

Emotional-based Planning

Luís Macedo1,2
1Department of Informatics and Systems Engineering,
Engineering Institute, Coimbra Polytechnic Institute

R. Pedro Nunes, Quinta da Nora, 3030-199 Coimbra -
Portugal

lmacedo@isec.pt

Amílcar Cardoso2

2Centre for Informatics and Systems of the University
of Coimbra

Pinhal de Marrocos, 3030 Coimbra - Portugal
{macedo,amilcar}@dei.uc.pt

Abstract

This paper describes an emotional-based planner that combines the technique of decision-theoretic planning with the
methology of HTN planning in order to deal with uncertain, dynamic large-scale real-world domains. We explain how
plans are represented, generated and executed. Unlike in regular HTN planning, this planner can generate plans in do-
mains where there is no complete domain theory by using cases instead of methods for task decomposition. The planner
generates a variant of a HTN - a kind of AND/OR tree of probabilistic conditional tasks - that expresses all the possible
ways to decompose an initial task network. The expected utility of alternative plans is computed beforehand at the time of
building the HTN. Two approaches are proposed for this computation: based on motivational information collected from
past executions of tasks (a kind of somatic-markers) or given by mathematical functions. The planner is used by agents
inhabiting unknown, dynamic environments.

1 Introduction

Hierarchical Task Network (HTN) planning is a plan-
ning methology that is more expressive than STRIPS-
style planning (Erol, Hendler, & Nau, 1994). Given a
set of tasks that need to be performed (the planning
problem), the planning process decomposes them into
simpler subtasks until primitive tasks or actions that
can be directly executed are reached. Methods provided
by the domain theory indicate how tasks are decom-
posed into subtasks. However, for many real-world
domains, sometimes it is hard to collect methods to
completely model the generation of plans. For this rea-
son an alternative approach that is based on cases of
methods has been taken in combination with methods
(Muñoz-Avila et al., 2001).

Real-world domains are usually dynamic and uncer-
tain. In these domains actions may have several out-
comes, some of which may be more valuable than oth-
ers. Planning in these domains require special tech-
niques for dealing with uncertainty. Actually, this has
been one of the main concerns of the planning research
in the last years, and several decision-theoretic plan-
ning approaches have been proposed and used success-
fully, some based on the extension of classical plan-
ning and others on Markov-Decision Processes (see
(Blythe, 1999; Littman & Majercik, 1997) for a sur-
vey). In these decision-theoretic planning frameworks
actions are usually probabilistic conditional actions,
preferences over the outcomes of the actions is ex-
pressed in terms of an utility function, and plans are
evaluated in terms of their Expected Utility (EU)
(Russel & Norvig, 1995). The main goal is to find the
plan or set of plans that maximizes an EU function, i.e,

to find the optimal plan. However, this might be a
computationally complex task.

Considered by many authors as the principal motiva-
tional system, emotion is one of the sub-systems that
compose personality (Izard, 1991). Another important
sub-system is the drive system (also an important kind
of the motivational system). Psychological and neuro-
science research over the past decades suggests that
emotions play a critical role in decision-making, action
and performance, by influencing a variety of cognitive
processes (e.g., attention (Izard, 1991; Meyer, Reisen-
zein, & Schützwohl, 1997; Ortony & Partridge, 1987;
Reisenzein, 2000), planning (Gratch, 1999), etc.). Ac-
tually, on the one hand, recent research in neuroscience
(Damásio, 1994; LeDoux, 1996) supports the impor-
tance of emotions on reasoning and decision-making.
For instance, results from recent studies of patients
with lesions of the prefrontal cortex suggest an impor-
tant role of emotions in decision-making. On the other
hand, there are a few theories in psychology relating
motivations (including drives and emotions) to action
(Izard, 1991). For instance, in the specific case of emo-
tions, as outlined by (Reisenzein, 1996), within the
context of the belief-desire theories of action (the
dominant class of theories in today’s motivation psy-
chology) there have been proposals such as that emo-
tions are action goals, that emotions are or include ac-
tion tendencies, that emotions are or include goal-
desires, and that emotions are mental states that gener-
ate goal-desires.

In this paper we propose an emotional-based ap-
proach for decision-theoretic planning, HTN planning.
In this approach, actions have several outcomes, each
one eliciting different emotions, drives and other moti-

vations (elicited by the objects perceived). This
motivational information is collected from past
executions of tasks (a kind of somatic-markers) or
given by mathematical functions. The selection of
actions is based on their EU, which is measured in
terms of this motivational information, i.e., based on
the intensity of the emotions, drives and other
motivations it may elicit. The planner combines the
technique of decision-theoretic planning with the
methology of HTN planning in order to deal with un-
certain, dynamic large-scale real-world domains.
Unlike in regular HTN planning, we don’t use methods
for task decomposition, but instead cases of plans. The
planner generates a variant of a HTN - a kind of
AND/OR tree of probabilistic conditional tasks - that
expresses all the possible ways to decompose an initial
task network. The EU of tasks and consequently of the
alternative plans is computed beforehand at the time of
building the HTN.

