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Abstract. Exploration involves selecting and executing sequences of actions so 
that the knowledge of the environments is acquired. In this paper we address 
the problem of exploring unknown, dynamic environments populated with both 
static and non-static entities (objects and agents) by an autonomous agent. The 
agent has a case-base of entities and another of plans. This case-base of plans is 
used for a case-based generation of goals and plans for visiting the unknown 
entities or regions of the environment. The case-base of entities is used for a 
case-based generation of expectations for missing information in the agent’s 
perception. Both case-bases are continuously updated: the case-base of entities 
is updated as new entities are perceived or visited, while the case-base of plans 
is updated as new sequences of actions for visiting entities/regions are executed 
successfully. We present and discuss the results of an experiment conducted in 
a simulated environment in order to evaluate the role of the size of the case-
base of entities on the performance of exploration. 

1   Introduction 

Exploration may be defined as the process of selecting and executing actions so that 
the maximal knowledge of the environment is acquired at the minimum cost (e.g.: 
minimum time and/or power) [38]. The result is the acquisition of models of the 
physical environment. There are several applications like planetary exploration [4, 
16], rescue, mowing [18], cleaning [12, 36], etc. Strategies that minimize the cost and 
maximize knowledge acquisition have been pursued (e.g., [2, 3, 10, 22, 25, 35, 38-
41]). These strategies have been grouped into two main categories: undirected and 
directed exploration [38]. Strategies belonging to the former group (e.g., random 
walk exploration, Boltzman distributed exploration) use no exploration-specific 
knowledge and ensure exploration by merging randomness into action selection. On 
the other hand, strategies belonging to the latter group rely heavily on exploration 



specific-knowledge for guiding the learning process. Most of these directed strategies 
rely on the maximization of knowledge gain (e.g., [35]). This technique agrees with 
some psychological studies that have shown that novelty and new stimuli incite ex-
ploration in humans (e.g., [6]). Curiosity is the psychological construct that has been 
closely related with this kind of behavior. However, as argued by Berlyne [6], in 
addition to novelty, other variables such as change, surprisingness, complexity, un-
certainty, incongruity and conflict also determine this kind of behaviour related to 
exploration and investigation activities. Therefore, in addition to curiosity (or nov-
elty) other motivations such as surprise and hunger seem to influence the exploratory 
behaviour of humans [19]. 

Most of these approaches assume that the environment is static. Exceptions are, for 
instance, the works of [3] and [7]. These works address the problem of acquiring 
models of the environment where objects change their location frequently. 

Most of the environments in which exploration occurs lack a domain theory and 
are characterized by unpredictability or uncertainty. Therefore, the agent may take 
advantage of using CBR for dealing with autonomous generation and management of 
goals as well as plans to accomplish these goals. Besides, together with a Bayesian 
approach, CBR may be used to deal with uncertainty. 

In this paper we describe an approach for the exploration of unknown, dynamic 
environments populated with static and non-static entities by an agent whose deci-
sion-making/reasoning process relies heavily on CBR. The agent is continuously 
moving in the environment from location to location, visiting unknown entities that 
inhabit the environment as well as unknown regions. At each time, the agent gener-
ates goals that express the intention to visit regions or entities. For each goal a Hier-
archical Task Network (HTN) plan [13] is generated. Both the generation of goals 
and plans is the result of CBR since they are generated from past cases of successful 
plans. Every time a plan is finished, the case-base of plans is updated with it. Like-
wise, as exploration is performed, the agent continuously updates its map of the envi-
ronment with the geometric locations of the entities perceived and updates its epi-
sodic memory with those cases of entities built from the entities visited or perceived. 

The next section describes how an agent represents entities internally, their geo-
metric locations in the environment (maps) and courses of action (plans). Then, we 
present the strategy adopted for the exploration of unknown, dynamic environments. 
The components in which CBR plays a central role, such as the generation of expec-
tations/assumptions and generation of goals and plans, are described. Then, we pre-
sent and discuss an experiment carried out to evaluate the role of the case-base size in 
the performance of exploration. Finally, we present conclusions. 

