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Abstract 

This paper addresses the issue of how to compute the intensity 
of surprise in an artificial agent. Resolution of this issue is 
important for the further specification of the computational 
model of surprise proposed by Macedo and Cardoso (2001) 
that was implemented in artificial agents “living” in a multi-
agent environment. This model of surprise is mainly rooted in 
the cognitive-psychoevolutionary model of surprise proposed 
by the research group of the University of Bielefeld (Meyer, 
Reisenzein, & Schützwohl, 1997) and in proposals by Ortony 
and Partridge. We propose several possible functions to 
compute the intensity of surprise. To assess their accuracy, 
they were evaluated in an experimental test that focused on 
the comparison of surprise intensity values generated by 
artificial agents with ratings by humans under similar 
circumstances. 

Introduction 
Considered by many authors a biologically fundamental 
emotion (e.g.: Ekman, 1992; Izard, 1991), surprise may play 
an important role in the cognitive activities of intelligent 
agents, especially in attention focusing (Izard, 1991; Meyer 
et al., 1997; Ortony & Partridge, 1987; Reisenzein, 2000b), 
learning (Schank, 1986) and creativity (Boden, 1995; 
Williams, 1996). Psychological experiments conducted by 
Meyer, Reisenzein and Schützwohl provide evidence that 
surprising-eliciting events initiate a series of mental 
processes that (a) begin with the appraisal of a cognized 
event as exceeding some threshold value of unexpectedness 
or schema discrepancy, (b) continue with the interruption of 
ongoing information processing and the reallocation of 
processing resources to the surprise-eliciting event, and (c) 
culminate in the analysis and evaluation of that event plus 
immediate reactions to it and/or schema (belief) 
updating/revision. According to these authors, surprise has 
two main functions, the one informational and the other 
motivational: it informs the individual about the occurrence 
of a schema-discrepancy, and it provides an initial impetus 
for the exploration of the unexpected event. Thereby, 

surprise promotes both immediate adaptive actions to the 
unexpected event and the prediction, control and effective 
dealings with future occurrences of the event. 

Ortony and Partridge's (1987) model of surprise shares 
several aspects with the one proposed by Meyer, Reisenzein 
and Schützwohl (1997), especially in that both models 
assume that surprise is elicited by unexpected events. The 
same is also true for Peters’ (1998) computational model of 
surprise, implemented in a computer vision system, that 
focuses on the detection of unexpected movements. Finally, 
models of surprise have also been proposed in the fields of 
knowledge discovery and data mining (e.g. Suzuki & 
Kodratoff, 1998). 

Macedo and Cardoso (e.g., Macedo & Cardoso, 2001)) 
developed a computational model of surprise that is an 
adaptation (although with several simplifications) of the 
models proposed by Meyer, Reisenzein and Schützwohl 
(1997) and by Ortony and Partridge (1987). In the present 
article, we elaborate and evaluate this model further by 
discussing different possible functions for the computation 
of surprise and by evaluating these functions in an empirical 
study. 

The following section describes Macedo and Cardoso’s 
surprise model in more detail, including an overview of its 
theoretical background models. Subsequently, we discuss 
several possible functions for computing the intensity of 
surprise. Finally, we describe an experimental test that was 
carried out to evaluate the accuracy of these surprise 
functions. 

Surprise Model 
As mentioned, the surprise model developed by Macedo and 
Cardoso (2001) is mainly based on Ortony and Partridge’s 
(1987) proposals and on those of Meyer, Reisenzein and 
Schützwohl (1997). Therefore, we first give an overview of 
these background theories and then explain the 
computational model proposed by Macedo and Cardoso, by 
comparing it with these two models. 



Background Models 
Although Ortony and Partridge agree with Meyer, 
Reisenzein and Schützwohl and other authors that surprise 
is caused by events that are commonsensically called 
unexpected, they proposed that unexpectedness covers two 
cases. First, surprise results when prior expectations 
regarding an event are disconfirmed. Second, however, 
surprise can also be caused by events for which expectations 
were never computed. That is, according to Ortony and 
Partridge, there are situations in which one is surprised 
although one had no explicit expectations (either conscious 
or unconscious) regarding the surprising event. Ortony and 
Partridge also proposed that surprisingness is an important 
variable in artificial intelligence systems, particularly in 
attention and learning. 

