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Abstract 

 
This paper describes an emotional-based planner that combines the technique of decision-theoretic planning with the 
methology of HTN planning in order to deal with uncertain, dynamic large-scale real-world domains. We explain how 
plans are represented, generated and executed. Unlike in regular HTN planning, this planner can generate plans in do-
mains where there is no complete domain theory by using cases instead of methods for task decomposition. The planner 
generates a variant of a HTN - a kind of AND/OR tree of probabilistic conditional tasks - that expresses all the possible 
ways to decompose an initial task network. The expected utility of alternative plans is computed beforehand at the time of 
building the HTN. Two approaches are proposed for this computation: based on motivational information collected from 
past executions of tasks (a kind of somatic-markers) or given by mathematical functions. The planner is used by agents 
inhabiting unknown, dynamic environments. 

 
 
1   Introduction 
 
Hierarchical Task Network (HTN) planning is a plan-
ning methology that is more expressive than STRIPS-
style planning (Erol, Hendler, & Nau, 1994). Given a 
set of tasks that need to be performed (the planning 
problem), the planning process decomposes them into 
simpler subtasks until primitive tasks or actions that 
can be directly executed are reached. Methods provided 
by the domain theory indicate how tasks are decom-
posed into subtasks. However, for many real-world 
domains, sometimes it is hard to collect methods to 
completely model the generation of plans. For this rea-
son an alternative approach that is based on cases of 
methods has been taken in combination with methods 
(Muñoz-Avila et al., 2001). 

Real-world domains are usually dynamic and uncer-
tain. In these domains actions may have several out-
comes, some of which may be more valuable than oth-
ers. Planning in these domains require special tech-
niques for dealing with uncertainty. Actually, this has 
been one of the main concerns of the planning research 
in the last years, and several decision-theoretic plan-
ning approaches have been proposed and used success-
fully, some based on the extension of classical plan-
ning and others on Markov-Decision Processes (see 
(Blythe, 1999; Littman & Majercik, 1997) for a sur-
vey). In these decision-theoretic planning frameworks 
actions are usually probabilistic conditional actions, 
preferences over the outcomes of the actions is ex-
pressed in terms of an utility function, and plans are 
evaluated in terms of their Expected Utility (EU) 
(Russel & Norvig, 1995). The main goal is to find the 
plan or set of plans that maximizes an EU function, i.e, 

to find the optimal plan. However, this might be a 
computationally complex task. 

Considered by many authors as the principal motiva-
tional system, emotion is one of the sub-systems that 
compose personality (Izard, 1991). Another important 
sub-system is the drive system (also an important kind 
of the motivational system). Psychological and neuro-
science research over the past decades suggests that 
emotions play a critical role in decision-making, action 
and performance, by influencing a variety of cognitive 
processes (e.g., attention (Izard, 1991; Meyer, Reisen-
zein, & Schützwohl, 1997; Ortony & Partridge, 1987; 
Reisenzein, 2000), planning (Gratch, 1999), etc.). Ac-
tually, on the one hand, recent research in neuroscience 
(Damásio, 1994; LeDoux, 1996) supports the impor-
tance of emotions on reasoning and decision-making. 
For instance, results from recent studies of patients 
with lesions of the prefrontal cortex suggest an impor-
tant role of emotions in decision-making. On the other 
hand, there are a few theories in psychology relating 
motivations (including drives and emotions) to action 
(Izard, 1991). For instance, in the specific case of emo-
tions, as outlined by (Reisenzein, 1996), within the 
context of the belief-desire theories of action (the 
dominant class of theories in today’s motivation psy-
chology) there have been proposals such as that emo-
tions are action goals, that emotions are or include ac-
tion tendencies, that emotions are or include goal-
desires, and that emotions are mental states that gener-
ate goal-desires. 

In this paper we propose an emotional-based ap-
proach for decision-theoretic planning, HTN planning. 
In this approach, actions have several outcomes, each 
one eliciting different emotions, drives and other moti-



vations (elicited by the objects perceived). This 
motivational information is collected from past 
executions of tasks (a kind of somatic-markers) or 
given by mathematical functions. The selection of 
actions is based on their EU, which is measured in 
terms of this motivational information, i.e., based on 
the intensity of the emotions, drives and other 
motivations it may elicit. The planner combines the 
technique of decision-theoretic planning with the 
methology of HTN planning in order to deal with un-
certain, dynamic large-scale real-world domains. 
Unlike in regular HTN planning, we don’t use methods 
for task decomposition, but instead cases of plans. The 
planner generates a variant of a HTN - a kind of 
AND/OR tree of probabilistic conditional tasks - that 
expresses all the possible ways to decompose an initial 
task network. The EU of tasks and consequently of the 
alternative plans is computed beforehand at the time of 
building the HTN.  

