
 Graph Based Crossover – A Case Study with the Busy Beaver Problem

Francisco B. Pereira

ISEC
Qta. da Nora, 3030
Coimbra, Portugal

xico@dei.uc.pt

Penousal Machado

ISEC
machado@dei.uc.pt

Ernesto Costa

CISUC
Dep. de Eng. Informática,
Univ. of Coimbra, Polo II,
3030 Coimbra, Portugal

ernesto@dei.uc.pt

Amílcar Cardoso

CISUC
amilcar@dei.uc.pt

Abstract

The success of the application of evolutionary
approaches depends, to a large extent, on
problem representation and on the used genetic
operators. In this paper we introduce a new graph
based crossover operator and compare it with
classical two-point crossover. The study was
carried out using a theoretical hard problem
known as Busy Beaver. This problem involves
the search for the Turing Machine that produces
the maximum number of ones when started on a
blank tape. Experimental results show that, in
this domain, the new graph-based operator
provides a clear advantage over two-point
crossover.

1 INTRODUCTION

Genetic operators play a particular important role in
Evolutionary Computation. The task of recombination
operators is to promote the exchange of genetic material
between individuals. Typically, the operators used depend
on the problem being solved and on the chosen
representation. When using linear representations the
most common operators are single-point, two-point and
uniform crossover [Mitchell, 1996]. If a structured
representation (e.g. trees) is adopted, it is advantageous to
define recombination operators suitable for this structure
[Angeline, 1994]. An example of such an operator is the
standard GP crossover that exchanges sub-trees between
individuals [Koza, 1992].

For some problems the natural representation is a graph.
The main goal of this paper is to introduce a graph-based
crossover operator and study its application to this type of
problems. The application domain is the Busy Beaver
(BB) problem [Rado, 1962] which involves the
representation of Turing Machines (TMs). Tibor Rado
introduced BB in the context of the existence of non-
computable functions. It can be described as follows:

Suppose a TM with a two way infinite tape and tape
alphabet = {blank, 1}. The question Rado asked was:
What is the maximum number of 1s that can be written by
an N-State halting TM when started on a blank tape? This
number, which is function of the number of states, is
denoted by ∑(N). A machine that produces ∑(N)
non-blank cells is called a Busy Beaver. ∑(N) happens to
be non-computable.

Some values for ∑(N), and the corresponding TM’s are
known today for small values of N (e.g. ∑(1)=1, ∑(2)=4,
∑(3)=6, ∑(4)=13). As the number of states increases the
problem becomes harder, and, for N>=5, there are
candidates (or contenders) which set lower bounds on the
value of ∑(N). This is partially due to the fact that there is
neither a general, nor a particular theory about the
structure of a BB. To prove that a machine is the N-state
BB, we must perform an exhaustive search over the space
of all N-state TMs and prove that no other machine
produces a higher number of ones. This becomes
extremely complex due to the halting problem.

The BB is one of the most interesting theoretical
problems. It has attracted the attention of many
researchers and several contests were organized trying to
produce the best candidates. The used techniques perform
a partial search on the solution space, looking for TMs
that produce the best lower bound for the value of ∑(N).
Some of the best contenders were obtained by [Marxen
and Buntrock, 1990] (e.g., he established that
∑(5) >= 4098). His approach involves enumeration and
simulation of all N-state TMs, using several techniques to
reduce the number of inspected machines, accelerate
simulation and decide non-termination.

In the original setting, the problem was defined for
5-tuple TMs. This type of machines, given a current state
and symbol, write a new symbol, enter a new state and
move the read/write head left or right. One of the main
variants consists in considering 4-tuple TMs. These
machines, during the transition to a new state, either write
a new symbol to the tape or move the head (the actions
are not allowed simultaneously).

