
Case-Based, Decision-Theoretic, HTN Planning

Luís Macedo1,2, Amílcar Cardoso2

1 Department of Informatics and Systems Engineering, Engineering Institute, Coimbra Poly-
technic Institute,

3030-199 Coimbra, Portugal
lmacedo@isec.pt

http://www2.isec.pt/~lmacedo
2 Centre for Informatics and Systems of the University of Coimbra, Department of Informat-

ics, Polo II,
3030 Coimbra, Portugal

{lmacedo, amilcar}@dei.uc.pt

Abstract. This paper describes ProCHiP, a planner that combines CBR with
the techniques of decision-theoretic planning and HTN planning in order to
deal with uncertain, dynamic large-scale real-world domains. We explain how
plans are represented, generated and executed. Unlike in regular HTN planning,
ProCHiP can generate plans in domains where there is no complete domain
theory by using cases instead of methods for task decomposition. ProCHiP
generates a variant of a HTN - a kind of AND/OR tree of probabilistic condi-
tional tasks - that expresses all the possible ways to decompose an initial task
network. As in Decision-Theoretic planning, the expected utility of alternative
plans is computed, although in ProCHiP this happens beforehand at the time of
building the HTN. ProCHiP is used by agents inhabiting multi-agent environ-
ments. We present an experiment carried out to evaluate the role of the size of
the case-base on the performance of the planner. We verified that the CPU time
increases monotonically with the case-base size while effectiveness is improved
only up to a certain case-base size.

1 Introduction

Hierarchical Task Network (HTN) planning [4] is a planning methology that is more
expressive than STRIPS-style planning. Given a set of tasks that need to be per-
formed (the planning problem), the planning process decomposes them into simpler
subtasks until primitive tasks or actions that can be directly executed are reached.
Methods provided by the domain theory indicate how tasks are decomposed into
subtasks. However, for many real-world domains, sometimes it is hard to collect
methods to completely model the generation of plans. For this reason an alternative
approach that is based on cases of methods has been taken in combination with meth-
ods [14].

Real-world domains are usually dynamic and uncertain. In these domains actions
may have several outcomes, some of which may be more valuable than others. Plan-
ning in these domains require special techniques for dealing with uncertainty. Actu-

ally, this has been one of the main concerns of planning research in recent years, and
several decision-theoretic planning approaches have been proposed and used success-
fully, some based on the extension of classical planning and others on Markov-
Decision Processes (see [3, 9] for a survey). In these decision-theoretic planning
frameworks actions are usually probabilistic conditional actions, preferences over the
outcomes of the actions is expressed in terms of an utility function, and plans are
evaluated in terms of their Expected Utility (EU). The main goal is to find the plan or
set of plans that maximizes an EU function [17], i.e., to find the optimal plan. How-
ever, this might be a computationally complex task.

In this paper we present ProCHiP (Probabilistic, Case-based, Hierarchical-task
network Planning), a planner that combines CBR with the techniques of decision-
theoretic planning and HTN planning in order to deal with uncertain, dynamic large-
scale real-world domains. Unlike in regular HTN planning, we don’t use methods for
task decomposition, but instead cases of plans. ProCHiP generates a variant of a HTN
- a kind of AND/OR tree of probabilistic conditional tasks - that expresses all the
possible ways to decompose an initial task network. The EU of tasks and of the alter-
native plans is computed beforehand at the time of building the HTN. ProCHiP is
implemented in artificial cognitive agents inhabiting multi-agent environments.

The next section describes the features of ProCHiP related with plan representa-
tion, generation and execution. Subsequently, we present an experiment in which we
evaluate the influence of the case-base size on the performance of ProCHiP. Finally,
we present related work, discuss our findings and present conclusions.

2 Case-Based, Decision-Theoretic, HTN Planning

2.1 Representation

Within our approach we may distinguish two main kinds of plans: concrete plans, i.e.,
cases of plans, and abstract plans (for more details about abstraction in CBR see for
instance [2]). Concrete plans and abstract plans are interrelated since concrete plans
are instances of abstract plans and these are built from concrete plans. Since the con-
cept of abstract plan subsumes the concept of concrete plan, let us first describe the
representation issues related with abstract plans and then present the main differences
between concrete plans and abstract plans.

