whether an interactive session exists at the machine. Next, a brief description of both categories of 

metrics is given. 

3.1.1 Static metrics 
Static metrics comprise the following elements: 

− Processor name, type and frequency: this identifies the processor name and its operating 

frequency. 

− Operating system: name, version and service pack version, if any. 

− Amount of main memory: size of installed main memory. 

− Amount of virtual memory: size of configured virtual memory. 

− Hard disks: for every installed hard disk returns a descriptive string, the serial identification 

number and the size of the drive. 

− Network interfaces: display MAC address and description strings for every installed network 

interface. 

3.1.2 Dynamic metrics 
Dynamic metrics collected from W32Probe include the following items: 

− Boot time and uptime: system’s boot time and respective uptime corresponding to the moment 

when probe was run. 

− CPU idle time: time consumed by the operating system idle thread since the computer was 

booted. This metric is further used to compute the average CPU idleness between two 

consecutive samples. 

− CPU idle percentage: CPU idle percentage since machine was booted. This metric simply 

corresponds to the division of “CPU idle time” by machine’s uptime. 
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− Main memory load: main memory load (as returned by the field dwMemoryLoad filled by 

win32’s GetMemoryStatus() API function).  

− Swap memory load: analogue to main memory load metric but for the swap area. 

− Free disk space: returns free disk space. 

− Hard disk power cycle count: SMART parameter that counts the number of disk’s power cycles, 

i.e., the number of times the disk has been powered on/powered off since it was built. 

− Hard disk power on hour counts: SMART parameter that counts the number of hours that a hard 

disk has been powered on since it was built.  

− Network usage: this metric comprises two main values and two derived ones. Main values are 

“total received bytes” and “total sent bytes”. Derived values are “received byte rate” and “sent 

byte rate” which are simply computed respectively from “total received bytes” and “total sent 

bytes”. 

− Interactive user-login session: if any user is interactively logged at the monitored machine, the 

username and domain name (if any), along with the session init time are returned.  

4. Experiment 
4.1 Computing environment 

Using DDC and W32Probe, we conducted a 77-day monitoring experiment using 169 computers of 

11 classrooms of an academic institution from midnight 19th April to midnight 5th July 2004, for a total of 

11 complete weeks, with only the last week corresponding to off-classes. Monitored classrooms are used 

for regular classes. When no classes are being taught students use the machines to perform practical 

assignments and homework, as well as for personal use (e-mail, etc.). To avoid any changes of behaviour 

that could false results, only system managers were aware of the monitoring experiment. 

All classrooms have 16 machines, except L09 which only has 9 machines. All machines run 

Windows 2000 professional edition (service pack 3) and are connected via a 100 Mbps Fast-Ethernet link. 

The main characteristics of the computers are summarized in Table 1 grouped by classrooms (from L01 

to L11). The columns INT and FP refer respectively to NBench benchmark [35] integer and floating-point 

performance indexes. NBench, which is derived from the well-know Bytemark [36] benchmark, was 

ported from Linux with its C source code compiled under Visual Studio .NET in release mode. Like its 

predecessor, NBench relies on well-know algorithms to summarize computer performance with two 

numerical indexes: INT for integer performance and FP to expose floating-point performance. It is 

important to note that presented indexes are not suitable for absolute comparisons with NBench original 

values, since both operating system and the compiler are different. However, indexes can be used to 
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assess relative performance among the monitored machines, since the same benchmark binary was used 

to compute the indexes. The final column of Table 1 expresses FLOPS performance as given by Linpack 

[37] benchmark compiled with Visual Studio .Net in release mode. All performance indexes were 

gathered with the DDC framework using the corresponding benchmark probe (NBench for INT and FP, 

Linpack for MFlops). Figure 3 plots the machines sorted by their INT (left) and FP (right) performance 

indexes. The plots present similar shape, indicating that a single index (either INT or FP) is enough for 

comparing performances of a set of machines. 

