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Abstract: Unfortunately, the real world is not crystal clear to agents. This makes mapping 
a hard and complex process. This paper describes a cognitive approach for mapping that 
relies heavily on the generation of assumptions/expectations for the missing observational 
information. In addition, we present the architecture for an explorer-agent that uses this 
approach to build maps and whose behaviour is guided by the emotions, drives and other 
motivations that it may “feel”. We describe an experiment conducted in simulated 
environments in order to evaluate our approach for mapping.    Copyright © 2004 IFAC 
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1. INTRODUCTION 
 

Exploration involves acquiring spatial models of the 
physical environment, which is a process that is 
called mapping. Although several techniques have 
been successfully applied for mapping (see (Thrun, 
2002) for a survey), there is still much to be done 
specially to build maps for dynamic, three-
dimensional environments. Unfortunately, the real 
world is not crystal clear to agents. Agents almost 
never have access to the whole environment, mainly 
because of the incompleteness and incorrectness of 
their perceptual and understanding components. 
Actually, it is too much work to obtain all the 
information from a complex and dynamic world, and 
it is quite likely that the accessible information 
suffers distortions. Nevertheless, since the success of 
agents depends heavily on the completeness of the 
information of the state of the world, they have to 
pursue alternatives to construct good models of the 
world even (and specially) when this is uncertain. 
According to psychologists, cognitive scientists and 
ethologists (Kline, 1999), humans and, in general, 

animals attempt to overcome this limitation through 
the generation of assumptions or expectations1 to fill 
in gaps in the present observational information. 
When the missing information becomes known to the 
agent, it might happen an inconsistence or conflict 
between it and the assumptions or expectations that 
the agent has. This inconsistence gives rise to the 
process of updating beliefs called belief revision. 
Gärdenfors (1994) defended that expectations are 
defeasible beliefs that are necessary to everyday 
reasoning. With respect to their cognitive origins, 
Gärdenfors argued that they are much like summaries 
of previous experiences. Thus, he defended that they 
are the result of inductive reasoning. 
 

Psychological and neuroscience research over the 
past decades suggests that emotions play a critical 
role in decision-making, action and performance, by 

                                                 
1 Although some authors use the terms assumption 
and expectation as synonyms, there are authors that 
make a distinction between them defending that an 
expectation has to do with future world states while 
assumptions are related with the current world state. 



     

influencing a variety of cognitive processes (e.g., 
attention, perception, planning, etc.). Actually, on the 
one hand, recent research in neuroscience (Damásio, 
1994)) supports the importance of emotions on 
reasoning and decision-making. On the other hand, 
there are a few theories in psychology relating 
motivations (including drives and emotions) to action 
(Izard, 1991). For instance, in the specific case of 
emotions, as outlined by (Reisenzein, 1996), within 
the context of the belief-desire theories of action (the 
dominant class of theories in today’s motivation 
psychology) there have been proposals such as that 
emotions are action goals, that emotions are or 
include action tendencies, that emotions are or 
include goal-desires, and that emotions are mental 
states that generate goal-desires. 
 

A series of experiments (e.g.: (Berlyne, 1950)) have 
shown that in the absence of (or despite) known 
drives, humans tend to explore and investigate their 
environment as well as seek stimulation. Curiosity is 
the psychological construct that has been closely 
related with this kind of behaviour. Sharing similar 
ideas with Berlyne, Shand (1914) defined curiosity 
as a primary emotion consisting of a simple impulse 
to know, controlling and sustaining the attention, and 
evoking the bodily movements that allow one to 
acquire information about an object. These 
approaches are closely related to the emotion concept 
of interest-excitement proposed by the differential 
emotions theory to account for exploration, 
adventure, problem solving, creativity and the 
acquisition of skills and competencies in the absence 
of known drives (Izard, 1991). 
 

Moreover, as argued by Berlyne, in addition to 
novelty, other variables such as change, 
surprisingness, complexity, uncertainty, incongruity 
and conflict also determine this kind of behaviour 
related to exploration and investigation activities. 
 