The next section describes the features of the planner 
related with plan representation. Section 3 presents the 
plan generation process and section 4 the plan execu-
tion and replanning process. Finally, we present the 
related work, and present conclusions and future work. 
 
2   Plan Representation 
 
Within our approach we may distinguish two main 
kinds of plans: concrete plans, i.e., cases of plans 
(Kolodner, 1993), and abstract plans. Concrete plans 
and abstract plans are interrelated since concrete plans 
are instances of abstract plans and these are built from 
concrete plans. Since the concept of abstract plan sub-
sumes the concept of concrete plan, let us first describe 
the representation issues related with abstract plans and 
then present the main differences between concrete 
plans and abstract plans. 
We represent abstract plans as a hierarchy of tasks (a 
variant of HTNs (e.g., (Erol et al., 1994; Nau, Muñoz-
Avila, Cao, Lotem, & Mitchell, 2001)) (see Figure 1). 
Formally, an abstract plan is a tuple AP = <T, L>, 
where T is the set of tasks and L is the set of links. 
More precisely, we represent an abstract plan by a hi-
erarchical graph-structured representation comprising 
tasks (represented by the nodes) and links (represented 
by the edges). We adopted the adjacency matrix ap-
proach to represent these graphs (Macedo & Cardoso, 
1998). The links may be of hierarchical (abstraction or 
decomposition), temporal, utility-ranking or adaptation 
kind. This structure has the form of a planning tree 

(Lotem & Nau, 2000), i.e., it is a kind of AND/OR tree 
that expresses all the possible ways to decompose an 
initial task network. Like in regular HTNs, this hierar-
chical structure of a plan comprises primitive tasks or 
actions (non-decomposable tasks) and non-primitive 
tasks (decomposable or compound tasks). Primitive 
tasks correspond to the leaves of the tree and are di-
rectly executed by the agent, while compound tasks 
denote desired changes that involve several subtasks to 
accomplish it. For instance, the leaf node driveTruck of 
Figure 1 is a primitive task, while inCityDel is a com-
pound task. The decomposition of a compound task 
into a sequence of subtasks is represented by linking 
the compound task to each subtask by a hierarchical 
link of type decomposition (denoted by dcmp). This 
corresponds to an AND structure. In addition, a hierar-
chical plan may also include special tasks in order to 
express situations when a decomposable task has at 
least two alternative decompositions. Thus, these spe-
cial tasks are tasks whose subtasks are heads of those 
alternative decompositions. We called abstract tasks to 
those special decomposable tasks because they may be 
instantiated by one of their alternative subtasks. Thus, 
they are a kind of abstractions of their alternative in-
stances. Notice that the subtasks of an abstract task 
may themselves be abstract tasks. This decomposition 
of abstract tasks into several alternative instances is 
expressed by linking the abstract task to each subtask 
by a hierarchical link of type abstract (denoted by 
abst). This corresponds to an OR structure. As we said, 
in addition to hierarchical links that express AND or 
OR decomposition (dcmp and abst), there are also tem-
poral, utility-ranking and adaptation links between 
tasks. Temporal links are just like in regular HTNs. We 
followed the temporal model introduced by (Allen, 
1983). Thus, links such as after, before, during, over-
lap, etc., may be found between tasks of an abstract 
plan. Utility-ranking links (denoted by more_useful) 
are used between subtasks of abstract tasks in order to 
express a relation of order with respect to their EU, i.e., 
the head tasks of the alternative decompositions of a 
given abstract task are ranked according to the EU of 
their decompositions. Adaptation links (Kolodner, 
1993) are useful to generate an abstract plan from sev-
eral plan cases. They explain how tasks and their com-
ponents are related in a plan and therefore they explain 
how to adapt portions of cases of plans when they are 
reused to construct an abstract plan. 
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Figure 1 - Example of an abstract plan. Primitive tasks are represented by thick ellipses while non-primitive tasks are 
represented by thin ellipses. Dashed, thick arrows represent abst links, while thin arrows represent dcmp links. 
 