We represent abstract plans as a hierarchy of tasks (a variant of HTNs [4, 15])
(Fig. 1). Formally, an abstract plan is a tuple AP = <T, L>, where T is the set of tasks
and L is the set of links. More precisely, we represent an abstract plan by a hierarchi-
cal graph-structured representation comprising tasks (represented by the nodes) and
links (represented by the edges). We adopted the adjacency matrix approach to repre-
sent these graphs [11]. The links may be of hierarchical (abstraction or decomposi-
tion), temporal, utility-ranking or adaptation kind. This structure has the form of a
planning tree [10], i.e., it is a kind of AND/OR tree that expresses all the possible
ways to decompose an initial task network. Like in regular HTNs, this hierarchical

structure of a plan comprises primitive tasks or actions (non-decomposable tasks) and
non-primitive tasks (decomposable or compound tasks). Primitive tasks correspond to
the leaves of the tree and are directly executed by the agent, while compound tasks
denote desired changes that involve several subtasks to accomplish it (e.g., the leaf
node driveTruck of Fig. 1 is a primitive task, while inCityDel is a compound task).
The decomposition of a compound task into a sequence of subtasks is represented by
linking the compound task to each subtask by a hierarchical link of type decomposi-
tion (denoted by dcmp). This corresponds to an AND structure. In addition, a hierar-
chical plan may also include special tasks in order to express situations when a de-
composable task has at least two alternative decompositions. Thus, these special tasks
are tasks whose subtasks are heads of those alternative decompositions. We called
abstract tasks (e,g., the root task transport of Fig. 1) to those special decomposable
tasks because they may be instantiated by one of their alternative subtasks. Thus, they
are a kind of abstractions of their alternative instances. The subtasks of an abstract
task may themselves be abstract tasks. The decomposition of abstract tasks into sev-
eral alternative instances is expressed by linking the abstract task to each subtask by a
hierarchical link of type abstract (denoted by abst). This corresponds to an OR struc-
ture.

transport

transport transport

inCityDel airDel inCityDel inCityDel

flyAirplaneloadAirplaneinCityDel inCityDel

doNothing driveTruck loadTruck driveTruck unloadTruck

. . .

after

more_useful

eelsl

Fig. 1. Example of an abstract plan. Primitive tasks are represented by thick ellipses while non-
primitive tasks are represented by thin ellipses. Dashed arrows represent abst links, while thin
arrows represent dcmp links

As we said, in addition to hierarchical links that express AND or OR decomposi-
tion (dcmp and abst), there are also temporal, utility-ranking and adaptation links
between tasks. Temporal links are just like in regular HTNs. We followed the tempo-
ral model introduced by [1]. Thus, links such as after, before, during, overlap, etc.,
may be found between tasks of an abstract plan. Utility-ranking links (denoted by
more_useful) are used between subtasks of abstract tasks in order to express a relation
of order with respect to their EU, i.e., the head tasks of the alternative decompositions
of a given abstract task are ranked according to the EU of their decompositions. Ad-
aptation links [8] are useful to generate an abstract plan from several cases of plans.
They explain how tasks and their components are related in a plan and therefore they
explain how to adapt portions of cases of plans when they are reused to construct an
abstract plan. For instance, the link eelsl (end location equal to start location) means
that the start location of the truck when loadTruck takes place is equal to the end
location of the truck when driveTruck is executed.

A task T is both conditional and probabilistic (e.g., [3, 6, 24]). This means each
primitive task has a set of conditions C={c1, c2, ..., cm} and for each one of these mu-
tually exclusive and exhaustive conditions, ci, there is a set of alternative effects
εi={< ip1 , iE1 >, < ip2 , iE2 >, ..., < i

ni
p , i

ni
E >}, where i

jE is the jth effect triggered with prob-

ability i
jp ∈ [0,1] by condition ci (i.e., i

ji
i
j pcEP =)|(), and such that ∑

=

=
in

j

i
jp

1

1 . Fig. 2

presents the structure of a task. The probabilities of conditions are represented in that
structure although we assume that conditions are independent of tasks. Thus,
P(ci|T)=P(ci). The main reason for this is to emphasize that the EU of a task, in addi-
tion to the probability of effects, depends on the probability of conditions too. In
addition to conditions and effects, a task has other information components. For-
mally, a task (primitive or not) may be defined as follows.

c1
.
.
.

c2

cm
.
.
.

task

p1

p2

pm

.

.

.