In this paper we describe an approach to mapping 
that is based on the generation of expectations or 
assumptions to fill in gaps in perceptual information. 
In our approach, mapping is the result of an 
emotional-based exploration of the environment 
carried out by a cognitive agent. 
 

The next section presents the architecture of the 
agent. Subsequently, a simulated environment is 
described. Then, we present an experiment carried 
out to evaluate the role of expectations and 
assumptions in mapping. Finally, we make a 
discussion, present conclusions and the future work. 
 

 

2. AGENT’S ARCHITECTURE 
 

The architecture that we adopted for an agent (Figure 
1) is based on the belief, desire, and intention (BDI) 
approach (Rao & Georgeff, 1995). Besides, the agent 
is of motivational kind (Bates, 1994), exhibiting a 
module of emotions, drives and other motivations. 
These play a central role in reasoning and decision-
making since they may be thought as action goals 
(Reisenzein, 1996). As in many other agents’ 

architectures, the architecture adopted in our work 
includes the following modules: memory; 
motivations (emotions, drives and other motivations); 
intentions/goals and desires; and, deliberative 
reasoning/decision-making. 
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Fig. 1. Agent’s architecture . 
 

The perceptual information of the agent may be of 
three kinds: location (inferred from a sonar or from 
an optic sensor), distance (provided by an infrared 
sensor or sonar) and visual description of the entities 
(provided by an optic sensor) that surrounds it. This 
information is provided to the modules of memory, 
motivations, goals and desires, and 
reasoning/decision-making so that: it can be stored, it 
can elicit motivations, it is used to generate new 
goals, and it can be taken into account in the process 
of selecting an action for execution. 
 

 

2.1 Memory 
 

The memory of an agent stores information about the 
world. This information includes the configuration of 
the surrounding world such as the position of the 
entities (objects and other animated agents) that 
inhabit it, the description of these entities themselves, 
descriptions of the sequences of actions (plans) 
executed by those entities and resulting from their 
interaction, and, in generally, beliefs about the world. 
This information is stored in several memory 
components. Thus, there is a metric (grid-based) map 
(Thrun, 2002) to spatially model the surrounding 
physical environment of the agent. Descriptions of 
entities (physical structure and function) and plans 
are stored both in the episodic memory and in the 
semantic memory (Aitkenhead & Slack, 1987). We 
will now describe in more detail each one of these 
distinct components. 
 

 

Memory for Entities.   The descriptions of the entities 
perceived from the environment are stored in the 
component of memory called episodic memory of 
entities. Thus, this is a set of descriptions of entities 
(see Figure 2). Each element of this set (i.e., each 
description of an entity) is of the form <ID,PS,F>, 
where ID is a number that uniquely identifies the 
entity in the environment, PS is the physical structure 
of the entity, and F is the function of the entity. As 
we said above, the sensors may provide incomplete 
information about an entity (for instance, only part of 
the physical structure may be seen or the function of 
the entity may be undetermined). In this case the 
missing information is filled in by making use of the 
Bayes’s rule (Shafer & Pearl, 1990), i.e., the missing 
information is estimated taking into account the 



     

available information and descriptions of other 
entities previously perceived and already stored in 
the episodic memory of entities. This means some of 
the descriptions of entities stored in memory are 
uncertain or not completely known (e.g.: element 4 
of Figure 2). 
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Fig. 2. Example of the episodic memory of entities. 
 

 

The physical structure of an entity may be described 
analogically or propositionally (Aitkenhead & Slack, 
1987; Eysenck & Keane, 1991). The analogical 
representation reflects directly the real physical 
structure while the propositional representation is a 
higher level description (using propositions) of that 
real structure (see Figure 2 for an illustration). 
 

The analogical description of the physical structure 
of an entity is a tuple <M,RG,AG,AO>, where: M is 
the physical structure itself of the entity, which is 
represented in a three-dimensional matrix - the entity 
referential (a submatrix of the three-dimensional 
matrix of the environment) -, such that each cell is 
set to a value that expresses the probability of being 
occupied by the entity; RG represents the coordinates 
of the centre-of-mass of the entity in the three-
dimensional entity referential; AG represents the 
coordinates of the centre-of-mass of the entity in the 
three-dimensional environment referential; and, AO 
represents the coordinates of the origin of the entity 
referential (origin of the three-dimensional matrix of 
the entity) in the environment referential. 
 