Combined together, the resources of the 169 machines are impressive: 56.62 GB of memory, 

6.66 TB of disk and more than 98.6 GFlops of floating-point performance.  

 Qty CPU (GHz) RAM  
(MB) 

Disk size 
(GB) 

INT FP Linpack 
(MFlops) 

L01 16 P4 (2.4) 512 74.5 30.53 33.12 850.31 
L02 16 P4 (2.4) 512 74.5 30.46 33.08 851.19 
L03 16 P4 (2.6) 512 55.8 39.29 36.71 903.18 
L04 16 P4 (2.4) 512 59.5 30.55 33.15 847.23 
L05 16 PIII (1.1) 512 14.5 23.19 19.88 389.49 
L06 16 P4 (2.6) 256 55.9 39.24 36.65 899.32 
L07 16 P4 (1.5) 256 37.3 23.45 22.10 520.10 
L08 9 PIII (1.1) 256 18.6 22.27 18.64 396.52 
L09 16 PIII (0.65) 128 14.5 13.65 12.21 227.37 
L10 16 PIII (0.65) 128 14.5 13.68 12.22 227.33 
L11 16 PIII (0.65) 128 14.5 13.68 12.22 227.32 

Total 169 –  56.25 GB 6.66 TB 4315.69 4164.98 98654.12 
Avg. – – 340.83 MB 40.33 GB 25.54 24.64 583.75 

Table 1: Main characteristics of monitored machines. 

  

Figure 3: Machines sorted by computing power. INT index (left) and FP index (right).  

4.2 Settings and limitations 
For the purpose of the monitoring experiment, the period for W32probe execution attempt over the 

set of machines was configured to 15 minutes. This value was a compromise between the benefits of 

gathering frequent samples and the negative impact this strategy might cause on resources, especially on 

machines and on the network.  

A 15-minute interval between samples means that captured dynamic metrics are coarse-grained, with 

quick fluctuations of values escaping the monitoring system. For instance, a 5-minute memory activity 

burst using nearly 100% of main memory is undistinguishable from 10-minute 50% memory usage, since 

samples comprising both memory usage bursts will report the same average memory space usage. 

However, this is seldom a problem, since all metrics are relatively stable, and thus not prone to fluctuate 



 10 

widely in a 15-minute interval. The only exception is the CPU idleness percentage, which is prone to 

quick changes. But, precisely to avoid misleading instantaneous values, CPU usage is returned as the 

average CPU idleness percentage observed since machine was booted. Therefore, given the CPU idleness 

values for two consecutive samples it is straightforward to compute the average CPU idleness between 

these two samples, given that no reboot occurred in the meantime (if a reboot occurred, then the sample 

taken after the reboot reports the average CPU idleness since machine was booted). 

A subtle and unexpected limitation of our methodology was due to user habits, particularly with 

users who forget to logout. In fact, over the original 277513 samples captured on machines with an 

interactive session, we found out 87830 samples corresponding to user interactive session lasting 10 hours 

or more. Since classrooms remain open 20 hours per day, closing from 4 am to 8 am, these abnormal 

lengthy sessions have to do with users who had left their login session opened. To assert our hypothesis, 

we grouped the samples of interactive sessions upon their relative time occurrence since the start of the 

corresponding interactive session. For instance, samples collected during the first hour of any interactive 

session were counted together and so on. For every time interval the average and standard deviation of 

CPU idleness was computed. Table 2 presents these data, with the first column corresponding to the time 

intervals, the second column holding the count of samples and the third displaying average CPU idleness 

jointly with standard deviation. The data permits to observe that the time interval [10-11[ hour (samples 

collected during the 10th and 11th hour of any interactive session) is the first one that presents an average 

CPU idleness above 99% (99.27%), a very high value that indicates that no interactive activity existed 

when the samples were collected. Therefore, in order to avoid results biased by such abnormal interactive 

user sessions, in this study we consider samples reporting an interactive user-session equal or above than 

10 hours as being captured on non-occupied machines. Note that this threshold is a conservative 

approach, which means that real interactive usage is probably lower than reported in this study. Figure 4 

plots the number of samples (left y-axis) and the average percentage of CPU idleness (right y-axis) of 

data shown in Table 2. 