2   Agent’s Memory 

The memory of an agent stores information about the world. This information com-
prises the configuration of the surrounding world such as the position of the entities 
(objects and other animated agents) that inhabit it, the description of these entities 
themselves, descriptions of the sequences of actions (plans) executed by those entities 
and resulting from their interaction, and, generally, beliefs about the world. This 



information is stored in several memory components. Thus, there is a metric (grid-
based) map [40] to spatially model the surrounding physical environment of the 
agent. Descriptions of entities (physical structure and function) and plans are stored 
both in the episodic memory and in the semantic memory [1, 14]. We will now de-
scribe in more detail each one of these distinct components. 

2.1   Metric Map  

In our approach, a (grid-based) metric map (Fig. 1) of the world is a three-
dimensional grid in which a cell contains the information of the set of entities that 
may alternatively occupy the cell and the probability of this occupancy. Thus, each 
cell <x,y,z> of the metric map of an agent i is set to a set of pairs i

zyx ,,φ ={< ip1 , iE1 >, 

< ip2 , iE2 >, ..., < i
ni

p , i
ni

E >, < i
ni

p
1+
,0>}, where i

jE  is the identifier of the jth entity that 

may occupy the cell <x,y,z> of the metric map of agent i with probability i
jp  ∈ [0,1], 

and such that ∑
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=
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jp . Note that the pair < i

ni
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1+
,0> is included in order to express 

the probability of the cell being empty. Cells that are completely unknown, i.e., for 
which there are not yet any assumptions/expectations about their occupancy, are set 
with an empty set of pairs i

yx,φ ={}. Note also that each entity may occupy more than 
a single cell, i.e., there might be several adjacent cells with the same i

jE . 

1 11

1 1 1

11111

1 1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

1 11

1 1 1

11111

1 1

1 1

1 11

1 1 1

111

1 11

1 1 1

111

.6

.3

.6

.6.6

.3

S

1

2

3

4

 
Fig. 1. An example of a metric map. Although metric maps are of three-dimensional 
kind, for the sake of simplicity, it is represented here only in two dimensions. For the 
same reason the identifier of the entities are not represented. The path followed by the 
agent to explore this environment (comprising buildings) is also depicted 



2.2   Memory for Entities 

The set of descriptions of entities perceived from the environment are stored in the 
episodic memory of entities. Each one of these descriptions is a case of the form 
<ID,PS,F>, where ID is a number that uniquely identifies the entity in the environ-
ment, PS is the physical structure, and F is the function of the entity [15]. The sensors 
may provide incomplete information about an entity (for instance, only part of the 
physical structure may be seen or the function of the entity may be undetermined). In 
this case the missing information is filled in by making use of Bayes’ rule [34], i.e., 
the missing information is estimated taking into account the available information and 
cases of other entities previously perceived and already stored in the episodic memory 
of entities. This means some of the descriptions of entities stored in memory are un-
certain or not completely known (e.g., element 4 of Fig. 2). 
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Fig. 2. Example of the episodic memory of entities in the domain of buildings. Although the 
matrix of the analogical description is of three-dimensional kind, for the sake of simplicity, it is 
represented here as a two-dimensional matrix corresponding to the upper view of the entity 

The physical structure of an entity may be described analogically or proposition-
ally [1, 14]. The analogical representation reflects directly the real physical structure 
while the propositional representation is a higher level description (using proposi-
tions) of that real structure. 

The analogical description of the physical structure of an entity comprises a three-
dimensional matrix and the coordinates of the centre-of-mass relative to the entity and 



to the environment spaces. Notice that the three-dimensional matrix of the entity is a 
submatrix of the matrix that represents the metric map. 

The propositional description of the physical structure of an entity relies on the 
representation through semantic features or attributes much like in semantic networks 
or schemas [1]. According to this representation approach, entities are described by a 
set of attribute-value pairs that can be represented in graph-based way [24]. 

The function is simply a description of the role or category of the entity in the en-
vironment. For instance, a house, a car, a tree, etc. Like the description of the physical 
structure, this may be probabilistic because of the incompleteness of perception. This 
means, this is a set F = {<functioni,probi>: i=1,2, …, n, where n is the number of 
possible functions and P(“function” = functioni) = probi}. 