The next section describes the features of the planner
related with plan representation. Section 3 presents the
plan generation process and section 4 the plan execu-
tion and replanning process. Finally, we present the
related work, and present conclusions and future work.

2 Plan Representation

Within our approach we may distinguish two main
kinds of plans: concrete plans, i.e., cases of plans
(Kolodner, 1993), and abstract plans. Concrete plans
and abstract plans are interrelated since concrete plans
are instances of abstract plans and these are built from
concrete plans. Since the concept of abstract plan sub-
sumes the concept of concrete plan, let us first describe
the representation issues related with abstract plans and
then present the main differences between concrete
plans and abstract plans.
We represent abstract plans as a hierarchy of tasks (a
variant of HTNs (e.g., (Erol et al., 1994; Nau, Muñoz-
Avila, Cao, Lotem, & Mitchell, 2001)) (see Figure 1).
Formally, an abstract plan is a tuple AP = <T, L>,
where T is the set of tasks and L is the set of links.
More precisely, we represent an abstract plan by a hi-
erarchical graph-structured representation comprising
tasks (represented by the nodes) and links (represented
by the edges). We adopted the adjacency matrix ap-
proach to represent these graphs (Macedo & Cardoso,
1998). The links may be of hierarchical (abstraction or
decomposition), temporal, utility-ranking or adaptation
kind. This structure has the form of a planning tree

(Lotem & Nau, 2000), i.e., it is a kind of AND/OR tree
that expresses all the possible ways to decompose an
initial task network. Like in regular HTNs, this hierar-
chical structure of a plan comprises primitive tasks or
actions (non-decomposable tasks) and non-primitive
tasks (decomposable or compound tasks). Primitive
tasks correspond to the leaves of the tree and are di-
rectly executed by the agent, while compound tasks
denote desired changes that involve several subtasks to
accomplish it. For instance, the leaf node driveTruck of
Figure 1 is a primitive task, while inCityDel is a com-
pound task. The decomposition of a compound task
into a sequence of subtasks is represented by linking
the compound task to each subtask by a hierarchical
link of type decomposition (denoted by dcmp). This
corresponds to an AND structure. In addition, a hierar-
chical plan may also include special tasks in order to
express situations when a decomposable task has at
least two alternative decompositions. Thus, these spe-
cial tasks are tasks whose subtasks are heads of those
alternative decompositions. We called abstract tasks to
those special decomposable tasks because they may be
instantiated by one of their alternative subtasks. Thus,
they are a kind of abstractions of their alternative in-
stances. Notice that the subtasks of an abstract task
may themselves be abstract tasks. This decomposition
of abstract tasks into several alternative instances is
expressed by linking the abstract task to each subtask
by a hierarchical link of type abstract (denoted by
abst). This corresponds to an OR structure. As we said,
in addition to hierarchical links that express AND or
OR decomposition (dcmp and abst), there are also tem-
poral, utility-ranking and adaptation links between
tasks. Temporal links are just like in regular HTNs. We
followed the temporal model introduced by (Allen,
1983). Thus, links such as after, before, during, over-
lap, etc., may be found between tasks of an abstract
plan. Utility-ranking links (denoted by more_useful)
are used between subtasks of abstract tasks in order to
express a relation of order with respect to their EU, i.e.,
the head tasks of the alternative decompositions of a
given abstract task are ranked according to the EU of
their decompositions. Adaptation links (Kolodner,
1993) are useful to generate an abstract plan from sev-
eral plan cases. They explain how tasks and their com-
ponents are related in a plan and therefore they explain
how to adapt portions of cases of plans when they are
reused to construct an abstract plan.

transport

transport transport

inCityDel airDel inCityDel inCityDel

flyAirplaneloadAirplaneinCityDel inCityDel

doNothing driveTruck loadTruck driveTruck unloadTruck

. . .

.

.

.

.

.

.

. . .

after

more_useful

Figure 1 - Example of an abstract plan. Primitive tasks are represented by thick ellipses while non-primitive tasks are
represented by thin ellipses. Dashed, thick arrows represent abst links, while thin arrows represent dcmp links.