 

A task T is both conditional and probabilistic (e.g.: 
(Blythe, 1999; Haddawy & Doan, 1994; Younes, 
2003)). This means each primitive task has a set of 
conditions C={ c1, c2, ..., cm} and for each one of these 
mutually exclusive and exhaustive conditions, ci, there 
is a set of alternative effects εi={< ip1 , iE1 >, < ip2 , iE2 >, 
..., < i

ni
p , i

ni
E >}, where i

jE  is the jth effect triggered with 
probability i

jp  ∈ [0,1] by condition ci (i.e., 

i
ji

i
j pcEP =)|( ), and such that ∑

=

=
in

j

i
jp

1

1 . Figure 2 pre-

sents the structure of a task. The probabilities of condi-
tions are represented in that structure although we as-
sume that conditions are independent of tasks. Thus, 
P(ci|T)=P(ci). The main reason for this is to emphasize 
that the EU of a task, in addition to the probability of 
effects, depends on the probability of conditions too. In 
addition to conditions and effects, a task has other in-
formation components. Formally, a task (primitive or 
not) may be defined as follows. 

Definition. A task is a tuple <PS, ID, TT, AID, DO, 
IO, ST, ET, SL, EL, PR, A, EP, EU, P>, where: PS is 
the set of preconditions that should be satisfied so that 
the task can be executed; ID is the task’s identifier, i.e., 
an integer that uniquely identifies the task in a plan; TT 
is the task category (e.g.: driveTruck, transport); AID 
is the identifier of the agent that is responsible for the 
execution of the task; DO is the direct object of the 
task, i.e., the identifier of the entity that was subjected 
to the task directly (e.g.: for a task of type driveTruck, 
the direct object is the object - its id - to be driven; for 
a task of type transport, the direct object is the entity 
that is transported – for instance, a package); IO is the 
indirect object of the task, i.e., the answer to the ques-
tion “To whom?” (e.g.: for a task of type give, the indi-
rect object is the entity that receives the entity (the di-
rect object) that is given – for instance, the person who 

receives money); ST is the scheduled start time of the 
task; ET is the scheduled end time of the task; SL is the 
start location of the agent that is responsible for execut-
ing the task; EL is the end location of the agent that is 
responsible for the execution of the task; PR is a boo-
lean value that is true when the task is primitive; A is a 
boolean value that is true when the task is abstract (for 
primitive tasks it is always false); EP is the set of alter-
native probabilistic conditional effects of the task, i.e., 
EP = {<ci,εi>: 1=< i <=m}; EU is the Expected Utility 
of the task; P is the probability of the task (this is al-
ways 1.0 for every task except the heads of alternative 
decompositions of an abstract task as we’ll explain 
below). 

Although non-primitive tasks are not directly 
executable by an agent, they are represented like 
primitive tasks. Therefore, some of the components are 
meaningful only for primitive tasks. However, others 
such as the set of alternative probabilistic conditional 
effects are essential for the ranking of the alternative 
decompositions of the abstract tasks in terms of the 
EU. That is why the set of conditional probabilistic 
effects and other meaningful properties are propagated 
upward through the hierarchy from the primitive tasks 
to the non-primitive tasks (this propagation will be 
explained in detail below). 

Each effect (see Figure 2) comprises itself a few 
components of several kinds such as temporal, emo-
tional, etc. These components may be of two kinds: 
non-procedural and procedural. The non-procedural 
(factual) component refers to the data collected from 
previous occurrences of the effect (contains the dura-
tion of the task, the emotions and respective intensities 
felt by the agent, the fuel consumed, etc., in previous 
executions of the task as stored in cases of plans). The 
procedural component refers to the process through 
which the temporal, emotional and other kinds of data 
may be computed (contains descriptions or rules of 
how to compute the components). Since the non-



procedural component of an effect may differ in differ-
ent occurrences of a task (the duration of the task may 
be different, the emotions may be different, etc.), ef-
fects of tasks belonging to abstract plans may store the 
probability distributions for each variable (see Figure 
2). 
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PS:truckAt(SL)
ID:1
TT:driveTruck
AID:1
DO:truck1
IC:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
P:true
A:false
EU:0.7
P:1.0

NPC:∆time={<20,0.55>,<19,0.45>};
∆fuel={-10,0.55>,<-11,0.45>};
truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

NPC:∆time={<30,1.0>};
∆fuel={<-20,1.0>}
truckAt(0,0,5),
aver_vel=60Km/h;
happiness=0,surprise=0.7;
anger=0.7;
----------------------------
dist=(OL)-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
fuel=startFuel-∆fuel
truckAt(OL), truckCrashed

wetRoad
0.18

dryRoad
0.82

0.75

0.25

NPC:∆time={<15,0.55>,<16,0.45>};
∆fuel={-7,0.55>,<-8,0.45>};
truckAt(EL),
aver_vel=90Km/h;
EC:happiness=0.8,surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel
truckAt(EL)

1.0

 
Figure 2 - Schematic representation of a task in abstract 
plan: general form and example. 