Concrete entities (i.e., entities represented in the episodic memory) with similar 
features may be generalized or abstracted into a single one, an abstract entity, which 
is stored in the semantic memory for entities. Fig. 3 presents a semantic memory ob-
tained from the episodic memory of entities shown in Fig. 2. 
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Fig. 3. Example of the semantic memory of entities 

2.3   Memory for Plans 

Like entities, we may distinguish two main kinds of plans: concrete plans, i.e., cases 
of plans, and abstract plans (e.g., [5]). Concrete plans and abstract plans are interre-
lated since concrete plans are instances of abstract plans and these are built from 
concrete plans. 

We represent plans as a hierarchy of tasks (a variant of HTNs (e.g., [13]) (see Fig. 
4). Formally, a plan is a tuple AP = <T, L>, where T is the set of tasks and L is the set 
of links. This structure has the form of a planning tree [23], i.e., it is a kind of 
AND/OR tree that expresses all the possible ways to decompose an initial task net-
work. Like in regular HTNs, this hierarchical structure of a plan comprises primitive 
tasks or actions (non-decomposable tasks) and non-primitive tasks (decomposable or 
compound tasks). Primitive tasks correspond to the leaves of the tree and are directly 
executed by the agent, while compound tasks denote desired changes that involve 



several subtasks to accomplish it. For instance, the leaf node PTRANS of Fig. 4 is a 
primitive task, while visitEntity is a compound task. A task t is both conditional and 
probabilistic (e.g., [8]). This means each task has a set of conditions C={ c1, c2, ..., 
cm} and for each one of these mutually exclusive and exhaustive conditions, ci, there 
is a set of alternative effects εi={< ip1 , iE1 >, < ip2 , iE2 >, ..., < i

ni
p , i

ni
E >}, where i

jE  is the 
jth effect triggered with probability i

jp  ∈ [0,1] by condition ci (i.e., i
ji

i
j pcEP =)|( ), and 

such that ∑
=

=
in

j

i
jp

1

1 . Each effect contains information about changes produced in the 

world by achieving the goal task. Thus, an effect may give information about the 
amount of power consumed, the new location of the agent, the emotions felt, etc. 

moveTo(e1) sense(e1)

visitEntity(e1)

PTRANS(e1) ATTEND(e1)  
Fig. 4. Example of simple plan. Primitive tasks are represented by thick ellipses while 
non-primitive tasks are represented by thin ellipses 

3   Exploration using CBR 

Each agent is continuously performing the following deliberative reasoning/decision-
making algorithm. Each agent at a given time senses the environment to look for 
entities and compute the current world state (location, structure and function of those 
entities) based on the sensorial information and on the generation of expectations for 
the missing information. The result is a set of cases of entities, each one describing an 
entity that was perceived. Then, the episodic memory and metric map are updated 
based on these episodic entities. New intentions/goals of kind visitEntity are gener-
ated for each unvisited entity within the visual range based on the goal tasks of cases 
of past plans. In addition, a goal of the kind visitLoc is generated for some frontier 
cells [41] (another possible kind of goal is rechargeBattery). These goals are then 
ranked according to their Expected Utility (EU) [33], which is computed based on the 
estimated intensities for the motivations that they may elicit as explained below [27]. 
The first one in the ranking, i.e., the goal with the highest EU is taken and a HTN 
plan is generated based on cases of past plans. Then, the agent executes this plan. 

We will now describe in more detail the steps related with the generation of as-
sumptions/expectations and generation of agent’s goals and respective plans. 