1
1p
1
2p

1
1np

1
1E
1
2E

1
1nE

mp1

mp2

m
nm

p

mE1

mE2

m
nm

E

PS:truckAt(SL)
ID:1
TT:driveTruck
AID:1
DO:truck1
IO:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
P:true
A:false
EU:0.7
P:1.0

NPC:∆time={<20,0.55>,<19,0.45>};
∆fuel={-10,0.55>,<-11,0.45>};
truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,surprise=0;

dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

NPC:∆time={<30,1.0>};
∆fuel={<-20,1.0>}
truckAt(0,0,5),
aver_vel=60Km/h;
happiness=0,surprise=0.7;
anger=0.7;

dist=(OL)-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
fuel=startFuel-∆fuel
truckAt(OL), truckCrashed

wetRoad
0.18

dryRoad
0.82

0.75

0.25

NPC:∆time={<15,0.55>,<16,0.45>};
∆fuel={-7,0.55>,<-8,0.45>};
truckAt(EL),
aver_vel=90Km/h;
EC:happiness=0.8,surprise=0;

dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

1.0

Fig. 2. Schematic representation of a task in an abstract plan: general form and example. Hori-
zontal, dashed lines inside the boxes describing the effects separate non-procedural from pro-
cedural components

Definition 1. A task is a tuple <PS, ID, TT, AID, DO, IO, ST, ET, SL, EL, PR, A, EP,
EU, P>, where: PS is the set of preconditions that should be satisfied so that the task
can be executed; ID is the task’s identifier, i.e., an integer that uniquely identifies the
task in a plan; TT is the task category (e.g., driveTruck, transport); AID is the
identifier of the agent that is responsible for the execution of the task1; DO is the
direct object of the task, i.e., the identifier of the entity that was subjected to the task
directly (e.g., for a task of type driveTruck, the direct object is the object - its
identifier - to be driven; for a task of type transport, the direct object is the entity that
is transported – for instance, a package); IO is the indirect object of the task, i.e., the
answer to the question “To whom?” (e.g., for a task of type give, the indirect object is
the entity that receives the entity (the direct object) that is given – for instance, the
person who receives money); ST is the scheduled start time of the task; ET is the
scheduled end time of the task, SL is the start location of the agent that is responsible
for executing the task; EL is the end location of the agent that is responsible for the
execution of the task; PR is a boolean value that is true when the task is primitive; A
is a boolean value that is true when the task is abstract (for primitive tasks it is always
false); EP is the set of alternative probabilistic conditional effects of the task, i.e., EP
= {<ci,εi>: 1=< i <=m}; EU is the EU of the task; P is the probability of the task (this
is always 1.0 for every task except the heads of alternative decompositions of an
abstract task as we’ll explain below).

Although non-primitive tasks are not directly executed by an agent, they are repre-

sented like primitive tasks. Some of the components are meaningful only for primitive
tasks. However, others such as the set of alternative probabilistic conditional effects
are essential for the ranking of the alternative decompositions of the abstract tasks in
terms of the EU. That is why the set of conditional probabilistic effects and other
meaningful properties are propagated upward through the hierarchy from the primi-
tive tasks to the non-primitive tasks (this propagation will be explained below).

Each effect (see Fig. 2) is composed of a few components of several kinds such as
temporal, emotional (notice that in our work, agents are of cognitive kind with a mod-
ule of emotions and other motivations included in their architecture [12]), etc. These
components may be of two kinds: non-procedural and procedural. The non-
procedural component refers to the data collected from previous occurrences of the
effect (contains the duration of the task, the emotions and respective intensities felt by
the agent, the fuel consumed, etc., in previous executions of the task as stored in cases
of plans). The procedural component refers to the process through which the tempo-
ral, emotional and other kinds of data may be computed (contains descriptions or
rules of how to compute the components).

Formally, an effect may be defined as follows.

1 The planner is used by agents inhabiting multi-agent environments.

Definition 2. An effect is a tuple <ID, EC, EU, P, NPC, PC>, where: ID is the
identifier of the effect, i.e., an integer value that uniquely identifies the effect in the
list of effects of the task; EC is the effect category to which it belongs (like tasks,
effects are classified into categories); EU is the utility value (EU value for the case of
tasks in abstract plans) of the effect; P is the probability value of the effect, i.e., the
relative frequency of the effect (this gives us the number of times the effect occurred
given that the task and the condition that triggers it occurred); NPC is the non-
procedural component; PC is the procedural component.

