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Abstract. This paper describes ProCHiP, a planner that combines CBR with 
the techniques of decision-theoretic planning and HTN planning in order to 
deal with uncertain, dynamic large-scale real-world domains. We explain how 
plans are represented, generated and executed. Unlike in regular HTN planning, 
ProCHiP can generate plans in domains where there is no complete domain 
theory by using cases instead of methods for task decomposition. ProCHiP 
generates a variant of a HTN - a kind of AND/OR tree of probabilistic condi-
tional tasks - that expresses all the possible ways to decompose an initial task 
network. As in Decision-Theoretic planning, the expected utility of alternative 
plans is computed, although in ProCHiP this happens beforehand at the time of 
building the HTN. ProCHiP is used by agents inhabiting multi-agent environ-
ments. We present an experiment carried out to evaluate the role of the size of 
the case-base on the performance of the planner. We verified that the CPU time 
increases monotonically with the case-base size while effectiveness is improved 
only up to a certain case-base size. 

1   Introduction 

Hierarchical Task Network (HTN) planning [4] is a planning methology that is more 
expressive than STRIPS-style planning. Given a set of tasks that need to be per-
formed (the planning problem), the planning process decomposes them into simpler 
subtasks until primitive tasks or actions that can be directly executed are reached. 
Methods provided by the domain theory indicate how tasks are decomposed into 
subtasks. However, for many real-world domains, sometimes it is hard to collect 
methods to completely model the generation of plans. For this reason an alternative 
approach that is based on cases of methods has been taken in combination with meth-
ods [14]. 

Real-world domains are usually dynamic and uncertain. In these domains actions 
may have several outcomes, some of which may be more valuable than others. Plan-
ning in these domains require special techniques for dealing with uncertainty. Actu-



ally, this has been one of the main concerns of planning research in recent years, and 
several decision-theoretic planning approaches have been proposed and used success-
fully, some based on the extension of classical planning and others on Markov-
Decision Processes (see [3, 9] for a survey). In these decision-theoretic planning 
frameworks actions are usually probabilistic conditional actions, preferences over the 
outcomes of the actions is expressed in terms of an utility function, and plans are 
evaluated in terms of their Expected Utility (EU). The main goal is to find the plan or 
set of plans that maximizes an EU function [17], i.e., to find the optimal plan. How-
ever, this might be a computationally complex task. 

In this paper we present ProCHiP (Probabilistic, Case-based, Hierarchical-task 
network Planning), a planner that combines CBR with the techniques of decision-
theoretic planning and HTN planning in order to deal with uncertain, dynamic large-
scale real-world domains. Unlike in regular HTN planning, we don’t use methods for 
task decomposition, but instead cases of plans. ProCHiP generates a variant of a HTN 
- a kind of AND/OR tree of probabilistic conditional tasks - that expresses all the 
possible ways to decompose an initial task network. The EU of tasks and of the alter-
native plans is computed beforehand at the time of building the HTN. ProCHiP is 
implemented in artificial cognitive agents inhabiting multi-agent environments. 

The next section describes the features of ProCHiP related with plan representa-
tion, generation and execution. Subsequently, we present an experiment in which we 
evaluate the influence of the case-base size on the performance of ProCHiP. Finally, 
we present related work, discuss our findings and present conclusions. 

2   Case-Based, Decision-Theoretic, HTN Planning 

2.1   Representation  

Within our approach we may distinguish two main kinds of plans: concrete plans, i.e., 
cases of plans, and abstract plans (for more details about abstraction in CBR see for 
instance [2]). Concrete plans and abstract plans are interrelated since concrete plans 
are instances of abstract plans and these are built from concrete plans. Since the con-
cept of abstract plan subsumes the concept of concrete plan, let us first describe the 
representation issues related with abstract plans and then present the main differences 
between concrete plans and abstract plans. 