In more detail, Ortony and Partridge's model of surprise 
assumes a system (or agent) with an episodic and semantic 
propositional memory whose elements may be immutable 
(propositions that are believed to be always true) or typical 
(propositions that are believed to be usually but not always 
true). Furthermore, they distinguish between practically 
deducible propositions and practically non-deducible 
propositions. Practically deducible propositions comprise 
all propositions that are explicitly represented in memory, as 
well as those that can be inferred from these by few and 
simple deductions. Hence, practically deducible 
propositions are that subset of formally deducible 
propositions that don’t require many and complex 
inferences. Furthermore, practically deducible propositions 
may be either actively or passively deduced. In the former 
case, their content corresponds to actively expected or 
predicted events; in the latter case, to passively expected 
(assumed) events. 

Based on these assumptions, Ortony and Partridge 
proposed that surprise results when the system encounters a 
conflict or inconsistency between an input proposition and 
preexisting representations or representations computed 
“after the fact”. More precisely, surprise results in three 
situations (Table 1 presents the corresponding range of 
values): (i) active expectation failure: here, surprise results 
from a conflict or inconsistency between the input 
proposition and an active prediction or expectation; (ii) 
passive expectation failure (or assumption failure): here, 
surprise results from a conflict or inconsistency between the 
input proposition and what the agent implicitly knows or 
believes (passive expectations or assumptions); and (iii) 
unanticipated incongruities or deviations from norms: here, 
surprise results from a conflict or inconsistency between the 
input proposition (which in this case is a practically non-
deducible proposition) and what, after the fact, is judged as 
normal or usual (Kahneman & Miller, 1986), that is, 
between the input proposition and practically deducible 
propositions (immutable or typical) that are suggested by 
the unexpected fact. Note that, in this case, prior to the 
unexpected event there are no explicit expectations (passive 
or active) with which the input proposition could conflict. 

In their cognitive-psychoevolutionary model, Meyer, 
Reisenzein and Schützwohl also assume that surprise 

(considered by them as an emotion) is elicited by the 
appraisal of unexpectedness. 

 
Table 1:  Three different sources of surprise and 

corresponding value ranges (adapted from (Ortony & 
Partridge, 1987)). 

 
Related Cognition Confronted 

proposition Active Passive 
Immutable [1]; SA=1; Prediction [2]; SP=1; Assumption 
Typical [3]; 0< SA<1; Prediction [4]; SP<SA; Assumption 
Immutable [5]; ∅ [6]; SP=1; none 
Typical [7]; ∅ [8]; 0< SP<1; none 
 
More precisely, it is proposed that surprise-eliciting 

events give rise to the following series of mental processes: 
(i) the appraisal of a cognized event as exceeding some 
threshold value of unexpectedness (schema-discrepancy) - 
according to Reisenzein (2001), this is achieved by a 
specialized comparator mechanism, the unexpectedness 
function, that computes the degree of discrepancy between 
“new” and “old” beliefs or schemas; (ii) interruption of 
ongoing information processing and reallocation of 
processing resources to the investigation of the unexpected 
event; (iii) analysis/evaluation of that event; and (iv) 
possibly, immediate reactions to that event and/or updating 
or revision of the “old” schemas or beliefs. 

Overview of the Computational Model of Surprise 
Macedo and Cardoso (e.g., Macedo & Cardoso, 2001) 
developed a multi-agent environment in which, in addition 
to inanimate agents (objects such as buildings), there are 
two main kinds of animate, interacting agents: the “author-
agents” or creators, whose main function is to create things 
(objects, events), and the “jury-agents” or explorers whose 
goal is to explore the environment by analyzing, studying 
and evaluating it. An agent can also show both of these 
activities (creation and exploration). 

The computational model of surprise is integrated into the 
motivations module of the architecture of the artificial 
agents (see Figure 1). The other modules of this architecture 
are: sensors/ perception; memory; goals/desires; and 
reasoning/decision-making. This last module and the 
module motivations are provided with information from the 
world obtained through sensors/perception, as well as with 
information recorded in memory. The reasoning/decision-
making module then computes the current state of the world. 
Afterwards, probability theory is applied to predict possible 
future states of the world for the available actions, and a 
utility function (which makes use of the intensity of the 
generated emotions) is applied to each of these world states. 
Finally, the action that maximizes the utility function is 
selected. 