Cases of plans share most of the features of abstract plans because they are also
represented hierarchically. The major differences are: unlike abstract plans, cases of
plans don’t have OR structures and consequently don’t have abstract tasks; the primi-
tive tasks have a probability of 1.0 (otherwise they won’t belong to the case) and can
only have a conditional effect since the conditions are mutually exclusive and exhaus-
tive. Notice that, although a non-primitive task of a case of a plan may exhibit an
effect, this is not relevant, since in the real world only the primitive tasks are exe-
cuted. However, the way a non-primitive task was decomposed is of primary impor-
tance for the generation of abstract plans, as we will explain in the following section.
Fig. 3 shows an example of two cases of plans, which are instances of the abstract
plan presented in Fig. 1.

transport

inCityDel airDel inCityDel

doNothing flyAirplane

loadAirplane driveTruck

loadTruck

driveTruck

unloadTruck

case2

case1

transport

inCityDe

driveTruck

loadTruck

driveTruck

unloadTruck

Fig. 3. Example of a case-base with two concrete plans (instances of the abstract plan of Fig. 1)

2.2 Plan Generation

Since the planner is used by an agent that is part of a multi-agent environment, in
order to solve a planning problem, the agent should have in memory the information
of the initial state of the environment. This comprises a three-dimensional metric map
of the environment [21] in which inanimate and other animate agents are spatially
represented. Fig. 4 presents an example of a metric map that represents an initial state
of the world.

p k 1p k 2

p k 3

A ir p o r t

t r u c k 1

Z

y

x
Fig. 4. Example of the metric map of an initial state of the environment in the logistics domain.
It comprises: one truck (truck1) located at coordinates (11,0,0); three packages, pk1, pk2 and
pk3, located at, respectively, (10,3,0), (4,3,0), and (8,0,0); and one plane located at the airport
with coordinates (2,1,0)

A problem is an initial and incomplete HTN, i.e., a set of goal tasks. Planning is a
process by which that initial HTN is completed resulting in an abstract plan ready to
be executed and incorporating alternative courses of action, i.e., it includes replan-
ning procedures. Roughly speaking, this involves the following steps (the respective
algorithms are presented in later figures): first, the structure of the abstract plan
(HTN) is built based on cases of past plans (this is closely related to the regular HTN
planning procedure); then the conditional effects, probabilities as well as the EU are
computed for the primitive tasks of this abstract plan based on the primitive tasks of
cases of past plans; finally, these properties (conditional effects and respective prob-
abilities, and EU) are propagated upward in the HTN, from the primitive tasks to the
main task of the HTN. Fig. 5 presents this algorithm.

Algorithm CONSTRUCT-ABSTRACT-PLAN(abstPlan)
 abstPlan ← BUILD-STRUCTURE(abstPlan)
 primTasks ← GET-PRIMTASKS(abstPlan)
 primTasksAllPlanCases← GET-PRIMTASKS-ALL-PLAN-CASES()
 COMPUT-PRIMTASKS-PROPS(primTasks,primTasksAllPlanCases)
 abstPlan←PROPAGAT-PROPS-UPWARD(primTasks,abstPlan)
 return abstPlan
end

Fig. 5. Algorithm for the construction of an abstract plan

Much like regular HTN planning, building the structure of the abstract plan (algo-
rithm of Fig. 7) is a process by which the initial HTN is completed by recursively
decomposing its compound tasks. Unlike regular HTN planning, within our approach
the domain theory (methods and operators in regular HTN planning) is confined to a
finite set of actions/operators. Thus there are no explicit methods to describe how to
decompose a task into a set of subtasks. Actually, methods are implicitly present in
cases of past plans (see [14] for a similar approach). This is particularly useful in
domains where there is no theory available. Therefore, the process of decomposing a
task into subtasks is case-based and is performed as follows. Given a task, the possi-
ble alternative decompositions (task and its subtasks, as well as the links between
them) are retrieved from cases of past plans. Two situations might happen. If there
are more than one alternative decomposition, the given task is set as abstract and the
set of decompositions are added to the HTN, linking each head task to the abstract

task through a hierarchical link of type abst. Thus, these head tasks are now the sub-
tasks of the abstract task (see Fig. 6 for an illustration of this process). The result is a
decomposition with an OR structure. On the other hand, if only one decomposition is
retrieved, its subtasks are added as subtasks of the given task, linked by a hierarchical
link of type dcmp (see Fig. 6 for an illustration of this process). This corresponds to
an AND structure. Whether a single decomposition or multiple decompositions are
retrieved, the addition of it/them comprises an adaptation process [8], i.e., the re-
trieved decomposition(s) is/are changed if necessary so that it/they is/are consistent
with the rest of the HTN. Each adaptation link triggers a process. Thus, for instance,
the adaptation link ea (equal AID) in Fig. 6 indicates that the tasks transport and
inCityDel have the same component AID , i.e., they are executed by the same agent.
This means that the AID component of those tasks retrieved from past plans are
changed so that it refers to the agent whose identifier is referred to by the AID of
transport belonging to the current abstract plan.

. . .