In [Pereira et al, 1999] we used an evolutionary approach
to the BB problem, and set new best lower bounds for

4-tuple BB(7) and BB(8), showing that ∑(7) >= 102 and
that ∑(8) >= 384. If we compare these results with
previous best candidates (∑(7)>=37 and ∑(8) >= 84), it is
clear that the used approach brings significant
improvements. In previous studies we used two-point
crossover. Here we will study the application of a
graph-crossover operator to BB. An extensive set of
experiments was performed and the results show that it
clearly outperforms classical two-point crossover.
Additionally, the use of this new operator allowed the
discover of new best candidates for BB(6) and BB(7),
setting the new records in 25 and 164 (The previous best
BB(6) candidate was found by Chris Nielsen and writes
21 1s).

The paper is organized as follows: section 2 comprises a
formal definition of 5 and 4-tuple TMs and the rules for
the BB problem. In section 3, we present our graph-based
crossover operator. In section 4, we discuss several ways
of interpreting TMs. Section 5 relates to the simulation
and evaluation of TMs. In section 6, we present and
discuss the results of comparative experiments between
classical crossover and graph-crossover. Section 7
concerns ongoing research work. Finally, in section 8, we
draw some conclusions.

2 PROBLEM DEFINITION

A deterministic TM can be specified by a sextuple
(Q,Π,Γ,δ,s,f), where [Wood, 1987]:

� Q is a finite set of states
� Π is an alphabet of input symbols
� Γ is an alphabet of tape symbols
� δ is the transition function
� s in Q is the start state
� f in Q is the final state.

The transition function can assume several forms; the
most usual one is:

δ: Q×Γ → Q×Γ×{L,R}

where L denotes move the head left and R move right.
Machines with a transition function with this format are
called 5-tuple TMs. A common variation consists in
considering a transition function of the form:

δ: Q×Γ → Q×{Γ∪{L,R}}

Machines of this type are known as 4-tuple TMs. When
performing a transition, a 5-tuple TM will write a symbol
on the tape, move the head left or right and enter a new
state. A 4-tuple TM either writes a new symbol on the
tape or moves its head, before entering the new state.

The original definition [Rado, 1962] considered
deterministic 5-tuple TMs with N+1 states (N states and
an anonymous halt state). The tape alphabet has two
symbols, Γ={blank, 1}, and the input alphabet has one,
Π={1}. The productivity of a TM is defined as the
number of 1s present, on the initially blank tape, when the
machine halts. Machines that do not halt have
productivity zero. ∑(N) is defined as the maximum

productivity that can be achieved by a N-state TM. This
TM is called a Busy Beaver.

In the 4-tuple variant productivity is usually defined as
the length of the sequence of ones produced by the TM
when started on a blank tape, and halting when scanning
the leftmost one of the sequence, with the rest of the tape
blank. Machines that do not halt, or, that halt on another
configuration, have productivity zero (Boolos, 1995).
Thus, the machine must halt when reading a 1, this 1 must
be the leftmost of a string of 1s and, with the exception of
this string, the tape must be blank.

3 A GRAPH CROSSOVER OPERATOR

In GP individuals are usually represented as trees; the
genetic operators consider this representation, i.e., they
“see” the individuals as trees and preserve the inherent
syntactic restrictions [Angeline, 1994]. In our approach
the individuals are N-State TMs and their natural
representation is a directed graph with N+1 nodes. The
main idea of our crossover operator is the exchange of
sub-graphs between individuals.

As stated before, a 4-tuple TM can be defined by a
sextuple (Q,Π,Γ,δ,s,f). Without loss of generality, we can
consider Q={1,2,…,N,N+1}, set 1 as the initial state and
N+1 as the final one. Since Π={1} and Γ={blank, 1}, we
only need to represent the transition function,
δ:Q×{blank,1} →Q×{L,R,blank,1}. Figure 1 shows a TM
and the corresponding transition table.

2

3

4 5

67

1 0,1
1,1

0,R

1,R

0,R

1,0

0,R

0,1

1,L

0,R

1,L

0,1

1,R

1,L

ff

Figure 1: A 4-tuple TM and its transition table. The blank
symbol is represented by a 0. This machine writes 102 1s

in 4955 transitions [Pereira et al, 1999].