The computational model of surprise incorporated in this 
agent system is an adaptation (although with some 
simplifications) of the surprise model proposed by Meyer, 
Reisenzein and Schützwohl in which the above-mentioned 
four mental processes elicited by surprising events are 



present. The suggestions by Ortony and Partridge are 
mainly concerned with the first of these steps, and are 
compatible with the Meyer, Reisenzein and Schützwohl 
model. Accordingly, in our model, we drew on the 
assumptions of Ortony and Partridge for the implementation 
of the appraisal of unexpectedness and the computation of 
the intensity of surprise, as well as for the selection of 
knowledge structures. 

In Macedo and Cardoso’s model, knowledge is 
exclusively of an episodic kind (for an example, see Figure 
2), rather than being both semantic and episodic in nature 
(although this will be considered in future work), as in 
Ortony and Partridge’s model. In this respect, the 
knowledge structure of our model also differs from the 
schema-theoretic framework of the Meyer, Reisenzein and 
Schützwohl model that also assumes both episodic and 
semantic knowledge. In our model, an input proposition (or 
new belief) is therefore always compared with episodic 
representations of objects or events (or their properties) (for 
instance an object with squared windows, rectangular door, 
etc.). Besides, the agent has in its episodic memory explicit 
representations of similar objects. Following Ortony and 
Partridge, we also distinguish between deducible and non-
deducible, active and passive, immutable and typical 
propositions as well as between different possible sources of 
surprise (see Table 1). The immutability of a proposition 
can be extracted from the absolute frequency values 
associated with the cases stored in episodic memory (see 
Figure 2). For instance, in the example shown in Figure 2, 
the proposition “houses have square facades” is immutable 
(since all the houses in memory have squared facades), 
whereas “houses have square windows” is a typical 
proposition with a probability (immutability) value of 0.50 
(as implied by Ortony and Partridge’s model, in our model 
immutability is a continuous variable). 

 

World

Agent

Deliberative Reasoning /
Desicion-making

Motivations

Memory Sensors

Efectors

Goals, Desires

 
Figure 1:  Architecture of an agent. 
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Figure 2:  Example of an episodic memory in the domain of 

buildings. 
 
The usual activity of the agents consists of moving 

through the environment hoping to find interesting things 

(objects or events) that deserve to be investigated. We 
assume that this exploratory behavior is ultimately in the 
service of other (e.g., hedonic) motives, although this issue 
is not explicitly addressed in the present model. When one 
or more objects/events are perceived, the agent computes 
expectations for the missing information (e.g., “it is a house 
with 67% of probability”, “it is a hotel with 45% of 
probability”, etc.; note that the function of a building 
becomes available to the agent only when its position and 
that of the building are the same). On the basis of the 
available information (e.g., the visible structure of an 
object) and the computed expectations (e.g., predictions for 
the function of an object), the agent then determines the 
intensity of surprise that may be caused by the object/event 
(these computations, which correspond to the “appraisal of 
unexpectedness” in the Meyer, Reisenzein and Schützwohl 
model, are described in more detail below). Subsequently, 
the object/event with the maximum estimated surprise is 
selected to be visited and investigated. This corresponds to 
the “interruption of ongoing activity” and the "reallocation 
of processing resources" assumed in the Meyer, Reisenzein 
and Schützwohl model. The previously estimated value of 
surprise may subsequently be updated on the basis of the 
additional information acquired about the object/event. The 
object/event is then stored in memory and the absolute 
frequencies of the affected objects/events in memory are 
updated. This is a simplification of the fourth step of the 
Meyer, Reisenzein and Schützwohl model (for alternative 
approaches to belief revision, see, for instance, (Gärdenfors, 
1988)). 

The different surprise-eliciting situations distinguished by 
Ortony and Partridge are dealt with in our model in the 
following way. As said above, when an agent perceives an 
object, it first computes expectations (deducible, active 
expectations) for missing information (e.g., “it is a hotel 
with 45% of probability”). If, after having visited that 
object, the agent detects that the object is different from 
what was expected (e.g., if it is a post office), the agent is 
surprised because its active expectations conflict with the 
input proposition (note that, in our model, belief conflicts 
may be partial as well as total). This is thus an example of 
the first source of surprise distinguished by Ortony and 
Partridge. In contrast, when an agent perceives an aspect or 
part of an object with particular properties (e.g., a building 
with a window of a circular shape) that were not actively 
predicted, it may still be able to infer that it expected 
something (e.g., a rectangular-shaped window with, 45% 
probability, a square-shaped window with 67%, etc.). This 
is an example of a deducible, passive expectation: although 
the expectation was not present before the agent perceived 
the object, it was inferred after the object had been 
perceived. This case is therefore an example of the second 
source of surprise distinguished by Ortony and Partridge, 
where an input proposition conflicts with an agent’s passive 
expectations. Finally, when an agent perceives an object 
with a completely new part (e.g., a building with no facade), 
it has neither an active nor a passive expectation available. 