Retrieved decompositions for
task transport::

transport

inCityDel airDel inCityDel

transport

inCityDel

ea

Retrieved decompositions for
task airDel:

Current abstract plan
(incomplete):

transport

transport

inCityDel airDel inCityDel

transport

inCityDel

airDel

flyAirplaneloadAirplane

Abstract plan (incomplete)
after the abstract
decomposition:

transport

transport

inCityDel airDel inCityDel

transport

inCityDel

flyAirplaneloadAirplane()

Current abstract plan
(incomplete):

transport

Abstract plan (incomplete)
after the abstrat
decomposition:

transport

transport

inCityDel airDe inCityDel

transport

inCityDel

ea
ea

Fig. 6. Illustrative example of: an OR-decomposition of an abstract task (on the left); an AND-
decomposition of a regular compound task (on the right)

The process of building the HTN ends when there are no more compound tasks to
decompose, i.e., when the leaves of the tree are primitive tasks, or when there are no
available decompositions in the case-base for at least one compound task.

Algorithm BUILD-STRUCTURE(abstPlan,CB)
 goalTasks ← getLeafTasks(AbstPlan)
 taskQueue ← goalTasks
 while taskQueue ≠ ∅
 task ← popFrontTask(taskQueue)
 listAlternDcmps ← getListAlternDcmps(task, CB)
 if size(listAlternDcmps) > 1
 task type ← “abstract”
 for each decomposition in listAlternDcmps do
 headTask ← getHeadTask(decomposition)

)(

)()/(
taskS

taskheadTaskStaskheadTaskP
r

r ∩
←

 adapt(headTask, task, “abst”)
 insert headTask in AbstPlan; link it to task by “abst” link
 subtasksDcmp ← getSubTasks(decomposition)
 for each subtask (with adaptationLinks from headTask) in subtasksDcmp do
 adapt(subtask, headTask, adaptionLinks)
 for each othertask with adaptationLinks to subtask do
 adapt(subtask, othertask, adaptionLinks)
 end for each
 if notPrimitive(subtask) then
 insertTask(subtask, taskQueue)

 0.1
)(

)()/(=
∩

←
headTaskS

headTasksubtaskSheadTasksubtaskP
r

r

 insertTask(subtask, AbstPlanStructure)
 end for each
 copy all links from decomposition to AbstPlan
 end for each
 else
 subtasksDcmp ← getSubTasks(decomposition)
 for each subtask (with adaptationLinks from subTask) in subtasksDcmp do
 adapt(subtask, task, adaptionLinks)
 for each othertask with adaptationLinks to subtask do
 adapt(subtask, othertask, adaptionLinks)
 end for each
 if notPrimitive(subtask) then insertTask(subtask, taskQueue)

 0.1
)(

)()/(=
∩

←
taskS

tasksubtaskStasksubtaskP
r

r

 insertTask(subtask, AbstPlan)
 end for each
 copy all links from decomposition to abstPlan
 endif
 endwhile
 return abstPlan
end

Fig. 7. Algorithm for constructing the structure of an HTN

Within our approach, a task belonging to an HTN has a probability value associ-
ated to it. This value expresses the probability of being executed given that its ances-
tor is executed. Thus, this probability is actually a conditional probability. Obviously,
the probability of a task belonging to a case of a past plan is always 1.0 because it
was executed (otherwise it won’t belong to the case). The probability of the tasks

belonging to an abstract plan is computed during the process of building the HTN as
follows. Given the ith subtask, STi, of a task T both belonging to an abstract plan, the
probability of STi be executed given that T is executed is given by the conditional
probability formula

)(
)()/(

TP
TSTPTSTP i

i
∩

= . According to frequency interpretation of

probability, this is estimated by:
)(

)(
)(

)()/(
TS

TSTS
TP

TSTPTSTP
r

iri
i

∩
=

∩
= , which expresses

the number of times STi and T occurred together in the total amount of times T oc-
curred, or in the context of HTN planning, this expresses the number of times STi was
subtask of T in the total amount of times T was the task decomposed in past HTN
plans in r decompositions. When STi is not a head of an alternative decomposition in
the new plan (i.e., when T is not an abstract task), it means that T was always decom-
posed in the same way in past plans, i.e., into the same subtasks, which means STi
occurred always when T occurred, otherwise STi won’t be subtask of T. Thus, in this
situation, the numerator and denominator of the above equation are equal and there-
fore P(STi/T)=1.0. However, when STi is a head of an alternative decomposition, it
means there were more than one way to decompose T in past plans, the decomposi-
tion headed by STi being one of them. Thus, counting the number of times the de-
composition headed by STi was taken to decompose T, i.e., the number of times STi
instantiated T,)(TSTS ir ∩ , in all past plans and dividing this number by the number of
times T was decomposed, i.e.,)(TSr , yields the value for P(STi/T) for this situation.