Therefore, each individual is coded by an integer string
with the following format:

New
State

Action
New
State

Action

State 1

By blank By 1

... New
State

Action
New
State

Action

State N

By blank By 1

δ By blank By one

Q
New
State

Action
New
State

Action

1 2 1 f 1

2 3 R 2 R

3 4 R 2 0

4 5 R 5 L

5 4 1 6 L

6 2 R 7 L

7 1 1 3 R

The basic idea of our operator is to promote the exchange
of sub-graphs or, from a functional point of view, the
exchange of sub-machines. In order to explore the
structure of the TMs, and since any sub-set of nodes and
arcs is a sub-graph, we must impose constraints to the
sub-graphs being exchanged. A TM, especially one with a
complex behavior, is usually formed by several
sub-machines. These sub-machines are composed by
nodes (and corresponding arcs) that are functionally
dependent. In TMs functional dependency is usually
related to the distance between nodes (considering
minimum path length). Thus, the probability of two nodes
being functionally dependent is higher if they are directly
connected. Therefore, our sub-graphs will be composed
by a subset of closely linked nodes and by the linking
transitions, i.e. the transitions among them. We will call
this type of transitions internal. An illustrated description
of the crossover algorithm follows.

To perform crossover between individuals A and B, we
start by randomly selecting the crossover points (states)
PA and PB, and a crossover size X (the number of states of
each sub-graph). Next, we will determine the sub-graphs,
SA and SB. Each sub-graph will be composed by the set of
the X closest states from the corresponding crossover
point and by their internal transitions. Distance between
two states is defined as the length of minimum path
connecting them in the directed graph. If there is no path
connecting the two states the distance is infinite. Thus, to
construct each sub-graph we start by determining the set
of states to be included, which is achieved through
breadth first search. The exclusion of states at the same
distance is done randomly. This process yields two lists of
states, LA and LB, ordered according to the distance from
the crossover point and with the order of states at the
same distance chosen randomly. Since we are evolving
TMs of fixed size we need to ensure that the lists contain
the same number of nodes1. When the lists have different
sizes the largest is truncated.

The internal transitions of SA will be replaced by the
internal transitions of SB and vice-versa. This implies
establishing a correspondence between states. We chose
to define correspondence based on the position of the
states in the lists LA and LB (i.e. nodes at the same position
are correspondent). In Figure 2 we present an example of
the crossover operation between individuals A and B at
points PA and PB. The crossover size is three, LA={1, 2, 4}
LB={2, 3, 6}, yielding the following correspondence table
{1A-2B, 2A-3B, 4A-6B}.

When the number of internal transitions in SA and SB is
different, there are transitions that won’t be exchanged,
since they don’t have an equivalent. In the example
shown in Figure 2, the transition 2×0→4×R of individual
A is not replaced by 6×0→1×R since this transition is not
internal.


1 X is the maximum crossover size. There are situations where it is

impossible to reach X states when starting from the crossover point.

2

34

5

6

1 0,1

1,L 0,R
1,R

0,1

1,R
0,0

0,1

1,R

0,R

1,1

1,L

ff

2

34

5 6

1 0,1

1,1

0,R

1,R

0,1

1,R0,1

0,1

1,R

0,R

1,R

1,L

ff

2

34

5

6

1

0,R
1,R

0,1

1,R
0,0

0,1

1,R

0,R

1,1

1,R

ff

2

34

5 6

1 0,1

1,1
1,R

0,1

1,R0,1

0,1

1,R

0,R

1,L

ff

0,R

0,1

1,L

1,L

PA

PB

A B

Figure 2: Example of Crossover. Nodes belonging to the
sub-graphs are depicted in gray and transitions in bold. A

dashed line represents internal transitions that weren’t
replaced.