A task T is both conditional and probabilistic (e.g.:
(Blythe, 1999; Haddawy & Doan, 1994; Younes,
2003)). This means each primitive task has a set of
conditions C={ c1, c2, ..., cm} and for each one of these
mutually exclusive and exhaustive conditions, ci, there
is a set of alternative effects εi={< ip1 , iE1 >, < ip2 , iE2 >,
..., < i

ni
p , i

ni
E >}, where i

jE is the jth effect triggered with
probability i

jp ∈ [0,1] by condition ci (i.e.,

i
ji

i
j pcEP =)|(), and such that ∑

=

=
in

j

i
jp

1

1 . Figure 2 pre-

sents the structure of a task. The probabilities of condi-
tions are represented in that structure although we as-
sume that conditions are independent of tasks. Thus,
P(ci|T)=P(ci). The main reason for this is to emphasize
that the EU of a task, in addition to the probability of
effects, depends on the probability of conditions too. In
addition to conditions and effects, a task has other in-
formation components. Formally, a task (primitive or
not) may be defined as follows.

Definition. A task is a tuple <PS, ID, TT, AID, DO,
IO, ST, ET, SL, EL, PR, A, EP, EU, P>, where: PS is
the set of preconditions that should be satisfied so that
the task can be executed; ID is the task’s identifier, i.e.,
an integer that uniquely identifies the task in a plan; TT
is the task category (e.g.: driveTruck, transport); AID
is the identifier of the agent that is responsible for the
execution of the task; DO is the direct object of the
task, i.e., the identifier of the entity that was subjected
to the task directly (e.g.: for a task of type driveTruck,
the direct object is the object - its id - to be driven; for
a task of type transport, the direct object is the entity
that is transported – for instance, a package); IO is the
indirect object of the task, i.e., the answer to the ques-
tion “To whom?” (e.g.: for a task of type give, the indi-
rect object is the entity that receives the entity (the di-
rect object) that is given – for instance, the person who

receives money); ST is the scheduled start time of the
task; ET is the scheduled end time of the task; SL is the
start location of the agent that is responsible for execut-
ing the task; EL is the end location of the agent that is
responsible for the execution of the task; PR is a boo-
lean value that is true when the task is primitive; A is a
boolean value that is true when the task is abstract (for
primitive tasks it is always false); EP is the set of alter-
native probabilistic conditional effects of the task, i.e.,
EP = {<ci,εi>: 1=< i <=m}; EU is the Expected Utility
of the task; P is the probability of the task (this is al-
ways 1.0 for every task except the heads of alternative
decompositions of an abstract task as we’ll explain
below).

Although non-primitive tasks are not directly
executable by an agent, they are represented like
primitive tasks. Therefore, some of the components are
meaningful only for primitive tasks. However, others
such as the set of alternative probabilistic conditional
effects are essential for the ranking of the alternative
decompositions of the abstract tasks in terms of the
EU. That is why the set of conditional probabilistic
effects and other meaningful properties are propagated
upward through the hierarchy from the primitive tasks
to the non-primitive tasks (this propagation will be
explained in detail below).

Each effect (see Figure 2) comprises itself a few
components of several kinds such as temporal, emo-
tional, etc. These components may be of two kinds:
non-procedural and procedural. The non-procedural
(factual) component refers to the data collected from
previous occurrences of the effect (contains the dura-
tion of the task, the emotions and respective intensities
felt by the agent, the fuel consumed, etc., in previous
executions of the task as stored in cases of plans). The
procedural component refers to the process through
which the temporal, emotional and other kinds of data
may be computed (contains descriptions or rules of
how to compute the components). Since the non-

procedural component of an effect may differ in differ-
ent occurrences of a task (the duration of the task may
be different, the emotions may be different, etc.), ef-
fects of tasks belonging to abstract plans may store the
probability distributions for each variable (see Figure
2).

c1
.
.
.

c2

cm
.
.
.

task

p1

p2

pm

.

.

.

1
1p
1
2p

1
1np

1
1E
1
2E

1
1nE

mp1

mp2

m
nm

p

mE1

mE2

m
nm

E

PS:truckAt(SL)
ID:1
TT:driveTruck
AID:1
DO:truck1
IC:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
P:true
A:false
EU:0.7
P:1.0

NPC:∆time={<20,0.55>,<19,0.45>};
∆fuel={-10,0.55>,<-11,0.45>};
truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,surprise=0;

dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

NPC:∆time={<30,1.0>};
∆fuel={<-20,1.0>}
truckAt(0,0,5),
aver_vel=60Km/h;
happiness=0,surprise=0.7;
anger=0.7;

dist=(OL)-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
fuel=startFuel-∆fuel
truckAt(OL), truckCrashed

wetRoad
0.18

dryRoad
0.82

0.75

0.25

NPC:∆time={<15,0.55>,<16,0.45>};
∆fuel={-7,0.55>,<-8,0.45>};
truckAt(EL),
aver_vel=90Km/h;
EC:happiness=0.8,surprise=0;

dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

1.0

Figure 2 - Schematic representation of a task in abstract
plan: general form and example.