3.1   Case-Based Generation of Assumptions/Expectations 

As we said before, it is very difficult for an agent to get all the information about the 
surrounding environment. One reason is that the perceptual information is incom-
plete. However, taking as evidence the available information it is possible to generate 
expectations/assumptions for the missing information using a Bayesian approach 
[34]. Actually, Bayes’ rule, represented as follows, may be used: 

∑
=

××××

××××
= n

l
llmll

iimii
mi

HPHEPHEPHEP

HPHEPHEPHEPEEEHP
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21

21
21

)()|(...)|()|(

)()|(...)|()|(),...,,|(  (1) 

where E1, E2, …, Em are pieces of evidence, i.e., the available information, and Hi, 
i=1,2,…,n, are mutually exclusive and collectively exhaustive hypotheses (retrieved 
from past cases of entities) for a specific piece of the missing information. Each con-
ditional probability P(E|H) is given by the number of times E and H appeared to-
gether in the cases of entities stored in memory divided by the number of times H 
appeared in those case of entities (when E and H have never appeared together 
P(E|H)= P(E)). In our work the evidence is the description (propositional) of the 
physical structure of the entities such as their shape (rectangular, squared, etc.), shape 
of their constituent parts (in case there are any), color, etc. The hypotheses could be 
not only for parts of the descriptions of the physical structure but also for the function 
or category of the entity. In this case, the result is a probability distribution for the 
function of the entity (e.g., P(Function=house)=0.666; P(Function=church)=0.333). 
Based on this distribution, the analogical description of the entity may be now esti-
mated taking into account the analogical descriptions of the entities with these func-
tions. This means that we are considering the reference class as comprising the enti-
ties with the same function. Notice that this resulting analogical description is prob-
abilistic. Thus, for instance, considering the semantic memory presented in Fig. 3 and 
the probability distribution for the function of an entity [P(Function=house)=0.66, 
P(Function=church)=0.33], the resulting analogical description is similar to that of 
entity 4 of the episodic memory depicted in Fig. 2. This is computed as follows. For 
all function X: (i) take the analogical description of each possible entity with function 
X and multiply the occupancy value of each cell by P(Function=X); (ii) superimpose 
the analogical descriptions obtained in the previous step summing the occupancy 
values of the superimposed cells. 

3.2   Case-Based Generation of Goals and Plans 

The algorithm for the generation and ranking of goals/intentions (Fig. 5) is as fol-
lows. First, the set of different goal tasks present in the memory of plans are retrieved 
and, for each kind, a set of new goals is generated using the following procedure: 
given a goal task retrieved from a plan in the memory of plans, the memory and the 
perception of the agent, similar goals are generated by adapting the past goal to situa-
tions of the present state of the world. The adaptation strategies used are mainly sub-
stitutions [20]. Thus, for instance, suppose the goal task visitEntity(e7) is present in 



the memory of the agent. Suppose also that the agent has just perceived three entities 
present in the environment, e1, e2 and e3. The entity to which visitEntity is applied 
(e7) may be substituted by e1, e2 or e3, resulting in three new goals: visitEntity(e1), 
visitEntity(e2), visitEntity(e3). Then, the EU of each goal task is computed. As said 
above, a task T is both conditional and probabilistic (e.g.: [8]). Thus, the execution of 
a goal task under a given condition may be seen according to Utility Theory as a 
lottery [33]: 
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, where ip  is the probability of the condition ci, i
jp  is the probability of the jth ef-

fect, i
jE , of condition ci. 

The EU of T may be then computed as follows: 
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The computation of )( k
jEEU  is performed predicting the motivations that could be 

elicited by achieving/executing the goal task [11, 32]. We confined the set of motiva-
tions to those that are more related with exploratory behaviour in humans [6]. Thus, 
the intensities of surprise, curiosity and hunger felt by the agent when the effect takes 
place are estimated based on the information available in the effect about the changes 
produced in the world or based on the intensities of emotions and other motivations 
felt in past occurrences of the effect of the task. 

Surprise is given by [26]: 

)(1))(,(),( kkk ObjPMemAgtObjNESSUNEXPECTEDObjAgtSURPRISE −==  (4) 

, where Objk is the direct object of task T when k
jE  takes place, i.e., the entity that 

is visited. 
Curiosity is computed as follows: 

))(,(),( MemAgtObjDIFFERENCEObjAgtCURIOSITY kk =  (5) 

The measure of difference relies heavily on error correcting code theory [17]: the 
function computes the distance between two entities represented by graphs, counting 
the minimal number of changes (insertions and deletions of nodes and edges) re-
quired to transform one graph into another (for a similar approach see [31]). 