Length of session (hour) Number of samples Avg. CPU idleness (stdev) 
[0-1[ 65521 91.93% (12.69) 
[1-2[ 47057 94.72% (11.08) 
[2-3[ 28374 94.54% (11.76) 
[3-4[ 13387 95.28% (12.57) 
[4-5[ 9514 96.24% (11.40) 
[5-6[ 7334 96.95% (10.28) 
[6-7[ 5654 97.43% (9.51) 
[7-8[ 4754 97.70% (9.24) 
[8-9[ 4181 98.03% (8.61) 

[9-10[ 3907 98.73% (6.09) 
[10-11[ 3637 99.27% (3.84) 
>=11 84193 99.61% (1.65) 

Table 2: Samples from interactive sessions grouped by their relative time occurrence. 
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An important conclusion to drawn from the forgotten sessions is that verification of user logins does 

not seem enough to assess machine interactive usage. Metrics like keyboard idleness and mouse usage 

should be used as a complementary diagnosis. However, in Windows environments monitoring of 

keyboard and mouse require, to the best of our knowledge, usage of driver hooks, which not only forces 

software installation at remote machines, but also require the software to be run at a high privilege level. 

Interestingly, very high level of CPU idleness (99% or above) also seems to be a good indicator of 

non-interactive usage on a machine, even if an interactive session is opened. Finally, another conclusion 

to be drawn from forgotten user sessions is the need to configure classroom computers to detect long 

unused user sessions and to automatically logout.  

 

Figure 4: Samples from interactive sessions grouped by their relative time occurrence. Left y-axis 
depicts number of samples, right y-axis plots average CPU idleness. 

5. Results 
During the 77 days of the experiment, 6883 iterations were run with a total of 583653 samples 

collected. Main results of the monitoring are summarized in Table 2. The column “No Login” shows 

results captured when no interactive user-session existed, while column “With login” expresses samples 

gathered at user-occupied machines. Both results are combined in the final column “Both”. On rows that 

display average values, standard deviation is given in parenthesis. 

 No login With login Both 
Samples (avg. uptime %) 393970 (33.87%) 189683 (16.31%) 583653 (50.18%) 
Avg. CPU idle 99.71% (1.99) 94.24% (11.20) 97.93% (4.99) 
Avg. RAM load 54.81% (8.45) 67.53% (11.95) 58.94% (9.59) 
Avg. SWAP load 25.74% (4.28) 32.83% (7.86) 28.04% (5.44) 
Avg. disk used 13.64 GB (3.30) 13.64GB (4.31) 13.64GB (3.63) 
Avg. sent bytes 255.32 Bps (7029.56) 2601.79 Bps (31241.85) 1017.91Bps (14898.38) 
Avg. received bytes 359.17Bps (5754.62) 8662.07Bps (47604.81) 3057.86 Bps (19357.18) 

Table 3: Global monitoring resource usage. 
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Machines responded to 50.18% of the sample attempts over the 77 days and in 393970 samples 

(33.87%) queried machine did not have any interactive login session. This means that during the 77 days, 

for slightly more than one third of the time, machines were completely available and free for resources 

harvesting. In fact, unoccupied machines presented 99.71% CPU idle time, expressing almost full 

idleness. The presence of interactive session reduces CPU idleness to an average of 94.24%, meaning that 

an interactive session roughly requires 5.5% of CPU usage. This CPU idleness confirms other studies 

performed in academic classrooms running Unix environments [25], but with higher than values found by 

Bolosky et al. [27], who reported an average CPU usage rounding 15%. In fact, Bolosky analysed 

corporate machines stating that some of the machines presented an almost continuous 100% CPU usage, a 

fact that obviously raised mean CPU usage. 

Main memory usage values are difficult to interpret recurring only to global averages, since installed 

main memory of the assessed machines ranged from 128 MB to 512 MB. However, as expected, main 

memory demands increases roughly 12% when interactive usage occurs at a machine. This is a natural 

behaviour, since an interactive session obviously means that interactive applications will be opened and 

thus consuming memory. Even though, the broad conclusion is that a significant amount of memory goes 

unused. Again, as a consequence of higher main memory usage verified during interactive sessions, swap 

memory load raises by 5% when an interactive user is logged on the machine.  

Used disk space is independent of the presence of interactive login sessions: average of 13.64 GB for 

both situations. The low variability respecting used disk space, confirmed by the low standard deviation 

of 3.63, is a consequence of system usage policy: an interactive user is restricted to 100 MB to 300 MB of 

temporary local hard disk drive (the actual size depends on the capacity of the machine hard drive), 

meaning that it can be cleaned after an interactive session has terminated. This policy restricts users from 

cluttering disks, also avoiding that personal files can mistakenly be forgotten, or that trojan programs and 

alike be maliciously dropped in shared machines. In fact, users are fostered to keep their files in a central 

server with the benefit of being able to access their files independently of the desktop machine being 

used. 