Formally, an effect may be defined as follows.
Definition. An effect is a tuple <ID, EC, EU, P,

NPC, PC>, where: ID is the identifier of the effect, i.e.,
an integer value that uniquely identifies the effect in
the list of effects of the task; EC is the effect category
to which it belongs (like tasks, effects are classified
into categories); EU is the utility value (expected utility
value for the case of tasks in abstract plans) of the ef-
fect; P is the probability value of the effect, i.e., the
relative frequency of the effect (this gives us the num-
ber of times the effect occurred given that the task and
the condition that triggers it occurred); NPC is the non-
procedural component; PC is the procedural compo-
nent.

Cases of plans share most of the features of abstract
plans being also of hierarchical nature. The major dif-
ferences are: unlike abstract plans, cases of plans don’t
have OR structures and consequently don’t have ab-
stract tasks; the primitive tasks have a probability of
1.0 (otherwise they won’t belong to the case) and can
only have a conditional effect since the conditions are
mutually exclusive and exhaustive. Notice that, al-
though a non-primitive task of a case of a plan may
exhibit an effect, this is not relevant, since in real world
only the primitive tasks are executable. However, the
way a non-primitive task was decomposed is of pri-
mary importance for the generation of abstract plans as
we will explain in the following section. Figure 3
shows an example of two cases of plans which are in-
stances of the abstract plan presented in Figure 1, while
Figure 4 presents an example of a primitive task which
is an instance of the primitive task of an abstract plan
presented in Figure 2.

transport

inCityDe

driveTruck loadTruck driveTruck unloadTruck

transport

inCityDel airDel inCityDel

doNothing flyAirplane

loadAirplane driveTruck

loadTruck

driveTruck

unloadTruck

case1

case2

Figure 3 - Example of a case-base with two concrete plans (instances of the abstract plan of Figure 1).

task ci1.0 i
kE

wetRoad

PS:truckAt(SL)
ID:1
TC:driveTruck
AID:1
DO:truck1
IC:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
PR:true
A:false
EU:0.7
P:1.0

NPC:∆time=20;
∆fuel=-10;
 truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,
surprise=0;

dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel;
truckAt(EL)

1.0

Figure 4 - Schematic representation of a task in an in-
stance plan: general form and example.

3 Plan Generation

Since the planner is used by an agent that is part of a
multi-agent environment, in order to solve a planning
problem, the agent should have in memory the
information of the initial state of the environment. This
comprises a three-dimensional metric map of the envi-
ronment (Thrun, 2002) in which inanimate and other
animate agents are spatially represented. Figure 5 pre-
sents an example of a metric map that represents an
initial state of world.

p k 1p k 2

p k3

A irp o rt

tru c k 1

Z

y

x

Figure 5 – Example of the metric map of an initial state
of the environment in the logistics domain. It com-
prises: one truck (truck1) located at coordinates
(11,0,0); three packages, pk1, pk2 and pk3, located at,
respectively, (8,0,0), (10,3,0) and (4,3,0); and, one
plane located at the airport with coordinates (2,1,0).

A problem is an initial and incomplete HTN, i.e., a

set of goal tasks. Planning is a process by which that
initial HTN is completed resulting an abstract plan
ready to be executed and incorporating alternative
courses of action, i.e., it includes replanning proce-
dures. Roughly speaking, this involves the following
steps: first, the structure of the abstract plan (HTN) is
built based on cases of past plans (this is closely related
to the regular HTN planning procedure); then the con-
ditional effects, probabilities are computed based on
the primitive tasks of cases of past plans; the EU is
computed for the primitive tasks of this abstract plan
based on the procedural or non-procedural components
of their effects; finally, these properties (conditional
effects and respective probabilities, and EU) are propa-
gated upward in the HTN, from the primitive tasks to
the main task of the HTN. Figure 6 presents this algo-
rithm.

Algorithm CONSTRUCT-ABSTRACT-PLAN(abstPlan)
 abstPlan ← BUILD-STRUCTURE(abstPlan)
 primTasks ← getPrimTasks(abstPlan)
 primTasksAllPlanCases← getPrimTasksAllPlanCases()
 COMPUT-PRIMTASKS-
PROPS(primTasks,primTasksAllPlanCases)
 abstPlan←PROPAGAT-PROPS-UPWARD(primTasks,abstPlan)
 return abstPlan
end

Figure 6 - Algorithm for the construction of an abstract
plan.