4 CHROMOSOME INTERPRETATION

It is clear that there are several TMs that exhibit the same
behavior; these machines can be considered equivalent. If
we construct sets of machines with equivalent behavior
we only need to run one of the machines of the set. The
most important equivalent class is the Tree Normal Form
(TNF) [Marxen and Buntrock, 1990]. Using a TNF
representation ensures that machines differing only in the
naming of the states, or in transitions that never are used,
are represented in the same way.

It would be nice to represent the machines in the TNF.
Unfortunately, to convert a machine to its TNF we have
to run it, number the states in the order that they are
visited, and delete unused states and transitions.
Therefore, we can consider the following alternatives:

� Directly decoding the chromosome to a TM, and thus
not taking advantage of equivalence classes.

� Interpret the machine codified in the chromosome, as if
it was in TNF [Machado et al, 1999].

A further possibility is to code back the changes induced
by the TNF interpretation, i.e. modify the original
chromosome to one with the machine in TNF format.
Thus, we have three different options for the
representation and interpretation of TMs: using a standard
representation (Standard), use a tree normal form
interpretation of the machine (TNF), or the TNF
interpretation combined with back coding of the resulting
phenotype (BackCoding).

The importance of the selected representation was subject
of a previous study [Machado et al, 1999]. The central
conclusion was that TNF and BackCoding clearly
outperform Standard interpretation. It was also visible
that TNF performs better than BackCoding, although in a
lesser scale. Another interesting result is the need for a
fairly high mutation rate, which may indicate that the
fitness landscape is highly irregular and hard to sample.
These results were obtained with two-point crossover.

5 SIMULATION AND EVALUATION

The evaluation phase involves the interpretation of each
chromosome and simulation of the resulting TM. Due to
the Halting Problem we must establish a limit for the
number of transitions (MaxT). Machines that don’t halt
before this limit are considered non-halting TMs.

To assign fitness we consider the following factors
[Pereira et al, 1999], in decreasing order of importance:

� Halting before reaching the predefined limit for the
number of transitions.

� Accordance to the rules [Boolos and Jeffrey, 1995].
� Productivity.
� Number of used transitions.
� Number of steps made before halting.

This approach yields better results than using the
productivity, alone, as fitness function [Pereira et al,
1999]. The idea is to establish and explore the differences
between “bad” individuals, e.g., a machine that never
leaves state 1 is considered worse than one that goes
through all the states, even if they have the same
productivity.

6 GRAPH VS. CLASSICAL TWO-POINT
CROSSOVER

The experiments presented in this section concern the
search for 4-tuple BB(6). Since the previously best known
candidate wrote 21 1s in 125 transitions we set MaxT to
250. The experiments were performed using GALLOPS
3.2 [Goodman, 1996].

The parameters of the Evolutionary Algorithm (EA) were
the following: TM representation = {Standard, TNF,
BackCoding}; Number of Evaluations = {40 000 000};
Population Size= {100, 500}; Generation Gap=1;
Crossover Operator = {Two-point, Graph}; Crossover
rate = 70%; Single point mutation; Mutation rate = {1%,
5%, 10%}; Elitist strategy; Tournament selection;
Tournament size = {2,5}. Two-point crossover was
restricted to gene boundaries. Maximum graph crossover
size = 3. A particular experimental configuration can be
defined as an instantiation of the following set {TM
representation, Mutation Rate, Population Size,
Tournament Size}. For each configuration we performed
thirty runs with the same initial conditions and different
random seeds.

Table 1 shows the average number of ones written by the
best individual, of the final population, for all considered
configurations. A brief perusal of the results indicates that
graph crossover consistently outperforms two-point
crossover, improving the results for all representations.
When we use two-point crossover the average
productivity is 11.56; with graph crossover it is 13.5. In
addition to reaching higher global results, it also sets new
best averages for specific configurations. The best
configuration for two-point crossover {TNF, 5%, 100, 5}
achieves a 15.9 average productivity. With graph
crossover the best configuration,
{BackCoding, 5%, 500, 5}, achieves 18.6 average
productivity.