We represent abstract plans as a hierarchy of tasks (a variant of HTNs [4, 15]) 
(Fig. 1). Formally, an abstract plan is a tuple AP = <T, L>, where T is the set of tasks 
and L is the set of links. More precisely, we represent an abstract plan by a hierarchi-
cal graph-structured representation comprising tasks (represented by the nodes) and 
links (represented by the edges). We adopted the adjacency matrix approach to repre-
sent these graphs [11]. The links may be of hierarchical (abstraction or decomposi-
tion), temporal, utility-ranking or adaptation kind. This structure has the form of a 
planning tree [10], i.e., it is a kind of AND/OR tree that expresses all the possible 
ways to decompose an initial task network. Like in regular HTNs, this hierarchical 



structure of a plan comprises primitive tasks or actions (non-decomposable tasks) and 
non-primitive tasks (decomposable or compound tasks). Primitive tasks correspond to 
the leaves of the tree and are directly executed by the agent, while compound tasks 
denote desired changes that involve several subtasks to accomplish it (e.g., the leaf 
node driveTruck of Fig. 1 is a primitive task, while inCityDel is a compound task). 
The decomposition of a compound task into a sequence of subtasks is represented by 
linking the compound task to each subtask by a hierarchical link of type decomposi-
tion (denoted by dcmp). This corresponds to an AND structure. In addition, a hierar-
chical plan may also include special tasks in order to express situations when a de-
composable task has at least two alternative decompositions. Thus, these special tasks 
are tasks whose subtasks are heads of those alternative decompositions. We called 
abstract tasks (e,g., the root task transport of Fig. 1) to those special decomposable 
tasks because they may be instantiated by one of their alternative subtasks. Thus, they 
are a kind of abstractions of their alternative instances. The subtasks of an abstract 
task may themselves be abstract tasks. The decomposition of abstract tasks into sev-
eral alternative instances is expressed by linking the abstract task to each subtask by a 
hierarchical link of type abstract (denoted by abst). This corresponds to an OR struc-
ture. 

transport

transport transport

inCityDel airDel inCityDel inCityDel

flyAirplaneloadAirplaneinCityDel inCityDel

doNothing driveTruck loadTruck driveTruck unloadTruck

. . .

after

more_useful

eelsl  

Fig. 1. Example of an abstract plan. Primitive tasks are represented by thick ellipses while non-
primitive tasks are represented by thin ellipses. Dashed arrows represent abst links, while thin 
arrows represent dcmp links 

As we said, in addition to hierarchical links that express AND or OR decomposi-
tion (dcmp and abst), there are also temporal, utility-ranking and adaptation links 
between tasks. Temporal links are just like in regular HTNs. We followed the tempo-
ral model introduced by [1]. Thus, links such as after, before, during, overlap, etc., 
may be found between tasks of an abstract plan. Utility-ranking links (denoted by 
more_useful) are used between subtasks of abstract tasks in order to express a relation 
of order with respect to their EU, i.e., the head tasks of the alternative decompositions 
of a given abstract task are ranked according to the EU of their decompositions. Ad-
aptation links [8] are useful to generate an abstract plan from several cases of plans. 
They explain how tasks and their components are related in a plan and therefore they 
explain how to adapt portions of cases of plans when they are reused to construct an 
abstract plan. For instance, the link eelsl (end location equal to start location) means 
that the start location of the truck when loadTruck takes place is equal to the end 
location of the truck when driveTruck is executed. 



A task T is both conditional and probabilistic (e.g., [3, 6, 24]). This means each 
primitive task has a set of conditions C={c1, c2, ..., cm} and for each one of these mu-
tually exclusive and exhaustive conditions, ci, there is a set of alternative effects 
εi={< ip1 , iE1 >, < ip2 , iE2 >, ..., < i

ni
p , i

ni
E >}, where i
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presents the structure of a task. The probabilities of conditions are represented in that 
structure although we assume that conditions are independent of tasks. Thus, 
P(ci|T)=P(ci). The main reason for this is to emphasize that the EU of a task, in addi-
tion to the probability of effects, depends on the probability of conditions too. In 
addition to conditions and effects, a task has other information components. For-
mally, a task (primitive or not) may be defined as follows. 
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PS:truckAt(SL)
ID:1
TT:driveTruck
AID:1
DO:truck1
IO:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
P:true
A:false
EU:0.7
P:1.0

NPC:∆time={<20,0.55>,<19,0.45>};
∆fuel={-10,0.55>,<-11,0.45>};
truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