The reason is that, because there are no objects of this kind 
(e.g., buildings with no facade) stored in the agent’s 
memory, the agent cannot predict that such objects might be 
encountered. The perception of an object with a completely 
new part is thus an example of a non-deducible proposition. 
This is an example of the third source of surprise 
distinguished by Ortony and Partridge: there is a conflict 
between the input proposition (e.g., “the house has no 
facade”) and what after the fact is judged to be normal or 
usual (e.g., “buildings have a facade”). 

The Computation of Surprise Intensity 
We now address the question of how the intensity of 
surprise should be computed in the model. In humans, this 
problem has already been successfully solved by evolution; 
therefore, a reasonable approach is to model the agent's 
surprise function according to that of humans. Experimental 
evidence from human participants summarized in 
(Reisenzein, 2000b) suggests that the intensity of felt 
surprise increases monotonically, and is closely correlated 
with, the degree of unexpectedness. On the basis of this 
evidence, we propose that the surprise “felt” by an agent 
elicited by an object/event X is proportional to the degree of 
unexpectedness of X (which in the model is based on the 
frequencies of objects/events present in the memory of the 
agent). According to probability theory, the degree of 
expecting an event X to occur is its subjective probability 
P(X). Accordingly, the improbability of X, denoted by 1-
P(X), defines the degree of not expecting X, or for short its 
unexpectedness. The intensity of surprise elicited by X 
should therefore be an (at least weakly) monotonically 
increasing function of 1-P(X). As a first approach, this 
function (S1) could simply be taken to be the identity 
function, that is, the intensity of surprise could simply be 
equated with the degree of unexpectedness: 

 
)(1),(1 XPXAgtS −=  

 
However, on second thought, S1 does not seem to 

faithfully capture the relation between unexpectedness and 
surprise. For example, consider a political election with 
three candidates A, B and C, where the probability of being 
elected is P(A) = P(B) = P(C) = 0.333. In this case, one 
would not be surprised if either A, B or C is elected. 
Therefore, in this situation at least, S1 fails. 

To arrive at a more adequate surprise function, consider 
the case where there are only two mutually exclusive and 
exhaustive alternative events, X and Y (i.e., not X). Here, 
intuition suggests that X is not surprising as long as P(X) ≥ 
0.5, whereas X is surprising for P(X) < 0.5, and increasingly 
more so the more P(X) approaches 0. This intuition is 
captured by the following surprise function (S2): 
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To deal with sets of more than two mutually exclusive 
events, S2 could be generalized as follows (S3, where n  

denotes the number of events in the set): 
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However, it may be more adequate to set the upper limit 

of surprise not to 1, but to 
n
1  (see S4): 
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Yet another possible surprise function, suggested by 

further reflection on the above election example, is the 
following (S5): 

 
)()(),(5 XPYPXAgtS −=  

 
In this formula, Y is the event with the highest probability 

of a set of mutually exclusive events. S5 implies that, within 
each set of mutually exclusive events, there is always one 
(Y) whose occurrence is entirely unsurprising, namely the 
event with the maximum probability in the set (P(Y)). For 
the other events X in the set, the surprise intensity caused by 
their occurrence is the difference between P(Y) and their 
probability P(X). This difference can be interpreted as the 
amount by which P(X) has to be increased for X to become 
unsurprising. For instance, in the election example 
considered earlier, where P(A) = P(B )= P(C) = 0.333, S5 
correctly predicts that one would not be surprised if either 
A, B or C is elected. By contrast, if P(A) = 0.55, P(B) = 0.40 
and P(C) = 0.05, S5 predicts that the surprise caused by B is 
0.15 and for C is 0.50, whereas for A it is 0. S5 also implies 
that maximum surprise, that is, S(X) = 1, occurs only if 
P(Y) = 1 and hence, by implication, P(X) = 0. (In the 
Ortony and Partridge model, this corresponds to situations 
[1], [2], [5] and [6], where the disconfirmed event Y is 
immutable, i.e., its probability is 1). Therefore, S5 seems to 
correctly describe surprise in the election example. 
Confirming this impression, S5 also acknowledges the 
intuition behind S2: if there are only two alternative events 
X and Y (= not X), S5 predicts, like S2, that X should be 
unsurprising for P(X) ≥ 0.5, for in this case X is also the 
event with the highest probability in the set. By contrast, for 
P(X) < 0.5, S5 predicts that X should be surprising and 
increasingly so the more P(X) approaches 0, with maximum 
possible surprise (S(X) = 1) being experienced for P(X) = 0. 