 
Formally, an effect may be defined as follows. 
Definition. An effect is a tuple <ID, EC, EU, P, 

NPC, PC>, where: ID is the identifier of the effect, i.e., 
an integer value that uniquely identifies the effect in 
the list of effects of the task; EC is the effect category 
to which it belongs (like tasks, effects are classified 
into categories); EU is the utility value (expected utility 
value for the case of tasks in abstract plans) of the ef-
fect; P is the probability value of the effect, i.e., the 
relative frequency of the effect (this gives us the num-
ber of times the effect occurred given that the task and 
the condition that triggers it occurred); NPC is the non-
procedural component; PC is the procedural compo-
nent. 
 

Cases of plans share most of the features of abstract 
plans being also of hierarchical nature. The major dif-
ferences are: unlike abstract plans, cases of plans don’t 
have OR structures and consequently don’t have ab-
stract tasks; the primitive tasks have a probability of 
1.0 (otherwise they won’t belong to the case) and can 
only have a conditional effect since the conditions are 
mutually exclusive and exhaustive. Notice that, al-
though a non-primitive task of a case of a plan may 
exhibit an effect, this is not relevant, since in real world 
only the primitive tasks are executable. However, the 
way a non-primitive task was decomposed is of pri-
mary importance for the generation of abstract plans as 
we will explain in the following section. Figure 3 
shows an example of two cases of plans which are in-
stances of the abstract plan presented in Figure 1, while 
Figure 4 presents an example of a primitive task which 
is an instance of the primitive task of an abstract plan 
presented in Figure 2. 
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Figure 3 - Example of a case-base with two concrete plans (instances of the abstract plan of Figure 1). 

 
 
 

task ci1.0 i
kE

wetRoad

PS:truckAt(SL)
ID:1
TC:driveTruck
AID:1
DO:truck1
IC:
ST:0
ET:20
SL:0,0,1
EL:0,0,7
PR:true
A:false
EU:0.7
P:1.0

NPC:∆time=20;
∆fuel=-10;
 truckAt(EL),
aver_vel=90Km/h;
happiness=0.5,
surprise=0;
----------------------------
dist=EL-SL
∆time=vel x dist
∆fuel=startFuel-(c x dist)
Fuel=startFuel-∆fuel;
truckAt(EL)

1.0

 
Figure 4 - Schematic representation of a task in an in-
stance plan: general form and example. 

 
3   Plan Generation 
 
Since the planner is used by an agent that is part of a 
multi-agent environment, in order to solve a planning 
problem, the agent should have in memory the 
information of the initial state of the environment. This 
comprises a three-dimensional metric map of the envi-
ronment (Thrun, 2002) in which inanimate and other 
animate agents are spatially represented. Figure 5 pre-
sents an example of a metric map that represents an 
initial state of world. 
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Figure 5 – Example of the metric map of an initial state 
of the environment in the logistics domain. It com-
prises: one truck (truck1) located at coordinates 
(11,0,0); three packages, pk1, pk2 and pk3, located at, 
respectively, (8,0,0), (10,3,0) and (4,3,0); and, one 
plane located at the airport with coordinates (2,1,0). 

 
A problem is an initial and incomplete HTN, i.e., a 

set of goal tasks. Planning is a process by which that 
initial HTN is completed resulting an abstract plan 
ready to be executed and incorporating alternative 
courses of action, i.e., it includes replanning proce-
dures. Roughly speaking, this involves the following 
steps: first, the structure of the abstract plan (HTN) is 
built based on cases of past plans (this is closely related 
to the regular HTN planning procedure); then the con-
ditional effects, probabilities are computed based on 
the primitive tasks of cases of past plans; the EU is 
computed for the primitive tasks of this abstract plan 
based on the procedural or non-procedural components 
of their effects; finally, these properties (conditional 
effects and respective probabilities, and EU) are propa-
gated upward in the HTN, from the primitive tasks to 
the main task of the HTN. Figure 6 presents this algo-
rithm. 
 



Algorithm CONSTRUCT-ABSTRACT-PLAN(abstPlan) 
 abstPlan ← BUILD-STRUCTURE(abstPlan) 
 primTasks ← getPrimTasks(abstPlan) 
 primTasksAllPlanCases← getPrimTasksAllPlanCases() 
 COMPUT-PRIMTASKS-
PROPS(primTasks,primTasksAllPlanCases) 
 abstPlan←PROPAGAT-PROPS-UPWARD(primTasks,abstPlan) 
 return abstPlan 
end 

Figure 6 - Algorithm for the construction of an abstract 
plan. 