5.1 Machines availability 
Figure 5 plots machines availability during the 11-week monitoring experiment. Figure 5a) (left) 

shows the number of powered on machines; Figure 5 b) (middle) displays the count of occupied 

machines, that is, machines with an interactive session. Figure 5c) (right) traces the count of user-free 

machines, that is, machines powered on without interactive logged on user at sample time. In each graph, 

the black horizontal line displays average of samples, which is 84.87 for powered on machines, 27.58 for 
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occupied machines and 57.29 for session-free machines. This means that roughly, on average, 70% of the 

powered on machines are free of users, and thus fully available for foreign computation. Also, on 

average, slightly more than half of the set of 169 machines is powered on. 

   
Figure 5: Number of machines powered on (left), with user-session (middle) and user-free (right). 

All plots exhibit a similar sharp pattern with high-frequency variations showing that machine counts 

fluctuate widely, except on weekends (note that the x-axis labels of the plots denote Mondays). Since 

classrooms are open on Saturdays, weekend slowdowns are more noticeable on Sundays, except for 

Saturdays 1st May and 22nd May, both of them holidays. The negative spike that can be found around 10th 

June corresponds to another holiday, while the other negative spike on 21st June was motivated by a 

somewhat long maintenance period on the power circuits that feed the classrooms. The high-frequency 

variations exhibited on weekdays mean that resources are volatile and thus harvesting such resources 

require highly tolerant and adaptable mechanisms. 

Left plot of Figure 6 shows two metrics related to uptime. The double-cross curve, which appears 

almost as a straight line, represents machine availability measured in units of “nines” [38]. Nines are 

defined as -log10 of the fraction of time a host is not available. The name of the unit comes from the 

number of nines in its availability ratio. For example, one nines means a 0.9 availability ratio, that is, –

log10(1-0.9)= 1 nine. The simple-cross curve displays the fraction of time each machine is up. In both 

curves, machines are sorted in descending order by their cumulated uptimes. 

The ratio availability curve shows that only 30 machines have cumulated uptimes bigger than half 

the experiment period, that is, 37.5 days. Also, less than 10 machines have cumulated uptimes ratio higher 

than 0.8 and none was above 0.9. Comparatively to the Windows corporate environment depicted in 

Douceur [38] where more than 60% of machines presented an uptimes bigger than one nine, analyzed 

classroom machines present much lower uptime ratios. This is a consequence of the machines having no 

real owner and thus being subject to the possibility of being powered off at the end of a class, contrary to 

corporate machines that divide in two patterns: daytime and “24 hours”. Daytime are machines powered 

on during office hours, while “24 hours” machines remain powered on for long periods. 



 14 

5.2 Machines stability 
An important factor in resource harvesting concerns machine stability, that is, how long a given 

group of machines will be available for intensive computation. We define two levels of stability: a light 

level, where group stability is broken by a machine shutdown or reboot, and a more demanding level, 

which add to the non-reboot policy, the need for a machine to remain session-free. 

  
Figure 6: machines uptime ratio and availability in nines (left).  

Distribution of machines’ uptime (right). 

5.2.1 Machines Uptime 
In this section we analyze machines’ sessions, focusing on uptime length and reboot count. We 

define a machine’s session as the activity comprised between a boot and its corresponding shutdown.  

During the whole experiment 10688 sessions of machines were captured by our sampling 

methodology. It is important to note that due to the 15-minute period between consecutive samples, some 

short machine sessions might have not been captured. In fact, between two samples, DDC can only detect 

one reboot, since its reboot detection is based upon machine’s uptime.  

The average duration of the length of sessions was 15 hours and 55 minutes. This value exhibits a 

high standard deviation of 26.65 hours indicating that session length fluctuates widely. Since multiple 

reboots occurred between two samples escape our monitoring setup (only one is detected), the above 

given average duration exceeds the real value. The right plot of Figure 6 displays the distribution of 

machines’ uptime length for sessions that lasted less or equal than 96 hours (4 days). These sessions 

accounted for 98.7% of all machine sessions and 87.93% of cumulated uptime. These data permit to 

conclude that most machine sessions are relatively short, lasting few hours, another indication of the high 

volatility of machines. 