The propositional description of the physical 
structure of an entity relies on the representation 
through semantic features or attributes much like in 
semantic networks or schemas (Aitkenhead & Slack, 
1987). Entities are described by a set of attribute-
value pairs that can be graph-based represented. 
 

The function is simply a description of the role or 
category of the entity in the environment. For 
instance, a house, a car, a tree, etc. Like the 
description of the physical structure, this may be 
probabilistic because of the incompleteness of 
perception. This means, this is a set F = 
{<functioni,probi>: i=1,2, …, n, where n is the 
number of possible functions and P(“function” = 
functioni) = probi}. 
 

Concrete entities (i.e., entities represented in the 
episodic memory) with similar features may be 
generalized or abstracted into a single one, an 
abstract entity, which is stored in the semantic 
memory for entities. Figure 3 presents a semantic 
memory obtained from the episodic memory of 
entities shown in Figure 2. 
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Fig. 3. Example of the semantic memory of entities. 
 

 

Memory for Plans.   Like entities, we may 
distinguish two main kinds of plans: concrete plans, 
i.e., cases of plans, and abstract plans (e.g.: 
(Bergmann & Wilke, 1996)). Concrete plans and 
abstract plans are interrelated since concrete plans 
are instances of abstract plans and these are built 
from concrete plans. 
 

We represent plans as a hierarchy of tasks (a variant 
of HTNs (e.g., (Erol, Hendler, & Nau, 1994)) (see 
Figure 4). Formally, a plan is a tuple AP = <T, L>, 
where T is the set of tasks and L is the set of links. 
This structure has the form of a planning tree (Lotem 
& Nau, 2000), i.e., it is a kind of AND/OR tree that 
expresses all the possible ways to decompose an 
initial task network. Like in regular HTNs, this 
hierarchical structure of a plan comprises primitive 
tasks or actions (non-decomposable tasks) and non-
primitive tasks (decomposable or compound tasks). 
Primitive tasks correspond to the leaves of the tree 
and are directly executed by the agent, while 
compound tasks denote desired changes that involve 
several subtasks to accomplish it. For instance, the 
leaf node PTRANS of Figure 4 is a primitive task, 
while visitEntity is a compound task. A task t is both 
conditional and probabilistic (e.g.:(Blythe, 1999; 
Macedo & Cardoso, 2004a, 2004b)). 



     

moveTo(e1) sense(e1)

visitEntity(e1)

PTRANS(e1) ATTEND(e1)
 

Fig. 4. Example of plan. Primitive tasks are 
represented by thick ellipses while non-primitive 
tasks are represented by thin ellipses. 

 

 

The Metric Map.   In our approach, a (grid-based) 
metric map of the world is a three-dimensional grid 
in which a cell contains the information of the set of 
entities that may alternatively occupy the cell and the 
probability of this occupancy. Thus, each cell <x,y> 
of the metric map of an agent i is set to a set of pairs 

i
yx,φ ={< ip1 , iE1 >, < ip2 , iE2 >, ..., < i

ni
p , i

ni
E >, 

< i
ni

p
1+
,0>}, where i

jE  is the identifier of the jth entity 

that may occupy the cell <x,y> of the metric map of 
agent i with probability i

jp  ∈ [0,1], and such that 

∑
+

=

=
1

1

1
in

j

i
jp . Note that the pair < i

ni
p

1+
,0> is included in 

order to express the probability of the cell being 
empty. Cells that are completely unknown, i.e., for 
which there are not yet no assumptions/expectations 
about their occupancy, are set with an empty set of 
pairs i

yx,φ ={}. Note also that each entity may occupy 
more than a single cell, i.e., there might be several 
adjacent cells with the same i

jE . Figure 5 presents an 
example of a two-dimensional view of a metric map. 
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Fig. 5. An example of a metric map. Although metric 
maps are of three-dimensional kind, for the sake 
of simplicity, it is represented here only in two 
dimensions. For the same reason the identifier of 
the entities are not represented. The path 
followed by the agent to explore this environment 
(comprising buildings) is also depicted. 