It is also important to consider the evolution of
productivity of the best individual over time. In Figure 4
we present the charts with the results of the experiments
using TNF representation and a 5% mutation rate. We
chose these settings because they are the ones where the

Table 1: Results achieved in the 4-tuple BB(6). Productivity of the best individual of the final population. Each
experiment was repeated 30 times. The results are the averages.

Two-Point Graph

Standard TNF BackCoding Standard TNF BackCoding
Pop. 100 500 100 500 100 500 100 500 100 500 100 500

T. Size 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5

1% 8.5 7.4 8.6 7.9 11.8 10.5 9.2 9.7 11.5 10.3 10.7 10.7 14.6 10.4 13.7 9.1 15.3 13.4 14.4 12.4 14.3 12.0 15.4 12.7

5% 9.8 14.3 8.2 12.6 14.4 15.9 14.0 14.1 13.0 15.8 12.3 13.0 12.1 16.1 10.5 16.9 14.4 18.4 13.7 17.4 13.0 17.8 12.9 18.6

M
ut

at
io

n

10% 9.3 10.6 8.1 9.0 15.5 14.5 13.0 12.2 11.6 14.2 11.2 12.7 9.9 12.2 8.6 10.8 14.2 14.4 12.0 12.8 13.3 13.8 11.3 13.8

9.2 10.8 8.3 9.8 13.9 13.6 12.1 12.0 12.0 13.4 11.4 12.1 12.2 12.9 10.9 12.3 14.7 15.4 13.4 14.2 13.5 14.5 13.2 14.9

9.98 9.07 13.77 12.03 12.73 11.77 12.56 11.61 15.03 13.76 14.04 14.05

9.53 12.90 12.25 12.08 14.39 14.04
Totals

11.56 13.50

best known contender is more frequently found. It is
interesting to notice that, for the majority of the
experimental settings, the differences in productivity are
substantial throughout the evolutionary process. The
configuration {TNF, 5%, 100, 2} is one of the rare cases
where this does not happen.

5% Mutation, Pop Size=100

6

8

10

12

14

16

18

20

0 10000000 20000000 30000000 40000000

Evals

P
ro

d
u

ct
iv

it
y

5% Mutation, Pop Size=500

6

8

10

12

14

16

18

20

0 10000000 20000000 30000000 40000000

Evals

P
ro

d
u

ct
iv

it
y

Graph Tsize=5 Graph Tsize=2 Two-point Tsize=5 Two-point Tsize=2

Figure. 4: The charts show the number of ones written by
the best individual using a TNF interpretation. The results

are averages of series of 30 runs.

The chosen mutation rates (1%, 5%, 10%) may seem a
little odd. In a previous study [Machado et al, 1999] we
showed that, when using two-point crossover, high
mutation rates were required in order to find good
candidates. This fact was explained by a tendency of the
EA to converge to local maxima. The advantages of using
graph crossover diminish as the mutation rate increases.
This is shown clearly in Table 2, which presents the
difference between the results achieved by two-point
crossover and graph crossover, for the same
configurations. For a mutation rate of 1%, the average
increase in productivity is 3.37, for 5% mutation 2.03, and
for 10%, the average gain is 0.44. These facts indicate
that graph crossover overcomes the tendency to converge
to sub-optimal solutions. Two-point crossover between
individuals with resembling genotypes will result in an
individual that is also similar (e.g. two-point crossover
between the same individual doesn’t produce any
change). With graph crossover this is not necessarily
true. In late generations, when a few individuals tend to
dominate the population, graph crossover may promote
diversity. A 10% mutation rate is too high for this type of
crossover. This is especially visible in the results of TNF
representation. An expected result since TNF, by itself,
enables higher population diversity [Machado et al,
1999].