Yet another possible surprise function (S6) is suggested 
by Information Theory (Shannon, 1948): 

 

)(
1log),(6 2 XP

XAgtS =  

 



According to S6, surprise about X is 0 when P(X) = 1 and 
increases monotonically with decreasing P(X). In these 
respects, then, S6 is similar to S1. However, in contrast to 
S1, S6 is a nonlinear function of P(X), and it is not 
normalized. For instance, for P(X) = 0.3, S6(X) = 1.7 (bits), 
for P(X) = 0.01, S6(X) = 6.6, and for P(X) = 0.001, S6(X) = 
9.9. In fact, there is no upper limit of S(X): for P(X)=0, 
S6(X) = +∝. To overcome this problem, we propose the 
following normalized function S7 (stipulating the upper 
limit to be 10): 
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Finally, yet another surprise function (S8), a nonlinear 

modification of S5, is suggested by the results of the 
experiment, reported below, performed with humans in the 
domain of elections and sport games: 
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This function retains the essential features of S5: when X 

is the most expected event (X = Y), then S8(X) = 0; when X 
is different from Y, S8(X) > 0 and increases monotonically 
with the difference between P(Y) and P(X); and S8(X) is 
maximal (= 1) if P(Y) = 1 and P(X) = 0. In addition, 
however, S8 also captures the nonlinearity of the surprise 
function suggested by the experiments with humans 
reported below. 

Experiment 
To test the validity of the proposed surprise functions, we 
conducted an experiment that involved two steps. In step 1, 
we collected ratings of probability and surprise intensity 
from humans in two domains, political elections and sports 
games. In step 2, artificial agents that implemented the 
different surprise functions were provided with the 
probability judgments obtained from the humans and, on 
this basis, computed surprise intensity values. These 
predicted surprise values were then compared with the 
actual surprise ratings provided by the human participants. 

Step 1 was conducted with ten participants (mean age, 29 
years). They were presented with 20 brief scenarios, 10 of 
which described political elections with 2-4 candidates (see 
Figure 3), whereas the other 10 scenarios described sports 
games with 2-4 teams or players (see (Reisenzein, 2000a) 
for a conceptually similar experiment using knowledge 
questions). Political elections and sports games were chosen 
because we thought that these domains are familiar to most 
people and that the participants would have no problems to 
state their probabilities and their surprise about outcomes. In 
addition, in contrast to the domain of buildings used in a 
previous study reported in (Macedo & Cardoso, 2001), 
elections and sport games allow for an easier matching of 
the knowledge of artificial agents with that of humans. Part 
of the scenarios did not include information about the actual 

outcome of the election or game, whereas the remaining 
scenarios included this information. For scenarios without 
outcome information, the participants were asked to first 
state their expectations for all possible outcomes and to rate 
their probability on a 1-100 scale. Subsequently, they were 
informed about the outcome of the election or game and 
rated their surprise about the outcome first on a qualitative 
intensity scale and then again on a quantitative intensity 
scale within the chosen qualitative level. By contrast, for the 
scenarios that included outcome information, participants 
first rated the intensity of surprise about the outcome and 
subsequently their (passive) expectations regarding the 
outcome. An example of a scenario is shown in Figure 3. 
 

Figure 3:  Example of a test item. 

Given the following prognosis for the election of candidate A,
B and C for a political position: 

 
Victory of A=45%; Victory of B=45%; Victory of C=10% 
 
a) What are your personal expectations regarding the victory
of candidates A, B and C? 
b) Assume that candidate A won the election and rate the
intensity of surprise that you would feel. 

 
In step 2 of the study, the probability ratings obtained 

from each participant in step 1 were delivered to eight 
artificial agents, each of which implemented one of the eight 
surprise functions S1-S8 described earlier. Using these 
functions, the agents computed surprise intensity values 
from the probabilities. These predicted surprise values were 
then compared with the surprise ratings of the humans 
obtained in step 1. 