After the abstract HTN is built, the conditional effects (and respective probabili-
ties) and the EU are computed for the primitive tasks based on the past occurrences of
those primitive tasks (notice that the probability of the tasks has already been com-
puted during the process of building the HTN as described above). Remember that
tasks (either primitive or not) have a list of possible effects each one associated with a
probability value (see Fig. 2). Thus, this is once more a case-based process that is
carried out as described by the algorithm of Fig. 8.

After the primitive tasks have their properties computed based on cases of past
plans, these properties are propagated bottom-up (from primitive to non-primitive
tasks), from the subtasks to the task of a decomposition and from the subtasks (heads
of alternative decompositions) to the abstract task of an abstract decomposition. The
goal of this propagation is twofold: to complete the non-primitive tasks so that they
can be ranked according to their EU when they are heads of alternative decomposi-
tions, and to know the overall EU of the abstract plan which is given by the EU of the
main task of the plan. Fig. 9 presents the algorithm for the propagation of properties.
Function PROPAGAT-PROPS-ABST and PROPAGAT-PROPS-DCMP relies heav-
ily on the notions of inter-action abstraction described in [6].

Algorithm COMPUT-PRIMTASKS-PROPS(primTasks, primTasksAllPlanCases)
 for each primTask in primTasks do
 taskList ← {i: i ∈ primTasks and i is of the same type of primTask}
 condEffectList ← ∅
 for each task in taskList do

 condEffectListTask ← U
m

i
ii Ec

1

,
=

〉〈 , m is the number of conditional effects of task,

Ei={ i
atask

E }

 condEffectList ← condEffectList ∪ condEffectListTask
 end for each
 genCondEffectList ← GENERALIZE-COND-EFFECT-LIST(condEffectList)
 set the conditional effects of primTask with genCondEffectList
 EU(primTask)← ∑∑ ×=〉〈×〉〈

i

i
i

i

i
i

i
i EUcPcEUcP)()(),(),(εεε

 end for each
 return primTasks
end

Fig. 8. Algorithm for computing the conditional effects (and respective probabilities) and the
EU of primitive tasks

Algorithm PROPAGAT-PROPS-UPWARD(primTasks, mainTask, abstPlan)
 if primitive(mainTask) nothing to do
 else
 subTasks ← getSubTasks(mainTask)
 for each subTask in subTasks do
 PROPAGAT-PROPS-UPWARD(primTasks, subTask, abstPlan)
 end for each
 if abstract(mainTask) then
 PROPAGAT-PROPS-ABST(subTasks, mainTask, mainTask1)
 replace mainTask by mainTask1 in abstPlan
 else
 PROPAGAT-PROPS-DCMP(subTasks, mainTask, mainTask1)
 replace mainTask by mainTask1 in abstPlan
 endif
 endif
end

Fig. 9. Recursive algorithm for propagating properties upward, from primitive tasks to all non-
primitive tasks

2.3 Plan Execution and Replanning

Finding the optimal plan in ProCHiP consists simply of traversing the abstract plan,
selecting the most EU subtask of an abstract task. Backtracking occurs when an alter-
native decomposition fails execution. In this case, the next alternative decomposition
that follows the previous in the EU ranking is selected for execution.

2.4 Retaining Plans

As mentioned in section 2.3, executing a plan corresponds to an instantiation of an
abstract plan. After a plan is executed, the instantiation that was actually executed is
stored in memory for future reuse. In addition, the abstract plan is also stored in
memory. This way, it might be useful in the future since it might avoid an unneces-
sary process of generating it again.

3 Experiment

We conducted an experiment in order to evaluate the role played by the case-base
size on the performance of ProCHiP. Given a kind of goal task such as transport, we
constructed 5 case-bases, ranging in size from 1 to 5 cases of plans, each case de-
scribing a different way of achieving the specified goal task. For each one of these
case-bases, we ran ProCHiP with 10 different goal tasks of type transport. The CPU
time taken by the planner to build an abstract plan for the specified goal task was
measured. In addition, the number of those 10 goal tasks solved successfully was
computed, as well as the number of tasks in those abstract plans. The results are plot-
ted in Fig. 10.

