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Abstract. In domains such as music and visual art, where the quality of an in-
dividual often depends on subjective or hard to express concepts, the automat-
ing fitness assignment becomes a difficult problem. This paper discusses the 
application of Zipf’s Law in evaluation of music pleasantness. Preliminary re-
sults indicate that a set of Zipf-based metrics can be effectively used to classify 
music according to pleasantness as reported by human subjects. These studies 
suggest that metrics based on Zipf’s law may capture essential aspects of pro-
portion in music as it relates to music aesthetics. We discuss the significance of 
these results for the automation of fitness assignment in evolutionary music 
systems. 

1   Introduction 

Interactive Evolution (IE) is one of the most popular approaches in current evolution-
ary music generation systems. In this paradigm the user assigns fitness to the gener-
ated pieces, guiding evolution according to his/hers aesthetic preferences. In the field 
of music, IE has been used for the evolution of rhythmic patterns, melodies, Jazz 
improvisations, composition systems, and many other applications (a comprehensive 
survey can be found in [1]). 

In spite of its popularity, IE has several shortcomings that become particularly se-
vere in time-based domains like music. Listening to all generated pieces is a tedious 
and demanding task; it leads to user fatigue and inconsistency in evaluation, and 
imposes severe limits on population size and number of generations. To overcome 
this shortcoming, some researchers (e.g. [2, 3, 4]) resort to Artificial Neural Networks 
(ANNs). The ANNs can be trained using a set of user-evaluated pieces created by an 
IE system [3]; scores of well-known musicians [2]; rhythmic boxes [4]; etc. 



Although appealing, this approach has several shortcomings (see e.g. [2, 3]), most 
notably the difficulty of identifying a representative training set and, consequentially, 
of avoiding shortcuts – ways of creating false maximums. 

Our research explores the connection between Zipf’s law and music in the context 
of developing fitness functions for evolutionary music systems. We begin by per-
forming an analysis of the music by extracting several Zipf-based measurements. 
These measurements serve as input for ANNs. We have successfully performed sev-
eral validation experiments for author and style identification. In this paper, we de-
scribe a similar experiment, in the context of predicting music pleasantness. 

The next sections discuss Zipf’s law and its connection to music, and present re-
sults demonstrating how Zipf’s law may be used to quantify music pleasantness. 
These results suggest that Zipf’s law is a useful tool for developing fitness functions 
for evolutionary music.  

1.1   Zipf's Law 

Zipf’s law reflects the scaling properties of many phenomena in human ecology, 
including natural language and music [5, 6]. Informally, it describes phenomena 
where certain types of events are quite frequent, whereas other types of events are 
rare. In English, for instance, short words (e.g., “a”, “the”) are quite frequent, 
whereas long words (e.g., “anthropomorphologically”) are quite rare. In music, con-
sonant harmonic intervals are more frequent, whereas dissonant harmonic intervals 
are quite rare, among other examples. In its most succinct form, Zipf’s law is ex-
pressed in terms of the frequency of occurrence (quantity) of events, as follows:  

F ~ r –a (1) 

where F is the frequency of occurrence of an event within a phenomenon, r is its 
statistical rank (position in an ordered list), and a is close to 1. 

Another formulation of Zipf’s law is 

P(f) ~ 1/f n (2) 

where P(f) denotes the probability of an event of rank f and n is close to 1. In physics, 
Zipf’s law is a special case of a power law. When n is 1 (Zipf’s ideal), the phenome-
non is called 1/f or pink noise. Interestingly, when rendered as audio, 1/f (pink) noise 
is perceived by humans as balanced, whereas 1/f 0 or white noise is perceived as too 
random, and 1/f 2 or brown noise as too correlated [6]. 

In the case of music, we may study the frequency of occurrence of pitch events, 
duration events, melodic interval events, and so on. For instance, consider Chopin’s 
“Revolutionary Etude.” To determine if its melodic intervals follow Zipf’s law, we 
count the different melodic intervals in the piece, e.g., 89 half steps up, 88 half steps 
down, 80 unisons, 61 whole steps up, and so on. Then we plot these counts against 
their statistical rank on log-log scale. This plot is known as rank-frequency distribu-
tion (see Fig. 1). 