5.2.2 Machine power on cycles 
Networked personal computers, especially Windows machines, have a reputation of instability, 

requiring frequent reboots, for resolving system crashes, completing software installations or simply to 

refresh system resources. However, it is important to note that one of the main drivers of Windows 2000 

development was to reduce the high rate of reboots of its predecessor [39]. 
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As stated before, since our sampling methodology has a coarse-grained granularity of 15 minutes, 

some of the short machine sessions may go unnoticed. Thus, in order to have a detailed view respecting 

reboots, we recurred to SMART parameters [31]. By resorting to SMART “power cycle count” metric it 

is possible to spot undetected machine sessions. For instance, if two consecutive samples of a machine 

have a difference in “power cycle count” parameters bigger than one, this means that at least one short 

machine session, with its corresponding boot and shutdown sequence, occurred without being noticed by 

the monitoring mechanism. 

An important issue of SMART is that parameters vary among disk manufacturers, not only in its 

availability, but also in units used to represent the metrics [40]. For instance, in the set of machines we 

observed, two machines had disks that counted “power on hour” in minutes using a 16-bit value that 

overflows after 45.5 days of usage. A third machine expressed this metric in seconds, but using a 32-bit 

register. Also, another machine had a disk that simply did not provide the power on hour count parameter. 

The cumulated count of hard disk power on cycles was 13871, with an average of 82.57 power 

cycles per machine and a standard deviation of 37.05 over the 77 days. This represents 1.07 power on 

cycle per day. The number of power on cycles is 30% higher than the number of machine sessions 

counted by our monitoring analysis. This means that a significant percentage of power cycles are of very 

short duration (less than 15 minutes) escaping our sampling mechanism. 

Recurring to the parameters “power on hour count” and “power cycles” it is possible to compute the 

average power on hours per power on cycle, henceforth referred as “uptime per power cycle”. For the 

77-day monitoring, uptime per power cycle was 13 hours and 54 minutes with a standard deviation of 

nearly 8 hours. The difference between the average uptime per power cycle and the average machine 

session length (see section 5.2.1) can be explained by the short-lived sessions that are not caught by our 

sampling methodology. Histogram of average uptime per power cycle grouped by 15 minutes intervals is 

displayed in Figure 7a) (left plot). 

Given the absolute count of power cycles and power on hours, it is possible to compute the uptime 

per power cycle for the whole disk life. Since machines are relatively new (being the oldest 3 years old, 

and the newest 9 months old) the probability of machines conserving their original disk is high and thus 

average uptime per power cycle serves as a measure of average uptime. For our monitored system, the 

average power on hours per power on cycle was 6.46 hours with a standard deviation of 4.78 hours. This 

value is surprisingly lower than the one we found during our 77-day monitoring. Figure 7b) (right) plots 

the distribution of average uptime per power cycle considering disks whole lifetime.  
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Figure 7: Histogram of average uptime per power cycle observed during the study (left) and along 

the lifetime of the machines (right). 

5.2.3 Group stability 
An important issue when executing parallel applications in network of non-dedicated personal 

computers is group stability, that is, how long a given set of machines will be available for foreign 

computation. In fact, some parallel environments are very sensitive to changes in the machine pool. For 

instance, Message Passing Interface (MPI) environments are required to interrupt computation when one 

or more machines fail [41]. Our definition of stability is similar to Acharya’s [25], which characterizes 

stability of a set of K machines as how long all the K machines remain usable for parallel computation.  

  
Figure 8: Average stability per classroom, considering powered on machines (left) and user-free 

machines (right). 

  
Figure 9: Number of stability periods with N machines. Left for powered on periods, right for 

user-free periods. 

We limited our stability computation to the 10 classrooms that have 16 machines (L08 was therefore 

excluded). Figure 8 aggregates two plots related to stability for every classroom. Left plot depicts average 

power on stability length ranging from 2 to 16 machines. All curves present a similar shape with, as 

expected, average stability decreasing as the number of machines in the set increases. Even so, on 
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average, the powered on machines stability is quite interesting since that even with 16 machines, almost 

all classrooms presents an average stability above one hour. 