NPC:∆time={<30,1.0>};
∆fuel={<-20,1.0>}
truckAt(0,0,5),
aver_vel=60Km/h;
happiness=0,surprise=0.7;
anger=0.7;
----------------------------
dist=(OL)-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
fuel=startFuel-∆fuel
truckAt(OL), truckCrashed

wetRoad
0.18

dryRoad
0.82

0.75

0.25

NPC:∆time={<15,0.55>,<16,0.45>};
∆fuel={-7,0.55>,<-8,0.45>};
truckAt(EL),
aver_vel=90Km/h;
EC:happiness=0.8,surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

1.0

 
 

Fig. 2. Schematic representation of a task in an abstract plan: general form and example. Hori-
zontal, dashed lines inside the boxes describing the effects separate non-procedural from pro-
cedural components 

 



Definition 1. A task is a tuple <PS, ID, TT, AID, DO, IO, ST, ET, SL, EL, PR, A, EP, 
EU, P>, where: PS is the set of preconditions that should be satisfied so that the task 
can be executed; ID is the task’s identifier, i.e., an integer that uniquely identifies the 
task in a plan; TT is the task category (e.g., driveTruck, transport); AID is the 
identifier of the agent that is responsible for the execution of the task1; DO is the 
direct object of the task, i.e., the identifier of the entity that was subjected to the task 
directly (e.g., for a task of type driveTruck, the direct object is the object - its 
identifier - to be driven; for a task of type transport, the direct object is the entity that 
is transported – for instance, a package); IO is the indirect object of the task, i.e., the 
answer to the question “To whom?” (e.g., for a task of type give, the indirect object is 
the entity that receives the entity (the direct object) that is given – for instance, the 
person who receives money); ST is the scheduled start time of the task; ET is the 
scheduled end time of the task, SL is the start location of the agent that is responsible 
for executing the task; EL is the end location of the agent that is responsible for the 
execution of the task; PR is a boolean value that is true when the task is primitive; A 
is a boolean value that is true when the task is abstract (for primitive tasks it is always 
false); EP is the set of alternative probabilistic conditional effects of the task, i.e., EP 
= {<ci,εi>: 1=< i <=m}; EU is the EU of the task; P is the probability of the task (this 
is always 1.0 for every task except the heads of alternative decompositions of an 
abstract task as we’ll explain below). 

 
Although non-primitive tasks are not directly executed by an agent, they are repre-

sented like primitive tasks. Some of the components are meaningful only for primitive 
tasks. However, others such as the set of alternative probabilistic conditional effects 
are essential for the ranking of the alternative decompositions of the abstract tasks in 
terms of the EU. That is why the set of conditional probabilistic effects and other 
meaningful properties are propagated upward through the hierarchy from the primi-
tive tasks to the non-primitive tasks (this propagation will be explained below). 

Each effect (see Fig. 2) is composed of a few components of several kinds such as 
temporal, emotional (notice that in our work, agents are of cognitive kind with a mod-
ule of emotions and other motivations included in their architecture [12]), etc. These 
components may be of two kinds: non-procedural and procedural. The non-
procedural component refers to the data collected from previous occurrences of the 
effect (contains the duration of the task, the emotions and respective intensities felt by 
the agent, the fuel consumed, etc., in previous executions of the task as stored in cases 
of plans). The procedural component refers to the process through which the tempo-
ral, emotional and other kinds of data may be computed (contains descriptions or 
rules of how to compute the components). 

Formally, an effect may be defined as follows. 

                                                           
1 The planner is used by agents inhabiting multi-agent environments. 



Definition 2. An effect is a tuple <ID, EC, EU, P, NPC, PC>, where: ID is the 
identifier of the effect, i.e., an integer value that uniquely identifies the effect in the 
list of effects of the task; EC is the effect category to which it belongs (like tasks, 
effects are classified into categories); EU is the utility value (EU value for the case of 
tasks in abstract plans) of the effect; P is the probability value of the effect, i.e., the 
relative frequency of the effect (this gives us the number of times the effect occurred 
given that the task and the condition that triggers it occurred); NPC is the non-
procedural component; PC is the procedural component. 
 