The hunger drive is defined as the need of a source of energy. Given the capacity 
C of the storage of that source, and L the amount of energy left (L ≤ C), the hunger 
elicited in an agent is computed as follows: 

LCAgtHUNGER −=)(  (6) 

The following function is used to compute )( k
jEEU : 
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, where, α3 = -1 and αi (i≠3) may be defined as follows: 
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, where D is the amount of energy necessary to go from the end location of goal 
task T to the closer place where energy could be recharged, and C is the maximum 
amount of energy that could be stored by the agent. The functions )( k

jESurprise , 

)( k
jECuriosity  and )( k

jEHunger  are replaced by the functions of curiosity, surprise and 

hunger defined above and applied for the entities perceived when the effect k
jE  takes 

place. 
The surprise and curiosity of an effect of a task are elicited by the entities that the 

agent perceives. 
 
Algorithm generateRankGoals(newRankedGoals) 
Output: newRankedGoals – the set of ranked goals 
newGoals ← ∅ 
setPastGoals ← {x: x is a goal task belonging to some plan in memory} 
for each goal in setPastGoals do 
 adaptationGoal←adaptGoal(goal,agtMemory,agtPercepts) 
 newGoals ← newGoals ∪ adaptationGoals  
end for each 
for each goal in newGoals do 

∑ ××=

jk

k
j

k
j

k EEUppTEU
,

)()(  

end for each 
insert(goal,newRankedGoals) 
return newRankedGoals 
end 

Fig. 5. Algorithm for the case-based generation of goals 

This dependence of the parameters αi (i≠3) on the hunger of the agent partially 
models the results of Berlyne’s experiments (e.g., [6]) that have shown that in the 
absence of (or despite) known drives, humans tend to explore and investigate their 
environment as well as seek stimulation. Actually, surprise and curiosity are taken 
into account to compute the EU of a task only when there is enough energy to go 
from the end location of goal task T to the closest place where an energy source could 
be found. Otherwise, only hunger is taken into account for the EU of tasks and further 
ranking. This means that in this situation (when hunger is above a specific threshold), 



only the goal of rechargeBattery has an EU > 0. In the other situations (hunger below 
a specific threshold), hunger plays the role of a negative reward decreasing the utility 
of a task by the percentage of energy needed after the task is completed. Thus, the 
more the distance to the location after the execution of a task the more the energy 
required and the less the utility of that task. 

However, the environment is not confined to entities. It might have regions that are 
not yet explored. Therefore, goals of kind visitLoc are also retrieved from past plans 
and adapted for the current frontier cells. Not all the cells are considered. We fol-
lowed an approach similar to [9], i.e., different target cells are assigned to each agent 
so that the overlapped area of the visual fields of the agents in those cells is mini-
mized. The EU of a goal task of this kind is also computed with the above equation 3, 
although in this case curiosity is computed based on the estimation of the amount of 
unknown cells inside the visual field if the agent is at the destination location. Sur-
prise is assumed to be 0. 

A HTN plan is generated for the first goal in the ranking as follows. A problem is 
an initial and incomplete HTN, i.e., a set of goal tasks. Planning is a process by which 
that initial HTN is completed resulting in an abstract plan ready to be executed and 
incorporating alternative courses of action, i.e., it includes replanning procedures. 
Roughly speaking, this involves the following steps: first, the structure of the abstract 
plan (HTN) is built based on cases of past plans (this is closely related to the regular 
HTN planning procedure); then the conditional effects, probabilities as well as the EU 
are computed for the primitive tasks of this abstract plan based on the primitive tasks 
of cases of past plans; finally, these properties (conditional effects and respective 
probabilities, and EU) are propagated upward in the HTN, from the primitive tasks to 
the main task of the HTN. Fig. 6 presents this algorithm and Fig. 7 illustrates the 
process of building the structure of a plan using an AND/OR decomposition ap-
proach. For more details about the algorithm for constructing an abstract plan see 
[29]. 