Figure 8b) (right) presents the average user-free stability. This metric differs from average power on 

stability since it requires that a machine remains user free. That is, if a user logs on a machine, this 

machine is no longer considered available and thus the stability of the set in which the machine was 

integrated terminates. The curves for average user-free stability are much more heterogeneous than the 

power on stability. Surprisingly, the average stability periods are significantly bigger than average length 

of power on stability period (plots have different Y-scales). In fact, this is mostly a consequence of the 

number of stable periods, which are, quite logically, much less for user-free periods than for power on 

periods. For instance, the user-free spike for classroom L10 which presents a 14 hours average stable 

period for 15 machines is somewhat misleading since its corresponds to a single occurrence.  

The number of stable periods for both situations is shown in Figure 9 (left for powered on, right for 

user-free). The shape of Figure 9 reflects the fact that the number of machine combinations reaches its 

maximum around 8 machines. Since user-free machines are a subset of powered on machines, the number 

of stable periods is much higher for powered on machines than for user-free machines. 

5.2.4 User sessions 
23224 interactive user-sessions from 1684 different logins were recorded along the monitoring 

period. Average session length was 8942 seconds, a little bit more than 2 hours and 29 minutes. This 

value is similar to the duration of most classes which last around 3 hours. However, session duration 

fluctuates widely, with an observed standard deviation of 9083 seconds, roughly 2 hours and 32 minutes. 

The histogram of the duration of the user sessions grouped by quarters of hour is plotted in Figure 10. The 

high number of short sessions that exist, with more than 2200 login sessions that lasted less than 15 

minutes and slightly less than 2000 lasting between 15 and 30 minutes might be due to students login in 

for checking their e-mail. Otherwise, most session durations are distributed almost evenly between 30 

minutes and 3 hours. For duration bigger than 3 hours, session counts drops smoothly and linearly. The 

spike of nearly 900 sessions that occurs at the right end of the plot is due to our truncation policy of 

user-session bigger than 11 hours. 
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Figure 10: Distribution of user-session lengths. 

5.3 Global resource usage 
Figure 11 plots averages percentage of CPU idleness over the whole 11 weeks. Left plot displays the 

CPU idleness when an interactive user session exists, the middle plot represents idleness of user-free 

machines, and right plot refers to whole machines, independently of the existence or not of user-sessions. 

All plots exhibit a similar trend: a convergence near 100% CPU idleness, obviously more noticeable 

in user-free machines. Weekends are clearly identifiable in all plots, with idleness stabilizing near 100%. 

In the plot focusing on used machines (left), some drops in global average CPU idleness below 70% 

are visible. These drops are mostly caused by the existence of a relatively busy single machine when the 

number of occupied computers is very low (less than 10 units).  

  
Figure 11: Average CPU idleness percentage while used (left), user-free (middle) and combined 

(right). 

An interesting issue respects idleness of user-free machines (center plot): numerous negative spikes 

occur, with idleness percentage dropping near 90%, a surprising condition for unused machines. After 

some investigation, we found out that these negative spikes occur when a significant number of machines 

are powered on at the same time, for instance, in the first class of the day taught in a classroom. In fact, 

machine start-up consumes a significant amount of resources and since a user can only log on after a 

certain amount of time, if the machine is sampled shortly after startup, but before a user has had the 

opportunity to log on, observed average CPU idleness will be relatively low, and since no user is yet 

logged on, the machine will be reported as being free. To support our hypothesis, we found that average 

CPU idleness in user-free machines with less than 5 minutes uptime was 86.05%. The average CPU 
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idleness percentage ranging from 0 to 5 minutes uptime with no user sessions is given in Table 4 and 

plotted in Figure 12. 

Seconds since 
boot 

Number of samples 
(no user session) 

Avg. CPU  
idleness (%) 

[0,60] 19 77.70 
]60,120] 154 83.89 

]120,180] 65 86.60 
]180,240] 49 90.44 
]240,300] 43 91.60 

Total 330 86.05 

Table 4: Average CPU idleness right after machine boot with no user logged on. 

 
Figure 12: Average CPU idleness right after machine boot with no user logged on. Left y-axis 

depicts number of samples, right y-axis plots average CPU idleness. 

 
Interestingly, even for machines with interactive usage, average of CPU idleness seldom drops 

below 75% and mostly fluctuates around 95%. This confirms the potentiality of resources harvesting even 

when interactive sessions exist as demonstrated by Ryu [28]. 