Cases of plans share most of the features of abstract plans because they are also 
represented hierarchically. The major differences are: unlike abstract plans, cases of 
plans don’t have OR structures and consequently don’t have abstract tasks; the primi-
tive tasks have a probability of 1.0 (otherwise they won’t belong to the case) and can 
only have a conditional effect since the conditions are mutually exclusive and exhaus-
tive. Notice that, although a non-primitive task of a case of a plan may exhibit an 
effect, this is not relevant, since in the real world only the primitive tasks are exe-
cuted. However, the way a non-primitive task was decomposed is of primary impor-
tance for the generation of abstract plans, as we will explain in the following section. 
Fig. 3 shows an example of two cases of plans, which are instances of the abstract 
plan presented in Fig. 1. 
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Fig. 3. Example of a case-base with two concrete plans (instances of the abstract plan of Fig. 1) 

2.2   Plan Generation 

Since the planner is used by an agent that is part of a multi-agent environment, in 
order to solve a planning problem, the agent should have in memory the information 
of the initial state of the environment. This comprises a three-dimensional metric map 
of the environment [21] in which inanimate and other animate agents are spatially 
represented. Fig. 4 presents an example of a metric map that represents an initial state 
of the world. 
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Fig. 4. Example of the metric map of an initial state of the environment in the logistics domain. 
It comprises: one truck (truck1) located at coordinates (11,0,0); three packages, pk1, pk2 and 
pk3, located at, respectively, (10,3,0), (4,3,0), and (8,0,0); and one plane located at the airport 
with coordinates (2,1,0) 

A problem is an initial and incomplete HTN, i.e., a set of goal tasks. Planning is a 
process by which that initial HTN is completed resulting in an abstract plan ready to 
be executed and incorporating alternative courses of action, i.e., it includes replan-
ning procedures. Roughly speaking, this involves the following steps (the respective 
algorithms are presented in later figures): first, the structure of the abstract plan 
(HTN) is built based on cases of past plans (this is closely related to the regular HTN 
planning procedure); then the conditional effects, probabilities as well as the EU are 
computed for the primitive tasks of this abstract plan based on the primitive tasks of 
cases of past plans; finally, these properties (conditional effects and respective prob-
abilities, and EU) are propagated upward in the HTN, from the primitive tasks to the 
main task of the HTN. Fig. 5 presents this algorithm. 

 
Algorithm CONSTRUCT-ABSTRACT-PLAN(abstPlan) 
 abstPlan ← BUILD-STRUCTURE(abstPlan) 
 primTasks ← GET-PRIMTASKS(abstPlan) 
 primTasksAllPlanCases← GET-PRIMTASKS-ALL-PLAN-CASES() 
 COMPUT-PRIMTASKS-PROPS(primTasks,primTasksAllPlanCases) 
 abstPlan←PROPAGAT-PROPS-UPWARD(primTasks,abstPlan) 
 return abstPlan 
end 

Fig. 5. Algorithm for the construction of an abstract plan 

Much like regular HTN planning, building the structure of the abstract plan (algo-
rithm of Fig. 7) is a process by which the initial HTN is completed by recursively 
decomposing its compound tasks. Unlike regular HTN planning, within our approach 
the domain theory (methods and operators in regular HTN planning) is confined to a 
finite set of actions/operators. Thus there are no explicit methods to describe how to 
decompose a task into a set of subtasks. Actually, methods are implicitly present in 
cases of past plans (see [14] for a similar approach). This is particularly useful in 
domains where there is no theory available. Therefore, the process of decomposing a 
task into subtasks is case-based and is performed as follows. Given a task, the possi-
ble alternative decompositions (task and its subtasks, as well as the links between 
them) are retrieved from cases of past plans. Two situations might happen. If there 
are more than one alternative decomposition, the given task is set as abstract and the 
set of decompositions are added to the HTN, linking each head task to the abstract 



task through a hierarchical link of type abst. Thus, these head tasks are now the sub-
tasks of the abstract task (see Fig. 6 for an illustration of this process). The result is a 
decomposition with an OR structure. On the other hand, if only one decomposition is 
retrieved, its subtasks are added as subtasks of the given task, linked by a hierarchical 
link of type dcmp (see Fig. 6 for an illustration of this process). This corresponds to 
an AND structure. Whether a single decomposition or multiple decompositions are 
retrieved, the addition of it/them comprises an adaptation process [8], i.e., the re-
trieved decomposition(s) is/are changed if necessary so that it/they is/are consistent 
with the rest of the HTN. Each adaptation link triggers a process. Thus, for instance, 
the adaptation link ea (equal AID) in Fig. 6 indicates that the tasks transport and 
inCityDel have the same component AID , i.e., they are executed by the same agent. 
This means that the AID component of those tasks retrieved from past plans are 
changed so that it refers to the agent whose identifier is referred to by the AID of 
transport belonging to the current abstract plan. 
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Fig. 6. Illustrative example of: an OR-decomposition of an abstract task (on the left); an AND-
decomposition of a regular compound task (on the right) 