3.1 Building the Structure of the Abstract
Plan

Much like regular HTN planning, building the abstract
plan is a process by which the initial HTN is completed
through the recursively decomposition of its compound
tasks. Unlike regular HTN planning, within our ap-
proach the domain theory (methods and operators in
regular HTN planning) is confined to a finite set of
actions/operators. Thus there are no explicit methods to
describe how to decompose a task into a set of sub-
tasks. Actually, methods are implicitly present in cases

of past plans (see (Muñoz-Avila et al., 2001) for a
similar approach). This is particularly useful in do-
mains where there is no theory available. Therefore,
the process of decomposing a task into subtasks is
case-based and is performed as follows. Given a task,
the possible alternative decompositions (task and its
subtasks, as well as the links between them) are re-
trieved from cases of past plans. Two situations might
happen. If there are more than one alternative decom-
position, the given task is set as abstract and the set of
decompositions are added to the HTN, linking each
head task to the abstract task through a hierarchical link
of type abst. Thus these head tasks are now the sub-
tasks of the abstract task (see Figure 7 for an illustra-
tion of this process). On the other hand, if only one
decomposition is retrieved, its subtasks are added as
subtasks of the given task, linked by a hierarchical link
of type dcmp (see Figure 8 for an illustration of this
process). Whether a single decomposition or multiple
decompositions are retrieved, the addition of it/them
comprises an adaptation process (Kolodner, 1993), i.e.,
the retrieved decomposition(s) is/are changed if neces-
sary so that it/they is/are consistent with the rest of the
HTN.

Retrieved decompositions for

task transport::
Current abstract plan

(incomplete):

transport
transport

inCityDel airDel inCityDel

transport

inCityDel

Abstract plan (incomplete)
after the abstrat
decomposition:

transport

transport

inCityDel airDe inCityDel

transport

inCityDel

Figure 7 - Illustrative example of an OR-decomposition of an abstract task.

Retrieved decompositions for
task airDel:

Current abstract plan
(incomplete):

Abstract plan (incomplete)
after the abstrat
decomposition:

transport

transport

inCityDel airDel inCityDel

transport

inCityDel

airDel

flyAirplaneloadAirplane

transport

transport

inCityDel airDel inCityDel

transport

inCityDel

flyAirplaneloadAirplane()

Figure 8 - Illustrative example of an AND-decomposition of a regular compound task.

The process of building the HTN ends when there is
no more compound tasks to decompose, i.e., when the
leaves of the tree are primitive tasks, or when there is
no available decompositions in the case-base for at
least one compound task.

Within our approach, a task belonging to an HTN
has a probability value associated to it. This value ex-
presses the probability of being executed given that its
ancestor is executed. Thus, this probability is actually a
conditional probability. Obviously, the probability of a
task belonging to a case of a past plan is always 1.0
because it was executed (otherwise it won’t belong to
the case). The probability of the tasks belonging to an
abstract plan is computed during the process of build-
ing the HTN as follows. Given the ith subtask, STi, of a
task T both belonging to an abstract plan, the probabil-
ity of STi be executed given that T is executed is given
by the conditional probability for-
mula

)(
)(

)/(
TP

TSTPTSTP i
i

∩
= . Since within our approach

there is no probabilistic model available, these prob-
abilities have to be computed from data, i.e., from past
occurrences of the tasks in cases of past plans, in the
following manner. According to the frequency interpre-

tation of probability, in r repetitions of an experiment,
the value P(X) is given by the number of times X oc-
curred in the possible r times. This value is given by
Sr(X)/r, where Sr(X) denotes the absolute frequency of
X (i.e., the number of times X occurred in the r repeti-
tions of the experiment). As r increases, Sr(X)/r con-
verges to P(X). In the context of HTN planning, the
experiment should be understood as the decomposition
of a task into subtasks. According to this frequentist
approach of probability it can be shown that,

)(
)(

)(
)()/(

TS
TSTS

TP
TSTPTSTP

r
iri

i
∩=∩= , when r is big. Thus,

this expresses the number of times STi and T occurred
together in the total amount of times T occurred, or in
the context of HTN planning, this expresses the num-
ber of times STi was subtask of T in the total amount of
times T was the task decomposed in past HTN plans.
When STi is not a head of an alternative decomposition
in the new plan (i.e., when T is not an abstract task), it
means that T was always decomposed in the same way
in past plans, i.e., into the same subtasks, which means
STi occurred always when T occurred, otherwise STi
won’t be subtask of T. Thus, in this situation, the nu-
merator and denominator of the above equation are
equal and therefore P(STi/T)=1.0. However, when STi
is a head of an alternative decomposition, it means

there were more than one way to decompose T in past
plans, one of them being the decomposition headed by
STi. Thus, counting the number of times the decompo-
sition headed by STi was taken to decompose T, i.e., the
number of times STi instantiated T,)(TSTS ir ∩ , in all
past plans and dividing this number by the number of
times T was decomposed, i.e.,)(TSr , yields the value
for P(STi/T) for this situation.