Figure 13 shows the sum of free memory in gigabytes over the 11-week observation. Left plot 

focuses on unused memory of occupied machines; middle plot displays the same metric for user-free 

machine, while right plot comprises all machines. The plots reflect mostly machines usage pattern, 

especially the number of powered on machines at a given time. In fact, the high frequency fluctuations in 

all plots derive essentially from the number of available machines, constituting a proof of machines high 

volatility. 

  

Figure 13: Sum of free memory for occupied machines (left), user-free (middle) and both (right). 

Plots of free disk space cumulated from all machines, shown in Figure 14, exhibit the sharp 

high-frequencies characteristics of high volatile environments. The differences of cumulated available 
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space between used and unused machines are dependent of the ratio of machines in either condition. On 

weekdays, especially during work time, since most machines powered on are being interactively used, 

this set of machines presents normally more than 1.5 TB of available disk space. The cumulated available 

disk space, even if highly volatile, rarely drops under 1 TB. This is an impressive figure indicator of the 

dimension of resources that can be exploited in classroom machines.  

   

Figure 14: Cumulated free disk space for occupied machines (left), user-free (middle) and both 
(right). 

5.4 Weekly analysis 
Figure 15 aggregates two plots related to weekly distribution of samples. Left plot depicts the 

average number of powered on machines (top curve) as well as the standard deviation (bottom curve). 

Right plot shows the weekly distribution of average CPU idleness. Both plots reflect the week pattern 

with stable curves on weekends, especially Sundays, and during the nights. 

Besides following the night and weekend pattern, the week distribution of average CPU idleness 

presents a significant negative spike on Tuesdays afternoons, dropping below 91%. Although we could 

trace back the Tuesdays afternoon CPU usage spike to a practical class which was taken in a given 

classroom and consumed an average of 50% of CPU, we could not find the reasons behind this abnormal 

CPU usage. 

Confirming high CPU availability for resource scavenging, average CPU idleness never drops below 

90% and mostly ranges from 95% to 100%. The phases of near 100% average CPU idleness correspond 

to the periods when classrooms are closed: 4 am to 8 am during weekdays and from Saturday 9 pm to 

Monday 8 am for weekends. 

  
Figure 15: Weekly distribution of powered on machines (left) and average CPU idleness (right). 
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Figure 16 shows on left plot the average memory distribution along the week with top line 

representing average RAM load and bottom line showing average swap load. Right plot depicts average 

network rates for received (top line) and sent traffic (bottom line). 

Both RAM and swap load curves exhibit the weekly pattern, although in a smoothed way. Note that 

RAM load never falls below 50%, meaning that a significant amount of RAM is reserved by operating 

system usage. Comparing RAM and swap usage, it can be observed that the swap curve roughly follows 

memory usage, although strongly attenuating high frequencies. This is a natural consequence of how 

memory systems are organized. 

Network rates weekly distributions plotted in Figure 16b) are another example of the weekend and 

night pattern. Since we are plotting a rate, the drops originated by night periods and weekends appear as 

smoothed lines. Network client role of classroom machines appears clearly visible, with received rates 

several times higher than sent rates. 

  
Figure 16: Weekly distribution of memory usage (left) and network traffic (right). 

Weekly distribution of resource usage permits to conclude that apart from weekends and the night 

interval between 4 am and 8 am, absolute system idleness is limited. However, even on working hours, 

idleness levels are quite high, permitting successful yields in resource scavenging schemes. 

5.5 Equivalence ratio 
Arpaci et al. [24] defines the equivalent parallel machine as a metric to gauge the usable 

performance of non-dedicated machines relatively to a parallel machine. Kondo et al. [42] adopt an 

analogue metric, based upon clusters, and which they appropriately call the cluster equivalence metric. 

The cluster equivalence aims to measure the fraction of a dedicated cluster CPU that a non-dedicated 

machine CPU is worth to an application. In this study we apply this definition, computing the CPU 

availability of a machine for a given period accordingly to its measured CPU idleness over this period. 

For instance, a machine with 90% of CPU idleness is viewed as a dedicated machine with 90% of its 

computing power. It is important to note that this methodology assumes that all idle CPU can be 

harvested. Thus obtained results should be regarded as an upper limit of CPU resources that can be 

harvested. 
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To cope with heterogeneity, machines’ performances were normalized accordingly to their 

respective INT and FP indexes (a 50% weight was given to each index to compute a machine index). For 

instance, a machine of L03 (INT:39.29, FP:36.71) is worth 1.19 of a L01’s machine (INT:30.53, 

FP:33.12).  