 

 

 

 

 

2.2 Emotions, Drives and Other Motivations 
 

This module receives information from the current 
state of the environment and outputs the intensities of 
emotions such as surprise, sadness, happiness, anger, 
etc. Intensity of drives such as curiosity or hunger are 
also computed (see (Macedo & Cardoso, 2001, 
2004a, 2004b) for more details about these 
computations). These feelings are of primary 
relevance to influence the behaviour of an agent. 
 

 

2.3 Goals/Intentions and Desires 
 

Desires are states of the environment the agent would 
like to happen, i.e., they correspond to those states of 
the environment the agent prefers. This preference is 
implicitly represented in a mathematical function that 
evaluates states of the environment in terms of the 
positive and negative feelings they elicit in the agent. 
This function obeys to the Maximum Expected 
Utility (MEU) principle (Russel & Norvig, 1995). 
The agent prefers always those states that make it 
feel more positive feelings (more positive emotions 
and the satisfaction of drives). Goals or intentions 
may be understood as something that an agent wants 
or has to do. These might be automatically generated 
by the agent or given by other agents. 
 

 

2.4 Deliberative Reasoning and Decision-Making 
 

The reasoning and decision-making module receives 
information from the internal/external world and 
outputs an action that has been selected for 
execution. 
 

Roughly speaking, the agent starts by computing the 
current world state. This is performed taking into 
account the information provided by the sensors 
(which may be incomplete) and generating 
expectations or assumptions for the missing 
information. Then, new intentions/goals are 
generated and their Expected Utility (EU) computed. 
According to this EU, the set of goals of the agent are 
ranked, and the first one, i.e., the MEU goal is taken 
and a HTN plan is generated for it in case there is not 
yet one plan. The plan is then executed, primitive 
task by primitive task. Every time a primitive task is 
executed, this reasoning process is repeated. 
Sometimes, the ranking of the goal tasks is changed 
because there was an execution failure of a plan or 
because the EU of the goals changed. 
 

We will now describe in more detail the step related 
with the generation of assumptions/expectations. The 
generation of plans is performed much like in HTN 
approaches (see (Erol et al., 1994; Macedo & 
Cardoso, 2004a)]). For the step related with the 
generation and ranking of agent’s goals see (Macedo 
& Cardoso, 2004b). 
 

 

Generating Assumptions/Expectations.   As we said 
before, it is very difficult for an agent to get all the 
information about the surrounding environment. One 
reason is that the perceptual information is 



     

incomplete. However, taking as evidence the 
available information it is possible to generate 
expectations/assumptions for the missing information 
using the Bayes’ rule (Shafer & Pearl, 1990): 
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where E1, E2, …, Em are pieces of evidence, i.e., the 
available information, and Hi, i=1,2,…,n, are 
mutually exclusive and collectively exhaustive 
hypotheses for a specific piece of the missing 
information. The set of Hi‘s is the exhaustive set of 
instances assigned to that specific part of the missing 
information in past cases of entities. Each conditional 
probability P(E|H) is given by the number of times E 
and H appeared together in the entities stored in 
memory divided by the number of times H appeared 
in those entities. In our work the evidence is the 
propositional description of the physical structure of 
the entities: the shape of an entity (rectangular, 
squared, etc.), the shape of their constituent parts (in 
case there are any), colour, etc. The hypotheses could 
be not only for parts of the descriptions of the 
physical structure but also for the function or 
category of the entity. In this case, the result is a 
probability distribution for the function of the entity 
(e.g., P(Function=house)=0.666; 
P(Function=church)=0.333). Based on this 
distribution, the analogical description of the entity 
may be now estimated taking into account the 
analogical descriptions of the abstract entities with 
those functions. This means that we are considering 
the reference class as comprising the entities with the 
same function. Notice that this resulting analogical 
description is probabilistic. Thus, considering the 
semantic memory presented in Figure 3 and the 
probability distribution for the function of an entity 
[P(Function=house)=.66, P(Function=church)=.33], 
the resulting analogical description is similar to that 
of entity 4 depicted in Figure 2. This is computed as 
follows. For all function X: (i) take the analogical 
description of each possible entity with function X 
and multiply the occupancy value of each cell by 
P(Function=X); (ii) superimpose the analogical 
descriptions obtained in the previous step summing 
the occupancy values of the superimposed cells. 
 