After the abstract HTN is built, the conditional ef-
fects (and respective probabilities) and the EU are
computed for the primitive tasks.

3.2 Motivation and Emotion-based Com-
putation of the EU

As said above, a task T is both conditional and prob-
abilistic (e.g.: (Blythe, 1999)). Thus, the execution of a
goal task under a given condition may be seen accord-
ing to Utility Theory as a lottery (Russel & Norvig,
1995):

 ×××= m

n
m
n

m
mm

EppEppEppTLottery ,;...;,;,)(1
2

1
2

11
1

1
1

1

, where ip is the probability of the condition ci, i
jp

is the probability of the jth effect, i
jE , of condition ci.

The EU of T may be then computed as follows:

∑ ××=
jk

k
j

k
j

k EEUppTEU
,

)()(

The computation of)(k
jEEU is performed predicting

the motivations that could be elicited by achiev-
ing/executing the goal task (Castelfranchi, Conte, Mi-
celi, & Poggi, 1996; Reisenzein, 1996). We confined
the set of motivations to surprise, curiosity and hun-
ger1. As said above, two methods may be used for pre-
dicting the intensities of those motivations: based on
the non-procedural component of the effects, or based
on the procedural component.

If we take into account the procedural component of
the effects, the intensities of surprise, curiosity and
hunger felt by the agent when the effect takes place are
estimated based on the information available in the
effect about the changes produced in the world.

Surprise is given by (Macedo & Cardoso, 2001a):

)(1
))(,(),(

k

kk
ObjP

MemAgtObjNESSUNEXPECTEDObjAgtSURPRISE
−=

==

, where Objk is the direct object of task T when k

jE
takes place, i.e., the entity that is visited (for the case of
exploratory behaviour).

Curiosity is computed as follows (Macedo & Car-

doso, 2001b):
))(,(),(MemAgtObjDIFFERENCEObjAgtCURIOSITY kk =

1 The agents that make use of the planning approach de-
scribed in this paper have been used to explore unknown
environments, and to create things. Among motivations, sur-
prise, curiosity and hunger have been closely related with this
exploratory and creative behaviour (Berlyne, 1950; Boden,
1995; Izard, 1991).

The measure of difference relies heavily on error

correcting code theory (Hamming, 1950): the function
computes the distance between two objects represented
by graphs, counting the minimal number of changes
(insertions and deletions of nodes and edges) required
to transform one graph into another.

The drive hunger is defined as the need of a source
of energy. Given the capacity C of the storage of that
source, and L the amount of energy left (L ≤ C), the
hunger elicited in an agent is computed as follows:

HUNGER(Agt)=C-L

The following function is used to compute)(k

jEEU :

∑

∑

×+×+×
=

=
×+×+×

=

=

i
i

k
j

k
j

k
j

i
i

k
jhunger

k
jcuriosity

k
jsurprise

k
j

EHUNGERECURIOSITYESURPRISE

EUEUEU

EEU

α

ααα

α

ααα

)()()(

)()()(

)(

221

221

, where, α2 = -1 and αi (i≠2) may be defined as fol-
lows:

⇐
>−−⇐

=
otherwise

DAgtHUNGERC
i 0

0)(1
α

, where D is the amount of energy necessary to go

from the end location of goal task T to the closer place
where energy could be recharged, and C is the maxi-
mum amount of energy that could be stored by the
agent.

If we take into account the non-procedural compo-
nent of the effects, we avoid the computations of the
intensities of the motivations. In fact, doing so, we are
taking into account the intensities of the emotions,
drives and other motivations in previous occurrences of
the tasks and respective effects. This emo-
tional/motivational information collected from previ-
ous occurrences of a task is a kind of Damásio’s so-
matic marker. For this reason, tasks are called somati-
cly-marked tasks. When a task is about to occur again,
the planning agent may compute its EU based on this
data. In fact, this seems to be faster than the alternative
approach of estimating the emotions that a task may
elicit based on the values of the variables of the state of
the world such as the time duration, fuel consumed,
etc. Anyway, the same formula (present above) is used
to compute)(k

jEEU .

3.3 Propagation of the Properties Upward

After the primitive tasks have the conditional effects
and respective probabilities, the probability and EU
computed, these properties are propagated bottom-up
(from primitive to non-primitive tasks), from the sub-

tasks to the task of a decomposition and from the sub-
tasks (heads of alternative decompositions) to the ab-
stract task of an abstract decomposition). Notice how-
ever that the goal of this propagation is twofold: to
complete the non-primitive tasks so that they can be
ranked according to their EU when they are heads of
alternative decompositions, and to know the overall EU
of the abstract plan which is given by the EU of the
main task of the plan.