Figure 17 plots the cluster equivalence ratio for the 77-day experiment (left) and its weekly 

distribution (right). The average cluster ratio is 0.26 for occupied machines and 0.25 for user-free 

machines. Combining together occupied and unoccupied machines yields a 0.51 cluster equivalence ratio, 

meaning that the set of non-dedicated machines is roughly equivalent to a dedicated cluster with half the 

size, following the 1:2 rule found out by [24]. 

  
Figure 17: Equivalence cluster ratio over the 77-day monitoring (left) and weekly distribution 

(right).  

6. Conclusions and future work 
This report presents the main results of a 77-day monitoring usage study of 11 academic classrooms 

for a total of 169 Windows 2000 machines. Our study shows that resources idleness in academic 

classrooms comprised of Windows machines is very high. This confirms previous works carried out in 

classrooms with Unix machines, and also with Windows server machine [29]. 

CPU idleness is impressively high with an average of 97.93% observed along the 77-day monitoring 

study. Also, the 94.24% average CPU idleness measured in user occupied machines indicates that CPU 

harvest schemes should be profitable not only when a machine is unoccupied but also when interactive 

usage of the machine exists. This is confirmed by the 0.26 cluster equivalence potentially available from 

exploiting CPU idleness of interactively used machines and 0.51 when user-free machines are also 

considered. Another interesting result associated to CPU, is that interactive usage of the machine can be 

sensed by the level of CPU idleness: CPU idleness above 98% almost certainly means that the machine is 

not being interactively used, even if a login session exists. 

Memory idleness is also noticeable, with respectable amounts of unused memory, especially in 

machines fitted with 512 MB of main memory. Coupled with a relatively fast network technology such 

100 Mb/s switched LAN, such resources might be put to good use for network RAM schemes.  
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Due to the fact that the single hard disk of all machines only contains the operating system 

installation plus specific software needed for classes, totalling an average of 13.64 GB used per machine, 

free space storage among monitored machines is impressive. And with hard disks exponential growth, the 

tendency is that more and more unused disk space becomes available, at least in sites whose management 

policy restricting use of shared machines’ disks to limited temporary storage. A possible application for 

such disk space relates to distributed backups, or to the implementation of a local data grid.  

We believe our results can be generalized to other academic classrooms which use Windows 

operating systems and which follow a similar classroom usage policy: shared machines with minimal disk 

space for interactive user, and student off-class access to computers for work assignment and 

communication use. 

Classrooms comprised of Windows machines seem appropriate for desktop grid computing not only 

limited to CPU, but also to main memory and free hard disk space. Beside wide resources availability, 

attractiveness of such environments for resources harvesting is strengthened by the fact that machines 

have no real personal “owner”, being managed by a central authority. This ease the deployment of 

resource harvesting schemes, since an authorization from the central authority gives access to the shared 

machines. Obviously, it is mandatory for harvesting environments to respect interactive users, 

guaranteeing that interactive usage is not degraded by harvesting schemes.  

Another major concern in classroom environments relates to volatility, since a resource available at a 

given time might disappear right after. Thus, efficient usage of idle resources requires survival techniques 

such as checkpointing, oversubscription and multiple executions. As expected in any distributed system, 

security is another major issue to address. 

In conclusions, this study confirms that resource idleness observed in classrooms Windows 2000 

environments is quite considerable, and carefully channelled could yield good opportunities for grid 

desktop computing. 

As future work, we plan to assess if absence of interactive usage can be sensed by high level of CPU 

idleness as detected in this study, and if so, what is the threshold value to mark a machine as unused.  

Another future task will be to analyse the resource usage of “owned” machines, that is, environments 

where every monitored desktop machine is assigned to an individual user. The purpose of the study will 

be to compare the resource usage patterns of “owned” machines against the shared machines found in 

academic classrooms. We anticipate that a major challenge of the study will be to recruit volunteers, a 

task that we hope to achieve by a transparent and anonymous monitoring methodology. 
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Finally, we also plan to use the collected traces in trace-driven simulations to study several 

scheduling issues concerning desktop grid systems, taking advantage that trace-driven simulations are 

credited as being more reliable than assessments based on analytical load distribution models [43].  
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