The process of building the HTN ends when there are no more compound tasks to 
decompose, i.e., when the leaves of the tree are primitive tasks, or when there are no 
available decompositions in the case-base for at least one compound task. 



Algorithm BUILD-STRUCTURE(abstPlan,CB) 
 goalTasks ← getLeafTasks(AbstPlan) 
 taskQueue ← goalTasks 
 while taskQueue ≠ ∅ 
  task ← popFrontTask(taskQueue) 
  listAlternDcmps ← getListAlternDcmps(task, CB) 
  if size(listAlternDcmps) > 1 
   task type ← “abstract” 
   for each decomposition in listAlternDcmps do 
    headTask ← getHeadTask(decomposition) 

    
)(

)()/(
taskS

taskheadTaskStaskheadTaskP
r

r ∩
←  

    adapt(headTask, task, “abst”) 
    insert headTask in AbstPlan; link it to task by “abst” link 
    subtasksDcmp ← getSubTasks(decomposition) 
    for each subtask (with adaptationLinks from headTask) in subtasksDcmp do 
     adapt(subtask, headTask, adaptionLinks) 
     for each othertask with adaptationLinks to subtask do 
      adapt(subtask, othertask, adaptionLinks) 
     end for each 
     if notPrimitive(subtask) then 
      insertTask(subtask, taskQueue) 

      0.1
)(

)()/( =
∩

←
headTaskS

headTasksubtaskSheadTasksubtaskP
r
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     insertTask(subtask, AbstPlanStructure) 
    end for each 
    copy all links from decomposition to AbstPlan 
   end for each 
  else 
   subtasksDcmp ← getSubTasks(decomposition) 
   for each subtask (with adaptationLinks from subTask) in subtasksDcmp do 
    adapt(subtask, task, adaptionLinks) 
    for each othertask with adaptationLinks to subtask do 
     adapt(subtask, othertask, adaptionLinks) 
    end for each 
    if notPrimitive(subtask) then insertTask(subtask, taskQueue) 

    0.1
)(

)()/( =
∩

←
taskS

tasksubtaskStasksubtaskP
r

r  

    insertTask(subtask, AbstPlan) 
   end for each 
   copy all links from decomposition to abstPlan 
  endif 
 endwhile 
 return abstPlan 
end 

Fig. 7. Algorithm for constructing the structure of an HTN 

Within our approach, a task belonging to an HTN has a probability value associ-
ated to it. This value expresses the probability of being executed given that its ances-
tor is executed. Thus, this probability is actually a conditional probability. Obviously, 
the probability of a task belonging to a case of a past plan is always 1.0 because it 
was executed (otherwise it won’t belong to the case). The probability of the tasks 



belonging to an abstract plan is computed during the process of building the HTN as 
follows. Given the ith subtask, STi, of a task T both belonging to an abstract plan, the 
probability of STi be executed given that T is executed is given by the conditional 
probability formula

)(
)()/(
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TSTPTSTP i

i
∩

= . According to frequency interpretation of 

probability, this is estimated by: 
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)()/(
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∩
=

∩
= , which expresses 

the number of times STi and T occurred together in the total amount of times T oc-
curred, or in the context of HTN planning, this expresses the number of times STi was 
subtask of T in the total amount of times T was the task decomposed in past HTN 
plans in r decompositions. When STi is not a head of an alternative decomposition in 
the new plan (i.e., when T is not an abstract task), it means that T was always decom-
posed in the same way in past plans, i.e., into the same subtasks, which means STi 
occurred always when T occurred, otherwise STi won’t be subtask of T. Thus, in this 
situation, the numerator and denominator of the above equation are equal and there-
fore P(STi/T)=1.0. However, when STi is a head of an alternative decomposition, it 
means there were more than one way to decompose T in past plans, the decomposi-
tion headed by STi being one of them. Thus, counting the number of times the de-
composition headed by STi was taken to decompose T, i.e., the number of times STi 
instantiated T, )( TSTS ir ∩ , in all past plans and dividing this number by the number of 
times T was decomposed, i.e., )(TSr , yields the value for P(STi/T) for this situation. 