The data obtained in the first step of the experiment 
suggested two qualitative conclusions. First, the occurrence 
of the most expected event of the set of mutually exclusive 
and exhaustive events did not elicit surprise in humans. For 
example, when the expectations for the election of three 
political candidates A, B and C were P(A) = 0.55, P(B) = 
0.40, and P(C) = 0.05, the participants felt no surprise about 
the election of candidate A. This was also true when two or 
more candidates had equal maximal probabilities. For 
example, when P(A) = 0.40, P(B) = 0.40 and P(C) = 0.20, 
participants were not surprised when either A or B was 
elected. Second, beyond the point of zero surprise, the 
surprise function appeared to be nonlinear. For example, 
relatively high surprise was indicated when candidate C 
won the elections in both of the above situations, although it 
was still higher for P(C) = 0.05 than for P(C) = 0.20. 

To compare the surprise values generated by the artificial 
agents and the surprise ratings provided by the human 
judges, the following fit indices were used: the root mean 
squared difference, the mean absolute difference, and the 
Pearson correlation. The results of these comparisons are 
shown in Table 2, separately for the 10 participants (H1, …, 
H10) and for six of the eight artificial agents (A1,…,A8) 
(the surprise functions S6 and S7 were not included because 



they have a different range than the human ratings and 
therefore computation of the absolute and squared 
differences is not meaningful). It can be seen from Table 2 
that, regardless of which fit index is used, agent A8 (which 
implemented surprise function S8) was the one with the best 
fit to the human ratings: it had on average, the lowest root 
mean squared differences (Ms= 0.10), the lowest absolute 
differences (Md= 0.06), and the highest correlation to these 
ratings (Mr= 0.98). A8 was closely followed by A5 (Ms = 
0.21; Md = 0.08; Mr = 0.97), whereas agents A1 and A2 had 
the comparatively worst fit values (for instance, A1 had Ms 
= 0.35; Md = 0.26; Mr = 0.81). A main reason for the bad 
performance of A1 was apparently that it failed in the case 
of the occurrence of the most expected event of the set: A1 
still predicts a positive surprise value (1-P(X)) for this case, 
whereas humans do not feel surprised by the occurrence of 
this event. However, in other situations, A1 performed well. 

 
Table 2:  Statistical comparison of the surprise values 

computed by the artificial agents and those provided by the 
humans (s = root mean squared difference, d = mean 

absolute difference, and r = Pearson correlation). 
 

  H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 M 
s .35 .36 .34 .35 .35 .34 .35 .36 .35 .36 .35 
d .25 .26 .25 .25 .26 .24 .27 .27 .26 .27 .26 

A1 

r .82 .80 .82 .82 .80 .82 .81 .80 .82 .82 .81 
s .30 .33 .29 .32 .32 .30 .33 .32 .31 .31 .31 
d .18 .21 .16 .20 .21 .18 .22 .19 .19 .19 .19 

A2 

r .82 .79 .82 .81 .79 .83 .80 .80 .81 .81 .81 
s .22 .30 .24 .21 .30 .22 .18 .19 .19 .16 .22 
d .07 .15 .09 .07 .17 .09 .09 .09 .08 .08 .10 

A3 

r .95 .85 .89 .94 .81 .92 .93 .92 .92 .94 .91 
s .43 .41 .45 .43 .43 .43 .44 .46 .46 .45 .44 
d .29 .28 .30 .29 .29 .28 .28 .28 .29 .27 .28 

A4 

r .93 .92 .88 .96 .90 .95 .91 .91 .93 .94 .92 
s .22 .16 .19 .16 .23 .20 .21 .24 .24 .24 .21 
d .07 .06 .11 .06 .09 .05 .08 .10 .09 .09 .08 

A5 

r .97 .98 .96 .98 .95 .99 .97 .96 .96 .96 .97 
s .09 .07 .13 .08 .12 .06 .11 .13 .12 .12 .10 
d .05 .05 .09 .05 .08 .04 .06 .08 .07 .07 .06 

A8 

r .98 .99 .98 .99 .97 .99 .98 .07 .07 .97 .98 

Conclusions 
The empirical study of the surprise functions suggests S8(X) 
=  as the most appropriate surprise 
function for the domains of political elections and sport 
games, although S5 (the linear counterpart of S8) is a very 
close contender. However, before more definitive 
conclusions can be drawn, additional tests need to be 
performed in other domains, as well as with yet other 
possible surprise functions (e.g., Shackle, 1969). 
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