In general, the slope of the distribution may range from 0 to –∞, with –1 denoting 
Zipf’s ideal. This slope corresponds to the exponent n in (2). The R2 value may range 



from 0 to 1, with 1 denoting a straight line. The straighter the line, the more reliable 
the measurement. For example, melodic intervals in Chopin’s “Revolutionary Etude” 
approximate a Zipfian distribution with slope of –1.1829 and R2 of 0.9156. 

2   Experimental Studies 

Earlier studies indicate that Zipfian distributions abound in socially-sanctioned music 
[7]. By socially-sanctioned we mean music that is sanctioned by a large enough mu-
sical subculture to be published/recorded, and thus survive over time; this is consis-
tent with Zipf’s use of the term (see [5], p. 329)  

Currently, we have a set of 40 metrics based on Zipf’s law [8].  We have used 
these metrics to extract features from MIDI-encoded music pieces. Specifically, these 
metrics count occurrences of various types of events and calculate the slope and R2 
value of the corresponding Zipf distribution. Table 1 shows a subset of these metrics. 

The features extracted from these metrics (i.e., slope and R2 values) have been 
used to train ANNs to classify these pieces in terms of composer, style, and pleasant-
ness. To perform these classification studies, we compiled several corpora, whose 
size ranged across experiments from 12 to 758 music pieces [8]. These pieces are 
MIDI-encoded performances, the majority of which come from the Classical Music 
Archives [9]. We applied Zipf metrics to extract various features per music piece. The 
number of features per piece varied across experiments, ranging from 30 to 81.  

These feature vectors were separated into two data sets. The first set was used for 
training the ANN. The second set was used to test the ANN’s ability to classify new 
data. We experimented with various architectures and training procedures using the 
Stuttgart Neural Network Simulator [10]. 

In terms of author attribution, we conducted five experiments: Bach vs. Beethoven, 
Chopin vs. Debussy, Bach vs. four other composers, and Scarlatti vs. Purcell vs. Bach 
vs. Chopin vs. Debussy [11, 12]. The average success rate across the five author attri-
bution experiments ranged from 95% to 100%. 

y = -1.1829x + 2.6258; 
R2 = 0.9156
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Fig. 1. The rank-frequency distribution of melodic intervals for Chopin’s “Revolutionary 
Etude,” Op. 10 No. 12 in C minor. 



We conducted several experiments for style identification tasks, using different 
ANN architectures and parameters. A detailed description and analysis of these re-
sults is awaiting publication. The average success rate across experiments, which 
required discerning between seven different styles, ranged from 91% to 95%.  

These studies suggest that Zipf-based metrics may be used effectively for ANN 
classification, in terms of authorship attribution and style identification. These two 
tasks are relevant to evolutionary music composition, as it may contribute to fitness 
functions for composing music that is similar to a certain composer or music style. 
The next session presents ANN results related to music pleasantness. 

3   Pleasantness Prediction 

Much psychological evidence indicates that pleasantness and activation are the fun-
damental dimensions needed to describe human emotional responses [13]. Following 
established standards, we conducted an experiment in which we asked 21 subjects to 
classify music in terms of pleasantness and activation. The subjects were college 
students with varied musical backgrounds.  The experiment was double blind, in that 
neither the subjects nor the people administering the experiment knew which of the 
pieces presented to the subjects were presumed as pleasant or unpleasant. 

3.1   Data Collection Methodology 

The subjects were presented with 12 MIDI-encoded musical performances. Our goal 
was to provide six pieces that an average person might find pleasant, and six pieces 
that an average person might find unpleasant. A member of our team with extensive 
music theory background helped identify 12 such pieces (see Table 2). From these 
pieces, we extracted excerpts up to two minutes long, in order to lessen fatigue for the 
human subjects and thus increase the consistency of the collected data. 