In Table 3 we indicate the number of times that the best
4-tuple BB(6) candidate (21 1s in 125 transitions) was
found. These results confirm and emphasize the previous
ones. The difference between the two crossover operators
is impressive. Using a 1% mutation rate and two-point
crossover we were unable to find the best contender,
while with the new crossover operator this candidate was
found 9 times. Conversely, with 10% mutation it was
found 11 times with two-point and 7 with graph
crossover, which confirms our previous remarks. The
table also stresses the increase in performance for the best
configuration {TNF, 5%, 100, 5}, from 6 to 11. The
number of runs performed does not render statistically
significant differences for specific configurations.
Nevertheless, the overall difference (25 vs. 47) is
statistically significant (confidence level 99%).

The idea behind the proposed crossover operator is to take
advantage of the inherent relations in the sub-structures

Table 2: Difference in productivity between Graph and Two-Point crossover for the best individual of the final
population. The entries in bold represent statistically significant differences (confidence level 99%).

Standard TNF BackCoding

Pop. Size 100 100 500 500 100 100 500 500 100 100 500 500

T. Size 2 5 2 5 T
ot

al
s

2 5 2 5 T
ot

al
s

2 5 2 5 T
ot

al
s

1% 6.13 2.97 5.13 1.20 3.86 3.50 2.90 5.17 2.67 3.56 2.77 1.73 4.73 1.57 2.70
5% 2.33 1.80 2.33 4.27 2.68 0.03 2.47 -0.33 3.27 1.36 0.03 2.00 0.60 5.60 2.06

M
ut

at
io

n

10% 0.60 1.60 0.47 1.83 1.13 -1.27 -0.07 -1.00 0.57 -0.44 1.70 -0.40 0.10 1.10 0.63

3.02 2.12 2.64 2.43 0.75 1.77 1.28 2.17 1.50 1.11 1.81 2.76

2.57 2.54 1.26 1.73 1.31 2.28

2.56 1.49 1.79
Totals

1.95

that compose a TM. These sub-structures (or
sub-machines) can be considered as the building blocks of
our problem. Two-point crossover is “blind” with regard
to the structure of a TM, being, therefore, ineffective in
the combination of such blocks. Graph crossover is aware
of the structure of the individuals, enabling effective
discovery and recombination of building blocks of
increasing order. Our results prove that solutions obtained
by successive recombination of building blocks enable the
discovery of TMs with complex behavior and credible
candidates for the BB problem.

In [Machado et al, 1999] we showed that using a TNF
interpretation of the TMs (with or without BackCoding)
significantly improves the results. This was partially
explained by the reduction of the search space, and by the
fact that TNF induces an ordering of the states. With
TNF, states that are directly connected have a higher
probability of being close in the chromosome, resulting in
a higher similarity between genotype and phenotype
neighborhood. Accordingly, the probability of functional
dependent states being separated by two-point crossover
is greatly reduced. The use of the proposed graph
crossover operator implicitly redefines genotype
proximity, making it a step closer to phenotype proximity.
Thus, this further reduces the probability of breaking
sub-programs.

7 ONGOING RESEARCH

Our study leaves some open issues that are subject of
current research efforts:

� The influence of crossover size.
� The number of exchanged transitions depends on the

similarity of the sub-graph’s topology (higher
similarity usually involves a higher number of
exchanged transitions).

� There are alternative ways to construct the lists of
nodes of the sub-graphs. They could, for instance, be
constructed in way that would maximize the number of
exchanged transitions.

� Comparing graph-crossover with other types of
recombination operators.

Concerning the BB problem itself, a straightforward
modification to the TM simulation enables us to attack,
simultaneously, BB(N) and BB(X) for X<N. Thus, when
attacking BB(7) we also try to solve BB(6) to BB(1). The
presented experimental results concern BB(6). Currently,
we are trying to set new lower bounds for BB(7) and
BB(8). A new BB(7) candidate was already found. It
writes 164 1s in 23198 transitions. To our surprise we
also discovered a new BB(6) contender. This result was
quite unexpected since the previous record, 21 1s in 125
transitions, stood by several years. The new machine
writes 25 1s in 256 transitions (Figure 5). We didn’t
discover it before because the limit for the number of
transitions was set to 250. This new record was only
found because we were searching for BB<=7 and thus
using an higher limit of transitions.