4 Plan Execution and Replanning

Finding the optimal plan consists simply of traversing
the abstract plan, selecting the most EU subtask of an
abstract task. Backtracking occurs when an alternative
decomposition fails execution. In this case, the next
alternative decomposition that follows the previous in
the EU ranking is selected for execution.

5 Related Work

Our work is closely related to HTN planning. This
methology has been extensively used in planning sys-
tems such as UMCP (Erol et al., 1994), SHOP and
SHOP2 (Nau et al., 2001). Unlike these planners, the
planner presented in this paper don’t use methods as
part of the domain theory for task decomposition, but
instead methods that are implicitly included in cases
that describe previous planning problem solving ex-
periences. SiN (Muñoz-Avila et al., 2001) also uses a
case-based HTN planning algorithm, in which cases
are instances of methods.

Among decision-theoretic planners, DRIPS
(Haddawy & Doan, 1994) is probably the most closely
related to the planner presented here. Actually, DRIPS
shares a similar representation approach for abstract
plans (an abstraction/decomposition hierarchy) and for
actions. Besides, it also returns the optimal plan ac-
cording to a given utility function. However, in con-
trast to DRIPS, in our planner the variant of a HTN that
represents abstract plans is automatically built from
cases and not given as input for the planning problem.
Besides, it includes temporal, utility ranking and adap-
tation links in addition to decomposition links. Another
major difference is that, in our planner, the EU of tasks
and of alternative plans are computed when the abstract
plan is built, while in DRIPS this occurs when the op-
timal plan is searched. Besides, in our planner, there is
the possibility of computing the EU of tasks based on
the non-procedural component of their effects, which
avoids some additional computations at the cost of be-
ing less accurate. Moreover, finding the optimal plan in
our planner consists simply of traversing the HTN with
backtracking (or replanning) points located at the sub-
tasks of an abstract task. In our planner the propagation
of properties upward in the hierarchy is closely related
with the approach taken in DRIPS for abstracting ac-
tions (Haddawy & Doan, 1994). A propagation of
properties in the planning tree, bottom-up and left-to-
right, is also used in GraphHTN (Lotem & Nau, 2000)
in order to improve the search algorithm.

Another important work that addressed planning in
agents inhabiting dynamic, uncertain environments is
that of (Wilkins, Myers, & Wesley, 1994).

The relationship between emotions and plans has
been considered previously by several authors (e.g.:
(Bates, 1994; Gratch, 1999; Oatley & Johnson-Laird,
1987; Simon, 1967; Sloman, 1987)). Our main addi-
tional contribution to this works is considering somati-
cly-marked tasks (Damásio, 1994).

6 Conclusions and Future Work

We have presented an approach for decision-theoretic,
HTN planning. In this approach emotions and motiva-
tions play a central role in that the EU of the tasks is
based on the intensity of the emotions and other moti-
vations they elicit. Two approaches have been pro-
posed to compute the EU of tasks based on motiva-
tions: based on the procedural or non-procedural (fac-
tual) component of the effects of the tasks. The latter
approach seems to be faster and is deeply related with
Damásio’s somatic-marker hypothesis. However, addi-
tional experiments are required to assess these ideas. In
the future, we plan to perform such experiments.

Aknowledgements

The PhD of Luís Macedo is financially supported by
PRODEP III.

References

Allen, J. (1983). Maintaining knowledge about tempo-

ral intervals. Communications of the ACM, 26(11),
832-- 843.

Bates, J. (1994). The Role of Emotion in Believable
Agents. Communications of the ACM, 37(7), 122-
125.

Berlyne, D. (1950). Novelty and curiosity as determi-
nants of exploratory behavior. British Journal of Psy-
chology, 41, 68-80.

Blythe, J. (1999). Decision-Theoretic Planning. AI
Magazine, Summer 1999.

Boden, M. (1995). Creativity and unpredictability.
SEHR, 4(2).

Castelfranchi, C., Conte, R., Miceli, M., & Poggi, I.
(1996). Emotions and goals. In B. Kokinov (Ed.),
Perspectives on Cognitive Science (pp. 131-145).
Sofia: New Bulgarian University.

Damásio, A. (1994). Descartes'error, Emotion Reason
and the Human Brain. New York: Grosset/Putnam
Books.

Erol, K., Hendler, J., & Nau, D. (1994). UMCP: A
sound and complete procedure for hierarchical task-
network planning, Proceedings of the International
Conference on AI Planning Systems (pp. 249-254).

Gratch, J. (1999). Why you should buy an emotional
planner, Proceedings of the Agents'99 Workshop on
Emotion-based Agent Architectures.