Table 1. A sample of metrics based on Zipf’s law [8]. 

Metric Description 
Pitch Rank-frequency distribution of the 128 MIDI pitches 
Chromatic tone Rank-frequency distribution of the 12 chromatic tones 
Duration Rank-frequency distribution of note durations 
Pitch duration Rank-frequency distribution of pitch durations 
Pitch distance Rank-frequency distribution of length of time intervals between 

note (pitch) repetitions 
Harmonic interval Rank-frequency distribution of harmonic intervals within chord 
Harmonic consonance Rank-frequency distribution of harmonic intervals within chord

based on music-theoretic consonance 
Melodic interval Rank-frequency distribution of melodic intervals within voice 
Harmonic bigrams Rank-frequency distribution of adjacent harmonic interval pairs 
Melodic bigrams Rank-frequency distribution of adjacent melodic interval pairs 

 



While listening to the music, the subjects continuously repositioned the mouse in a 
2D selection space to indicate their reaction to the music. The horizontal dimension 
represented pleasantness while the vertical dimension represented activation or 
arousal. The system recorded the subject’s cursor coordinates once per second. Posi-
tions were recorded on 0 to 100 scales with the point (50,50) representing emotional 
indifference or neutral reaction.  

Similar methods for continuous recording of emotional response to music have 
been used elsewhere [14].  

3.2 ANN Training Methodology 

For the ANN experiment, we divided each music excerpt into segments. All seg-
ments started at 0:00 and extended in increments of four seconds. That is, the first 
segment extended from 0:00 to 0:04 seconds, the second segment from 0:00 to 0:08 
seconds, the third segment from 0:00 to 0:012 seconds, and so on. We applied Zipf 
metrics to extract 81 features per music increment. Each feature vector was associated 
with a target output vector (x, y), where x and y ranged between 0.0 and 1.0. Target 
vectors were constructed from the exact ratings (averaged over subjects) at each point 
in time in the piece. Target vector (1.0, 0.0) corresponded to most pleasant, (0.0, 1.0) 
corresponded to most unpleasant, and (0.5, 0.5) corresponded to neutral. This gener-
ated a total of 210 training vectors. 

We conducted a 12-fold, “leave-one-out,” cross-validation study. This allowed for 
12 possible combinations of 11 pieces to be “learned” and 1 piece to be tested. The 
ANN had a feed-forward architecture with 81 elements in the input layer, 18 in the 
hidden layer, and 2 in the output layer. Internally, the ANN was divided into two 
81x9x1 “Siamese-twin” pyramids both sharing the same input layer. One pyramid 
was trained to recognize pleasant music, the other unpleasant. Classification was 
based on the average of the two outputs. 

Table 2. Twelve pieces used for music pleasantness classification study.  Subjects 
rated the first six pieces as “pleasant”, and the last six pieces as “unpleasant”. 

Composer Piece Duration 
Beethoven Sonata No. 20 in G. Opus 49. No. 2 (1:00) 
Debussy Arabesque No.1 in E (Deux Arabesques) (1:34) 
Mozart Clarinet Concerto in A. K.622 (1. Allegro) (1:30) 
Schubert Fantasia in C minor. Op.s 15 (1:58) 
Tchaikovsky Symphony 6 in B minor. Opus 36. Movement 2 (1:23) 
Vivaldi Double Violin Concerto in A minor.  F.1. No. 177 (1:46) 
Bartok Suite. Op. 14 (1:09) 
Berg Wozzeck (trans. for piano) (1:38) 
Messiaen Apparation de l'Eglise Eternelle (1:19) 
Schönberg Pierrot Lunaire (5. Valse de Chopin) (1:13) 
Stravinksy Rite of Spring. Movement 2 (tran. for piano) (1:09) 
Webern Five Songs (1. Dies ist ein Lied) (1:26) 