After the abstract HTN is built, the conditional effects (and respective probabili-
ties) and the EU are computed for the primitive tasks based on the past occurrences of 
those primitive tasks (notice that the probability of the tasks has already been com-
puted during the process of building the HTN as described above). Remember that 
tasks (either primitive or not) have a list of possible effects each one associated with a 
probability value (see Fig. 2). Thus, this is once more a case-based process that is 
carried out as described by the algorithm of Fig. 8. 

After the primitive tasks have their properties computed based on cases of past 
plans, these properties are propagated bottom-up (from primitive to non-primitive 
tasks), from the subtasks to the task of a decomposition and from the subtasks (heads 
of alternative decompositions) to the abstract task of an abstract decomposition. The 
goal of this propagation is twofold: to complete the non-primitive tasks so that they 
can be ranked according to their EU when they are heads of alternative decomposi-
tions, and to know the overall EU of the abstract plan which is given by the EU of the 
main task of the plan. Fig. 9 presents the algorithm for the propagation of properties. 
Function PROPAGAT-PROPS-ABST and PROPAGAT-PROPS-DCMP relies heav-
ily on the notions of inter-action abstraction described in [6]. 

 



Algorithm COMPUT-PRIMTASKS-PROPS(primTasks, primTasksAllPlanCases) 
 for each primTask in primTasks do 
  taskList ← {i: i ∈ primTasks and i  is of the same type of primTask} 
  condEffectList ← ∅ 
  for each task in taskList do 

   condEffectListTask ← U
m

i
ii Ec

1

,
=

〉〈 , m is the number of conditional effects of task, 

Ei={ i
atask

E } 

   condEffectList ← condEffectList ∪ condEffectListTask 
  end for each 
  genCondEffectList ← GENERALIZE-COND-EFFECT-LIST(condEffectList ) 
  set the conditional effects of primTask with genCondEffectList 
  EU(primTask)← ∑∑ ×=〉〈×〉〈

i

i
i

i

i
i

i
i EUcPcEUcP )()(),(),( εεε  

 end for each 
 return primTasks 
end 

Fig. 8. Algorithm for computing the conditional effects (and respective probabilities) and the 
EU of primitive tasks 

 
Algorithm PROPAGAT-PROPS-UPWARD(primTasks, mainTask, abstPlan) 
 if primitive(mainTask) nothing to do 
 else 
  subTasks ← getSubTasks(mainTask) 
  for each subTask in subTasks do 
   PROPAGAT-PROPS-UPWARD(primTasks, subTask, abstPlan) 
  end for each 
  if abstract(mainTask) then 
   PROPAGAT-PROPS-ABST(subTasks, mainTask, mainTask1) 
   replace mainTask by mainTask1 in abstPlan 
  else 
   PROPAGAT-PROPS-DCMP(subTasks, mainTask, mainTask1) 
   replace mainTask by mainTask1 in abstPlan 
  endif 
 endif 
end 

Fig. 9. Recursive algorithm for propagating properties upward, from primitive tasks to all non-
primitive tasks 



2.3   Plan Execution and Replanning 

Finding the optimal plan in ProCHiP consists simply of traversing the abstract plan, 
selecting the most EU subtask of an abstract task. Backtracking occurs when an alter-
native decomposition fails execution. In this case, the next alternative decomposition 
that follows the previous in the EU ranking is selected for execution. 

2.4   Retaining Plans 

As mentioned in section 2.3, executing a plan corresponds to an instantiation of an 
abstract plan. After a plan is executed, the instantiation that was actually executed is 
stored in memory for future reuse. In addition, the abstract plan is also stored in 
memory. This way, it might be useful in the future since it might avoid an unneces-
sary process of generating it again. 