Haddawy, P., & Doan, A. (1994). Abstracting probabil-
istic actions, Proceedings of the Tenth Conference on
Uncertainty in Artificial Intelligence (pp. 270-277).
San Mateo, CA: Morgan Kaufmann.

Hamming, R. (1950). Error Detecting and Error Cor-
recting Codes. The Bell System Technical Journal,
26(2), 147-160.

Izard, C. (1991). The Psychology of Emotions. NY:
Plenum Press.

Kolodner, J. (1993). Case-Based Reasoning. San
Mateo, CA: Morgan-Kaufmann.

LeDoux, J. (1996). The Emotional Brain. New York:
Simon and Schuster.

Littman, M., & Majercik, S. (1997). Large-Scale Plan-
ning Under Uncertainty: A Survey, Workshop on
Planning and Scheduling for Space (pp. 27:21--28).

Lotem, A., & Nau, D. (2000). New advances in
GraphHTN: Identifying independent subproblems in
large HTN domains, dings of the International Con-
ference on AI Planning Systems (pp. 206-215).

Macedo, L., & Cardoso, A. (1998). Nested-Graph
structured representations for cases. In B. Smyth & P.
Cunningham (Eds.), Advances in Case-Based Rea-
soning - Proceedings of the 4th European Workshop
on Case-Based Reasoning (Vol. 1488, pp. 1-12). Ber-
lin: Springer-Verlag.

Macedo, L., & Cardoso, A. (2001a). Modelling Forms
of Surprise in an Artificial Agent. In J. Moore & K.
Stenning (Eds.), Proceedings of the 23rd Annual
Conference of the Cognitive Science Society (pp.
588-593). Mahwah, NJ: Erlbaum.

Macedo, L., & Cardoso, A. (2001b). SC-EUNE - Sur-
prise/Curiosity-based Exploration of Uncertain and
Unknown Environments., Proceedings of the AISB'01
Symposium on Emotion, Cognition and Affective
Computing (pp. 73-81). York, UK: University of
York.

Meyer, W., Reisenzein, R., & Schützwohl, A. (1997).
Towards a process analysis of emotions: The case of
surprise. Motivation and Emotion, 21, 251-274.

Muñoz-Avila, H., Aha, D., Nau, D., Breslow, L., We-
ber, R., & Yamal, F. (2001). SiN: Integrating Case-
based Reasoning with Task Decomposition, Proceed-
ings of the Seventeenth International Joint Confer-
ence on Artificial Intelligence (IJCAI-2001). Seattle,
WA: Morgan Kaufmann.

Nau, D., Muñoz-Avila, H., Cao, Y., Lotem, A., & Mi-
tchell, S. (2001). Total-order planning with partially
ordered subtasks, Proceedings of the Seventeenth In-
ternational Joint Conference on Artificial Intelli-
gence. Seattle, WA: Morgan Kaufmann.

Oatley, K., & Johnson-Laird, P. (1987). Towards a
cognitive theory of emotions, cognition and emotion.
Cognition and Emotion, 1(1), 29-50.

Ortony, A., & Partridge, D. (1987). Surprisingness and
Expectation Failure: What's the Difference?, Pro-

ceedings of the 10th International Joint Conference
on Artificial Intelligence (pp. 106-108). Los Altos,
CA: Morgan Kaufmann.

Reisenzein, R. (1996). Emotional Action Generation.
In W. Battmann & S. Dutke (Eds.), Processes of the
molar regulation of behavior. Lengerich: Pabst Sci-
ence Publishers.

Reisenzein, R. (2000). The subjective experience of
surprise. In H. Bless & J. Forgas (Eds.), The message
within: The role of subjective experience in social
cognition and behavior. Philadelphia, PA: Psychol-
ogy Press.

Russel, S., & Norvig, P. (1995). Artificial Intelligence -
A Modern Approach. Englewood Cliffs, NJ: Prentice
Hall.

Simon, H. (1967). Motivational and emotional controls
of cognition. Psychological Review, 74, 29-39.

Sloman, A. (1987). Motives, mechanisms and emo-
tions. Cognition and Emotion, 1, 217-234.

Thrun, S. (2002). Robotic mapping: A survey. In G.
Lakemeyer & B. Nebel (Eds.), Exploring Artificial
Intelligence in the New Millenium. San Mateo, CA:
Morgan Kaufmann.

Wilkins, D., Myers, K., & Wesley, L. (1994). Cypress:
Planning and Reacting under Uncertainity. In M.
Burstein (Ed.), ARPA/Rome Laboratory Planning
and Scheduling Initiative Workshop Proceedings (pp.
111-120). San Mateo, CA: Morgan Kaufmann Pub-
lishers Inc.

Younes, H. (2003). Extending PDDL to model stochas-
tic decision processes, Proceedings of the ICAPS-02
Workshop on PDDL.