During each training cycle the ANN was presented with every training vector 
once, in random order. Using back-propagation, the ANN weights were adjusted to 
reduce output mean standard error (train MSE). Every 200 cycles, the ANN was 
tested against the test data keeping track of the output mean standard error (test MSE). 
If the test MSE did not improve after a number of cycles, the ANN was considered 
stuck at a local minimum. Using a simulated annealing schedule, the ANN weights 
were “jogged” (adjusted by adding small amounts of random noise to the original 
weights). This forced the ANN to explore neighboring areas in the search space. The 
ANN weights were jogged with decreasing frequency as training progressed. The 
backpropagation part of the training focused on minimizing the train MSE, whereas 
the simulated-annealing part focused on minimizing the test MSE. By combining 
back-propagation with simulated annealing, we aimed at finding the best possible fit 
of the training data given the test data.  

3.3   Experimental Results 

The ANN performed extremely well with an average success rate of 98.41%. All 
pieces were classified with 100% accuracy, with one exception: Berg’s piece was 
classified with 80.95% accuracy (see Table 3). The ANN was considered successful 
if it rated a music excerpt within one standard deviation of the average human rating; 
in other words it came within 68% of the range of human responses (i.e., 32% of the 
humans were outside of this range). There are two possibilities for the decrease in 
accuracy of the ANN with regard to Berg: Either our metrics fail to capture some 
essential aspects of Berg’s piece, or the other 11 pieces do not contain sufficient in-
formation to enable the interpretation of Berg’s piece.  

Table 3. ANN results from all 12 experiments for the human-training, human-testing 
condition.  

Composer Cycles Test Rate  Test MSE   Train Rate Train MSE 
Beethoven 11200 100.00% 0.002622 100.00% 0.011721 
Debussy 151000 100.00% 0.086451 100.00% 0.001807 
Mozart 104000 100.00% 0.003358 100.00% 0.005799 
Schubert 194000 100.00% 0.012216 100.00% 0.002552 
Tchaikovsky 4600 100.00% 0.002888 100.00% 0.019551 
Vivaldi 2600 100.00% 0.002026 94.05% 0.046553 
Bartók 20200 100.00% 0.006760 100.00% 0.008813 
Berg 4600 80.95% 0.100619 100.00% 0.015412 
Messiaen 35200 100.00% 0.001315 100.00% 0.008392 
Schönberg 4400 100.00% 0.013170 99.49% 0.024644 
Stravinksy 10800 100.00% 0.000610 100.00% 0.015685 
Webern 6400 100.00% 0.006402 100.00% 0.015366 
Average 45750 98.41% 0.019870 99.46% 0.014691 
Std 66150 0.0549 0.034775 0.0171 0.012118 

 



Fig. 2 displays the average human ratings for the excerpt from Mozart’s “Clarinet 
Concerto in A” K.622. Fig. 3 shows the pleasantness ratings predicted by the ANN 
for the same piece. The ANN prediction approximates the average human response.  

Additionally, we performed three control experiments to validate the results pro-
duced by the ANN. In specific, all values in the Human-training, Human-testing (HH) 
data were replaced by values generated using a uniform-distribution random number 
generator. These and the original values were then combined into three data sets for 
the control experiments: Random-training and Random-testing (RR), Random-
training and Human-testing (RH), and Human-training and Random-testing (HR). 
Each of the control experiments was a complete 12-fold cross-validation study, just 
like the human data experiment. 

Fig. 4 shows the Test MSE per piece across all four conditions (HH, RR, RH, and 
HR). The reader should recall that the first six pieces were pleasant and the last six 
unpleasant. Fig. 5 shows the average Test MSE across the four experiments. 

3.4   Discussion 

The ANN was able to discover strong correlations between the human pleasantness 
data and Zipf-based metrics (HH condition). Also, as expected, the ANN did not 
discover any correlations between random data and Zipf-based metrics (HR and RR 
conditions). 