0

20

40

60

80

100

120

140

1 2 3 4 5

Case-base size

N
um

be
r o

f t
as

ks
/p

ro
bl

em
s

0
1
2
3
4
5
6
7
8
9
10

Ti
m

e
(s

ec
on

ds
)

Number of tasks of the abstract plan

Number of problems solved

CPU time

Fig. 10. Performance of ProCHiP with case-bases varying in size

The CPU time taken by the planner to build the abstract plan increases monotoni-
cally with the size of the case-base. The same happens with the number of tasks in the
abstract plan. An interesting result is noticed with the number of problems success-

fully solved. With 3 cases, the planner is able to find a correct solution for 80% of the
goal tasks, and with 4 or more cases the effectiveness is 100%, which means the addi-
tion to the case-base of more cases for solving problems of this kind (transport)
seems to decrease the efficiency of the planner, because the effectiveness is not and
could not be increased (100%). This issue is related to the utility problem (e.g., [5,
13, 19]) and case-base maintenance (e.g., [18, 20]).

4 Related Work

Our work is closely related to HTN planning. This methology has been extensively
used in planning systems such as UMCP [4], SHOP and SHOP2 [16]. Unlike these
planners, ProCHiP don’t use methods as part of the domain theory for task decompo-
sition, but instead methods that are implicitly included in cases that describe previous
planning problem solving experiences. SiN [14] also uses a case-based HTN planning
algorithm, in which cases are instances of methods.

Learning hierarchical plans or HTNs is still rarely addressed by the machine learn-
ing community, although there are a few exceptions. Garland, Ryall and Rich [Gar-
land, 2001 #161 infer task models from annotated examples, i.e., through demonstra-
tion by a domain expert. [7]. van Lent and Laird [22] used a learning-by-observation
technique which involves extracting knowledge from observations of an expert per-
forming a task and generalizes this knowledge to a hierarchy of rules. Xu and Muñoz
[23] use an algorithm that gather and generalize information on how domain experts
solve HTN planning problems.

Among decision-theoretic planners, DRIPS [6] is probably the most closely related
to ProCHiP. Actually, DRIPS shares a similar representation approach for abstract
plans (an abstraction/decomposition hierarchy) and for actions. Besides, it also re-
turns the optimal plan according to a given utility function. However, in contrast to
DRIPS, in ProCHiP the variant of a HTN that represents abstract plans is automati-
cally built from cases and not given as input for the planning problem. Besides, it
includes temporal, utility ranking and adaptation links in addition to decomposition
links. Another major difference is that, in ProCHiP, the EU of tasks and of alternative
plans is computed when the abstract plan is built, while in DRIPS this occurs when
the optimal plan is searched. In ProCHiP, there is the possibility of computing the EU
of tasks based on the non-procedural component of their effects, which avoids some
additional computations at the cost of being less accurate. Moreover, finding the
optimal plan in ProCHiP consists simply of traversing the HTN with backtracking (or
replanning) points located at the subtasks of an abstract task. In ProCHiP the propa-
gation of properties upward in the hierarchy is closely related with the approach taken
in DRIPS for abstracting actions [6]. A propagation of properties in the planning tree,
bottom-up and left-to-right, is also used in GraphHTN [10] in order to improve the
search algorithm.

5 Conclusions

We presented ProCHiP, a planner that combines CBR with the techniques of deci-
sion-theoretic planning and HTN planning in order to deal with uncertain, dynamic
large-scale real-world domains. We conducted an experiment in order to evaluate the
dependence of the time taken by ProCHip to build abstract plans on the size of a case-
base containing cases representing implicit methods. We concluded that the CPU time
increases monotonically with the case-base size. However, we also concluded that the
case-base size improves the effectiveness of ProCHiP only up to a certain size. After
that size the performance of ProCHiP corresponds to a low efficiency while the effec-
tiveness is almost unaltered.

Acknowledgments

The PhD of Luís Macedo is financially supported by PRODEP III.

References

[1] J. Allen, "Maintaining knowledge about temporal intervals," Communications of the ACM,
vol. 26, pp. 832-- 843, 1983.

[2] R. Bergmann and W. Wilke, "On the Role of Abstraction in Case-Based Reasoning," in
Advances in Case-Based Reasoning - Proceedings of the Third European Workshop on
Case-Based Reasoning, vol. 1168, Lecture Notes in Artificial Intelligence, I. Smith and B.
Faltings, Eds. Berlin: Springer Verlag, 1996, pp. 28-43.

[3] J. Blythe, "Decision-Theoretic Planning," AI Magazine, Summer 1999, 1999.
[4] K. Erol, J. Hendler, and D. Nau, "UMCP: A sound and complete procedure for hierarchi-

cal task-network planning," in Proceedings of the International Conference on AI Plan-
ning Systems, 1994, pp. 249-254.