Our future efforts will be aimed at breaking current BB(8)
and BB(9) records in the 4-tuple variant. To achieve this
we need to speed up the simulation of the TMs, in order
to allow a higher limit for the number of transitions.
Among the possibilities are early detection of non-halting
machines [Marxen and Buntrock, 1990] and using macro-
transitions.

2

34 5

6 1 0,1

1,L 0,R

1,1
0,R

0,R
1,0

0,1 1,L

f f

0,R

1,R

1,L

Figure. 5: The new BB(6) best candidate. This machine
writes 25 1s in 256 transitions.

Table 3: Number of runs in which the maximum was reached. Blank Cells indicate that none of the 30 runs reached the
maximum.

Two-Point Graph

Standard TNF BackCoding Standard TNF BackCoding

Pop. Size 100 500 100 500 100 500 100 500 100 500 100 500

T. Size 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5

1% 1 1 2 2 1 1 1

5% 1 6 2 4 1 1 1 2 11 5 3 8

M
ut

at
io

n

10% 1 4 3 1 2 3 1 1 1 1

1 5 9 3 4 3 1 2 1 2 5 12 3 6 1 5 1 8

1 14 3 4 3 3 3 17 9 6 9

1 17 7 6 26 15
Totals

25 47

8 CONCLUSIONS

In this paper we proposed a new recombination operator
designed to work with individuals with a graph structure.
The application domain was the BB problem, more
specifically the search for BB(6) candidates. In order to
assess the performance of the operator, we conducted a
comprehensive set of experiments comparing it with
classical two-point crossover.

The experimental results show that graph crossover
clearly outperforms standard two-point crossover. The
increase of performance is visible for nearly all
considered experimental settings, showing that
manipulating the individual in a way that is consistent
with its representation improves the results. Preliminary
testing indicates that the results are extensible to BB(7)
and BB(8). Additionally, new lower bounds for BB(6)
and BB(7) were established.

We believe that the presented operator can be applied to
other problems for which the natural representation is a
graph. Due to the nature of our application domain we
only allowed the exchange of sub-graphs with the same
number of nodes. However, this constraint can be
removed, enabling the application to a wider variety of
problems.

Acknowledgments

This work was partially funded by the Portuguese
Ministry of Science and Technology, under Program
PRAXIS XXI.

References

Angeline, P. (1994). Genetic programming: A current
snapshot. In D. B. Fogel and W. Atmar, editors,
Proceedings of the Third Annual Conference on
Evolutionary Programming. Evolutionary Programming
Society, 1994.

Boolos, G., and Jeffrey, R. (1995). Computability and
Logic, Cambridge University Press.

Goodman, E. (1996). GALOPPS, The Genetic Algorithm
Optimized for Portability and Parallelism System,
Technical Report #96-07-01, Michigan State University.

Koza, J. (1992). Genetic Programming: On the
programming of computers by the means of natural
selection. MIT Press.

Machado, P., Pereira, F. B, Cardoso, A., Costa, E. (1999).
Busy Beaver – The Influence of Representation,
Proceedings of the Second European Workshop in
Genetic Programming, Göteborg, Sweden.

Marxen, H. Buntrock, J. (1990). Attacking Busy Beaver
5, Bulletin of the European Association for Theorethical
Computer Science, Vol 40.

Mitchell, M. (1996). An Introduction to Genetic
Algorithms. MIT Press.

Pereira, F. B., Machado, P., Costa, E. and Cardoso, A.
(1999). Busy Beaver: An Evolutionary Approach.
Proceedings of the 2nd Symposium on Artificial
Intelligence, Havana, Cuba.

Rado, T. (1962) On non-computable functions, The Bell
System Technical Journal, vol. 41, no. 3, pp.877-884.

Wood, D. (1987). Theory of Computation, Harper & Row,
Publishers.