However, the ANN performed relatively well when trained against random data 
and tested against human data (RH condition). This may be surprising at first, how-
ever, it simply demonstrates the effect of peeking at the test data while training (see 
[15], p. 661) – as mentioned above, we used simulated annealing to “jog” the weights 
when the ANN appeared stuck in local minima relative to the test MSE. In other 

 
Fig. 2. The average pleasantness (o)
and activation (x) ratings from 21 hu-
man subjects for the first 1:30 seconds
of Mozart’s “Clarinet Concerto in A”
(K.622).  A rating of 50 denotes neutral
response. 

 Fig 3. Pleasantness classification by 
ANN of the same piece having been 
trained on the other 11 pieces. 
 

 



words, the ANN was trained to minimize both the test and the train MSEs. This indi-
cates that the ANN is actually able to learn something about the human data, even 
though it was trained on random “noise.”. While the ANN does succeed in classifying 
the data, its error rate is more than double than when it was trained with actual human 
data.  

Reassuringly, this peeking effect produced no convergence in all 12 experiments 
of the RR condition (random training, random testing). This strongly suggests that 
there is a correlation between Zipf metrics and human pleasantness data, and no cor-
relations with random data. 

Analysis of the ANN weights associated with each metric suggests that harmonic 
consonance and chromatic tone were consistently relevant for “pleasantness” predic-
tion, across all 12 experiments. Other relevant metrics include chromatic-tone dis-
tance, pitch duration, harmonic interval, harmonic and melodic interval, harmonic 
bigrams, and melodic bigrams.    

The HH (and RH) results indicate that the ANN is able to identify patterns that are 
relevant to human reporting of pleasantness. The feature extractor and ANN evaluator 
used in this experiment can easily be incorporated into an evolutionary music system 
as part of fitness evaluation. Our results suggest that such a fitness function has 
strong potential to guide the evolutionary process towards music that sounds pleasant 
to humans. However, given the statistical nature of the metrics, we expect that addi-
tional structural, music-theoretic metrics may be required to discourage evolution 
from finding shortcuts – ways of creating false maxima. In other words, we suspect 
that ANN-based fitness functions, such as the one reported in the pleasantness study, 
at best, define a necessary but not sufficient (pre)condition for pleasant music. To 
evaluate this hypothesis, we are in the process of developing an evolutionary music 
system, called NevMusE, that will be used to generate music guided by such ANN-
based “pleasantness” fitness functions.  
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4   Conclusions 

The experimental results attained show that the considered set of metrics captures 
important music attributes, facilitating not only accurate prediction of author and 
style, but also pleasantness of musical pieces. 

We propose that this approach may be applied successfully in the scope of a fully- 
or partially-automated system to assign fitness according to: 

 compliance to a given musical style or styles; 
 similarity to the works of some composer(s); and 
 predicted pleasantness of the piece 

There are several differences, and potential advantages over previous works deal-
ing with the automation of fitness assignment. For instance, by using a set of well-
known pieces instead of ones generated through IE, we ensure that the training set is 
unbiased towards the scores typically generated by the system. Also, the tasks of 
author and style identification do not involve subjective criteria. The output vector of 
the ANN can be seen as a set of distances to particular styles and authors, which 
opens new possibilities in terms of fitness assignment. Finally, the ANNs trained for 
predicting the pleasantness of pieces appear to capture fundamental principles of 
aesthetics. This contrasts with other approaches where the ANNs, when successful, 
capture only some of the preferences of an individual user. 

Similarly to other approaches there is always the possibility of errors in classifica-
tion and prediction. As such, using a totally automated system may result in conver-
gence to false optimums. Taking into account the current state of development, we 
believe that it is probably wiser and more interesting to use a partially interactive 
system. The system would run on its own using the ANNs to assign fitness. However, 
the user can interfere at any point of the evolutionary run assigning fitness to the 
individuals, thus overriding the automatic evaluations.  

We have already used this scheme in a partially interactive visual art evolutionary 
system [16]. The experimental results show that user intervention was enough to 
overcome the deficiencies of the fitness assignment scheme, which, in that case, 
where quite severe. Nevertheless, due to the generic properties of the extracted fea-
tures, it is expected that, in the case of music, our approach results in more generic 
and robust fitness assignment. 
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