 

3. THE VIRTUAL ENVIRONMENT 
 

In order to test the features of the agent’s architecture 
presented above, we have developed a multi-agent 
environment in which, in addition to inanimate 
agents (objects such as buildings), there are explorer-
agents whose goal is to explore the environment by 
analyzing, studying and evaluating it. In this 
simulated environment and in comparison to the real 
world a few simplifications were made such as the 
following: a parameter was defined for the visual 
range of the agents, i.e., objects out of that range are 
not visible by agents; for the sake of simplicity, the 

optic perception is confined to the shape of the 
visible part of the structure; the function of an entity 
is not accessible or can not be inferred from visual 
information unless the agent is at the same place of 
the entity; when an entity is perceived, its 
propositional description is provided directly by the 
virtual environment to the viewer agent (note that the 
agent’s architecture does not include a module to 
transform the visual information into propositional 
information). 
 

 

4. EXPERIMENT 
 

We have performed an experiment to evaluate the 
role of expectations in mapping. Therefore, we ran 
the agent in 10 different environments (Figure 6). 
The agent had a time limit to explore the 
environments so that it can’t explore exhaustively the 
whole environment. In all the environments, the 
agent started at location S and stopped after exploring 
entities 1, 2 and 3. Notice that these entities are 
maintained in all the environments. The rest of the 
entities (unvisited) change from environment to 
environment so that they correspond to environments 
with different degree of complexity. Environment 1 
is the less complex since these unvisited entities 
contains only one entity (entity 4) that is different 
from those visited ones. Environment 2 had more 
diversity than environment 1 since it contains 2 
entities that differ from entities 1, 2 or 3. 
Environment 10 is the most complex because it 
contains 10 different unvisited entities. Therefore, 
after exploring entity 3, the memory of the agent was 
the one depicted in Figure 2 plus probabilistic cases 
for the rest of the unvisited entities (just like element 
4 in Figure 2). We compared the maps of the 10 
different environments with the 10 maps built by the 
agent after exploring those 10 environments. Notice 
that these maps were built by computing 
assumptions/expectations for the unvisited objects. 
The difference or inconsistency between two maps 
was measured summing the difference between the 
occupancy values of any two correspondent cells 
(cells with similar coordinates) of the two maps. 
Figure 7 presents the results of this comparison. The 
agent built maps that are on average 70.62 (standard 
deviation = 17.92) different from the real maps. Best 
results were obtained with environment 1 and worse 
results in environment 10. The inconsistency 
between real and built maps monotonically increases 
with the increasing of the diversity of the entities in 
the environment. 
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Fig. 6. Three of the 10 environments used in the 
experiment. 
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Fig. 7. Inconsistency between real and built maps 
after running the agent in 10 different 
environments. 

 

 

5. DISCUSSION, CONCLUSIONS AND FUTURE 
WORK 

 

The main advantage of the map learning process 
described in this paper is that it requires less time and 
less energy than that of involving a complete 
exploration of the environment. Actually, the agent 
does not have to explore all the regions of the 
environment, such as the invisible side of the entities, 
since it is able to predict that inaccessible 
information. The disadvantage of this approach is 
that the learned maps may be more inconsistent than 
those learned from an exhaustive exploration of the 
environment. However, this inconsistency is almost 
insignificant since, for instance, in the three-
dimensional environment of the experiment with 
18000 cells the average of inconsistency was 70.62 
(0.4% of the environment). Moreover, we think these 
results depend heavily on the richness of the memory 
of the agent. More tests are required to prove this. 
We intend to test the agent’s architecture presented 
in this paper in a robot. However, this requires the 
inclusion of a module to convert visual information 
into propositional information. 
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