[5] A. Francis and A. Ram, "The utility problem in case-based reasoning," in Proceedings of
the AAAI-93 Case-based Reasoning Workshop, 1993.

[6] P. Haddawy and A. Doan, "Abstracting probabilistic actions," in Proceedings of the Tenth
Conference on Uncertainty in Artificial Intelligence. San Mateo, CA: Morgan Kaufmann,
1994, pp. 270-277.

[7] O. Ilghami, D. Nau, H. Muñoz-Avila, and D. Aha, "CaMeL: Learning methods for HTN
planning," in AIPS-2002, 2002.

[8] J. Kolodner, Case-Based Reasoning. San Mateo, CA: Morgan-Kaufmann, 1993.
[9] M. Littman and S. Majercik, "Large-Scale Planning Under Uncertainty: A Survey," in

Workshop on Planning and Scheduling for Space, 1997, pp. 27:1--8.
[10] A. Lotem and D. Nau, "New advances in GraphHTN: Identifying independent subprob-

lems in large HTN domains," in Proceedings of the International Conference on AI Plan-
ning Systems, 2000, pp. 206-215.

[11] L. Macedo and A. Cardoso, "Nested-Graph structured representations for cases," in Ad-
vances in Case-Based Reasoning - Proceedings of the 4th European Workshop on Case-
Based Reasoning, vol. 1488, Lecture Notes in Artificial Intelligence, B. Smyth and P.
Cunningham, Eds. Berlin: Springer-Verlag, 1998, pp. 1-12.

[12] L. Macedo and A. Cardoso, "SC-EUNE - Surprise/Curiosity-based Exploration of Uncer-
tain and Unknown Environments," in Proceedings of the AISB'01 Symposium on Emotion,
Cognition and Affective Computing. York, UK: University of York, 2001, pp. 73-81.

[13] S. Minton, "Qualitative results concerning the utility of explanation-based learning,"
Artificial Intelligence, vol. 42, pp. 363-391, 1990.

[14] H. Muñoz-Avila, D. Aha, D. Nau, L. Breslow, R. Weber, and F. Yamal, "SiN: Integrating
Case-based Reasoning with Task Decomposition," in Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelligence (IJCAI-2001). Seattle, WA: Mor-
gan Kaufmann, 2001.

[15] D. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell, "Total-order planning with
partially ordered subtasks," in Proceedings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence. Seattle, WA: Morgan Kaufmann, 2001.

[16] D. Nau, T. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F. Yaman, "SHOP2: An
HTN planning system," Journal of Artificial Intelligence Research, vol. 20, pp. 379-404,
2003.

[17] S. Russel and P. Norvig, Artificial Intelligence - A Modern Approach. Englewood Cliffs,
NJ: Prentice Hall, 1995.

[18] B. Smyth and M. Keane, "Remembering to forget: a competence preserving case deletion
policy for CBR systems," in Proceedings of the 14th International Joint Conference on
Artificial Intelligence. San Mateo, CA: Morgan Kaufmann, 1995, pp. 377-383.

[19] B. Smyth and P. Cunningham, "The utility problem analysed," in Advances in Case-Based
Reasoning - Proceedings of the Third European Workshop on Case-Based Reasoning, vol.
1168, Lecture Notes in Artificial Intelligence, I. Smith and B. Faltings, Eds. Berlin:
Springer Verlag, 1996, pp. 392-399.

[20] B. Smyth and E. McKenna, "Building compact competent case bases," in Proceedings of
the Third International Conference on Case-Based Reasoning. Berlin: Springer Verlag,
1999, pp. 329-342.

[21] S. Thrun, "Robotic mapping: A survey," in Exploring Artificial Intelligence in the New
Millenium, G. Lakemeyer and B. Nebel, Eds. San Mateo, CA: Morgan Kaufmann, 2002.

[22] M. van Lent and J. Laird, "Learning Hierarchical Performance Knowledge by Observa-
tion," in Proceedings of the International Conference on Machine Learning, 1999.

[23] K. Xu and H. Munõz-Avila, "CBM-Gen+: An algorithm for reducing case base inconsis-
tencies in hierarchical and incomplete domains," in Proceedings of the International Con-
ference on Case-Based Reasoning. Berlin: Springer, 2003.

[24] H. Younes, "Extending PDDL to model stochastic decision processes," in Proceedings of
the ICAPS-02 Workshop on PDDL, 2003.