3   Experiment 

We conducted an experiment in order to evaluate the role played by the case-base 
size on the performance of ProCHiP. Given a kind of goal task such as transport, we 
constructed 5 case-bases, ranging in size from 1 to 5 cases of plans, each case de-
scribing a different way of achieving the specified goal task. For each one of these 
case-bases, we ran ProCHiP with 10 different goal tasks of type transport. The CPU 
time taken by the planner to build an abstract plan for the specified goal task was 
measured. In addition, the number of those 10 goal tasks solved successfully was 
computed, as well as the number of tasks in those abstract plans. The results are plot-
ted in Fig. 10. 
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Fig. 10. Performance of ProCHiP with case-bases varying in size 

The CPU time taken by the planner to build the abstract plan increases monotoni-
cally with the size of the case-base. The same happens with the number of tasks in the 
abstract plan. An interesting result is noticed with the number of problems success-



fully solved. With 3 cases, the planner is able to find a correct solution for 80% of the 
goal tasks, and with 4 or more cases the effectiveness is 100%, which means the addi-
tion to the case-base of more cases for solving problems of this kind (transport) 
seems to decrease the efficiency of the planner, because the effectiveness is not and 
could not be increased (100%). This issue is related to the utility problem (e.g., [5, 
13, 19]) and case-base maintenance (e.g., [18, 20]). 

4   Related Work 

Our work is closely related to HTN planning. This methology has been extensively 
used in planning systems such as UMCP [4], SHOP and SHOP2 [16]. Unlike these 
planners, ProCHiP don’t use methods as part of the domain theory for task decompo-
sition, but instead methods that are implicitly included in cases that describe previous 
planning problem solving experiences. SiN [14] also uses a case-based HTN planning 
algorithm, in which cases are instances of methods. 

Learning hierarchical plans or HTNs is still rarely addressed by the machine learn-
ing community, although there are a few exceptions. Garland, Ryall and Rich [Gar-
land, 2001 #161 infer task models from annotated examples, i.e., through demonstra-
tion by a domain expert. [7]. van Lent and Laird [22] used a learning-by-observation 
technique which involves extracting knowledge from observations of an expert per-
forming a task and generalizes this knowledge to a hierarchy of rules. Xu and Muñoz 
[23] use an algorithm that gather and generalize information on how domain experts 
solve HTN planning problems.  

Among decision-theoretic planners, DRIPS [6] is probably the most closely related 
to ProCHiP. Actually, DRIPS shares a similar representation approach for abstract 
plans (an abstraction/decomposition hierarchy) and for actions. Besides, it also re-
turns the optimal plan according to a given utility function. However, in contrast to 
DRIPS, in ProCHiP the variant of a HTN that represents abstract plans is automati-
cally built from cases and not given as input for the planning problem. Besides, it 
includes temporal, utility ranking and adaptation links in addition to decomposition 
links. Another major difference is that, in ProCHiP, the EU of tasks and of alternative 
plans is computed when the abstract plan is built, while in DRIPS this occurs when 
the optimal plan is searched. In ProCHiP, there is the possibility of computing the EU 
of tasks based on the non-procedural component of their effects, which avoids some 
additional computations at the cost of being less accurate. Moreover, finding the 
optimal plan in ProCHiP consists simply of traversing the HTN with backtracking (or 
replanning) points located at the subtasks of an abstract task. In ProCHiP the propa-
gation of properties upward in the hierarchy is closely related with the approach taken 
in DRIPS for abstracting actions [6]. A propagation of properties in the planning tree, 
bottom-up and left-to-right, is also used in GraphHTN [10] in order to improve the 
search algorithm. 



5   Conclusions 

We presented ProCHiP, a planner that combines CBR with the techniques of deci-
sion-theoretic planning and HTN planning in order to deal with uncertain, dynamic 
large-scale real-world domains. We conducted an experiment in order to evaluate the 
dependence of the time taken by ProCHip to build abstract plans on the size of a case-
base containing cases representing implicit methods. We concluded that the CPU time 
increases monotonically with the case-base size. However, we also concluded that the 
case-base size improves the effectiveness of ProCHiP only up to a certain size. After 
that size the performance of ProCHiP corresponds to a low efficiency while the effec-
tiveness is almost unaltered. 
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