 
Algorithm CONSTRUCT-ABSTRACT-PLAN(abstPlan) 
 abstPlan ← BUILD-STRUCTURE(abstPlan) 
 primTasks ← GET-PRIM-TASKS(abstPlan) 
 primTasksAllPlanCases← GET-PRIMTASKS-ALL-PLAN-CASES() 
 COMPUT-PRIMTASKS-PROPS(primTasks,primTasksAllPlanCases) 
 abstPlan←PROPAGAT-PROPS-UPWARD(primTasks,abstPlan) 
 return abstPlan 
end 

Fig. 6. Algorithm for constructing an abstract plan 
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Fig. 7. Two illustrative examples of the process of building the structure of a plan using an 
AND/OR decomposition approach 

4   Experiment 

We conducted an experiment in a simulated environment comprising buildings in 
order to evaluate the role of the size of the case-base of entities on the exploration 
performance of an agent. To do so, we ran an agent in the same environment (see Fig. 
8) with different starting case-bases of entities. These memories ranged from 1 to 5 
cases. All of these cases were built from 5 entities, selected randomly among the 10 
entities that populate the environment. For instance, the case-base of size 3 comprised 
the cases 1, 2 and 3 described in Fig. 2, while the case-base of size 1 comprised only 
case 1, and the case-base of size 2 was formed with cases 1 and 2. The other larger 
case-bases of size 4 and 5 comprised in addition cases of entities 4 and 5, respec-
tively. We then let the agent explore the environment during a limited time so that it 
can’t explore exhaustively the whole environment. Actually, this time limit was de-
fined so that it can’t even visit any entity (stopped at position S). Therefore, the agent 
had to build the map of the environment by generating assumptions/expectations for 
the unvisited entities as described in section 3.1. Finally, we compared these maps 
built by the agent with the real map (the map that should had been built by an ideal 
agent). The difference or inconsistency between two maps was measured summing 
the difference between the occupancy values of any two correspondent cells (cells 



with similar coordinates) of the two maps. Fig. 9 presents the results of the experi-
ment. As it can be seen the map inconsistency decreases monotonically with the in-
creasing size of the case-base. This can be explained as follows. The entities are only 
perceived at a certain distance. For these entities, the cases generated are probabilistic 
(especially their analogical physical description). With larger case-bases the agent is 
able to generate more accurate probabilistic analogical descriptions for the entities, 
i.e., the expectations are closer to the reality. However, this higher accuracy is 
achieved by a slower reasoning process because the agent has to take into account 
more cases. This is related with the Utility Problem [37] since it is expected that the 
increase of the size of the case-base is of significant benefit only up to a certain size. 
Case-bases larger than that point are expected to include redundant cases. Case base 
maintenance techniques (e.g., [21]) might be applied in order to avoid this. 
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Fig. 9. Inconsistency between real and built maps represented from two points of view: number 
of inconsistent cells; percentage of inconsistency (computed dividing the number of inconsis-
tent cells by the total amount of cells in the three-dimensional environment – in this case this 
was 18000 cells) 

5   Discussion and Conclusions 

We presented a case-based approach for the exploration of unknown environ-
ments. The experiment conducted allow us to conclude that the exploration perform-
ance may be improved by previously training the agent in similar environments so 
that case-bases of entities and plans are acquired. The main advantage is that agents 



are able to build more accurate maps of the world when using larger case-bases espe-
cially when they can’t explore exhaustively the whole environment. Actually, the 
agent does not have to explore all the regions of the environment, such as the invisi-
ble side of the entities, since it is able to predict that inaccessible information. How-
ever, too much larger case-bases do not improve significantly the exploration per-
formance relative to medium size case-bases because they imply higher computation 
times and therefore the exploration task is delayed because fewer entities are visited 
or perceived. The disadvantage of this approach is that the built maps may be more 
inconsistent than those acquired from an exhaustive exploration of the environment. 
However, this inconsistency is almost insignificant since, for instance, for a case-base 
with a single case, in the three-dimensional environment of the experiment with 
18000 cells, the inconsistency was 114 cells, i.e., 0.63% of the environment. How-
ever, this depends on the kind of cases stored in the case-base as well as on the com-
plexity of the environment (for a similar experience with different environments see 
[30]; for another experiment about the trade-off between exploration and exploitation 
see [28]). 
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