 
3.1   Building the Structure of the Abstract 
Plan 
 
Much like regular HTN planning, building the abstract 
plan is a process by which the initial HTN is completed 
through the recursively decomposition of its compound 
tasks. Unlike regular HTN planning, within our ap-
proach the domain theory (methods and operators in 
regular HTN planning) is confined to a finite set of 
actions/operators. Thus there are no explicit methods to 
describe how to decompose a task into a set of sub-
tasks. Actually, methods are implicitly present in cases 

of past plans (see (Muñoz-Avila et al., 2001) for a 
similar approach). This is particularly useful in do-
mains where there is no theory available. Therefore, 
the process of decomposing a task into subtasks is 
case-based and is performed as follows. Given a task, 
the possible alternative decompositions (task and its 
subtasks, as well as the links between them) are re-
trieved from cases of past plans. Two situations might 
happen. If there are more than one alternative decom-
position, the given task is set as abstract and the set of 
decompositions are added to the HTN, linking each 
head task to the abstract task through a hierarchical link 
of type abst. Thus these head tasks are now the sub-
tasks of the abstract task (see Figure 7 for an illustra-
tion of this process). On the other hand, if only one 
decomposition is retrieved, its subtasks are added as 
subtasks of the given task, linked by a hierarchical link 
of type dcmp (see Figure 8 for an illustration of this 
process). Whether a single decomposition or multiple 
decompositions are retrieved, the addition of it/them 
comprises an adaptation process (Kolodner, 1993), i.e., 
the retrieved decomposition(s) is/are changed if neces-
sary so that it/they is/are consistent with the rest of the 
HTN. 
 

  
Retrieved decompositions for

task transport::
Current abstract plan

(incomplete):

transport
transport

inCityDel airDel inCityDel

transport

inCityDel

Abstract plan (incomplete)
after the abstrat
decomposition:

transport

transport

inCityDel airDe inCityDel

transport

inCityDel

 
Figure 7 - Illustrative example of an OR-decomposition of an abstract task. 

 



Retrieved decompositions for
task airDel:

Current abstract plan
(incomplete):

Abstract plan (incomplete)
after the abstrat
decomposition:

transport

transport

inCityDel airDel inCityDel

transport

inCityDel

airDel

flyAirplaneloadAirplane

transport

transport

inCityDel airDel inCityDel

transport

inCityDel

flyAirplaneloadAirplane()

 
Figure 8 - Illustrative example of an AND-decomposition of a regular compound task.

 

 
 

The process of building the HTN ends when there is 
no more compound tasks to decompose, i.e., when the 
leaves of the tree are primitive tasks, or when there is 
no available decompositions in the case-base for at 
least one compound task. 

Within our approach, a task belonging to an HTN 
has a probability value associated to it. This value ex-
presses the probability of being executed given that its 
ancestor is executed. Thus, this probability is actually a 
conditional probability. Obviously, the probability of a 
task belonging to a case of a past plan is always 1.0 
because it was executed (otherwise it won’t belong to 
the case). The probability of the tasks belonging to an 
abstract plan is computed during the process of build-
ing the HTN as follows. Given the ith subtask, STi, of a 
task T both belonging to an abstract plan, the probabil-
ity of STi be executed given that T is executed is given 
by the conditional probability for-
mula

)(
)(

)/(
TP

TSTPTSTP i
i

∩
= . Since within our approach 

there is no probabilistic model available, these prob-
abilities have to be computed from data, i.e., from past 
occurrences of the tasks in cases of past plans, in the 
following manner. According to the frequency interpre-

tation of probability, in r repetitions of an experiment, 
the value P(X) is given by the number of times X oc-
curred in the possible r times. This value is given by 
Sr(X)/r, where Sr(X) denotes the absolute frequency of 
X (i.e., the number of times X occurred in the r repeti-
tions of the experiment). As r increases, Sr(X)/r con-
verges to P(X). In the context of HTN planning, the 
experiment should be understood as the decomposition 
of a task into subtasks. According to this frequentist 
approach of probability it can be shown that, 

)(
)(

)(
)()/(

TS
TSTS

TP
TSTPTSTP

r
iri

i
∩=∩= , when r is big. Thus, 

this expresses the number of times STi and T occurred 
together in the total amount of times T occurred, or in 
the context of HTN planning, this expresses the num-
ber of times STi was subtask of T in the total amount of 
times T was the task decomposed in past HTN plans. 
When STi is not a head of an alternative decomposition 
in the new plan (i.e., when T is not an abstract task), it 
means that T was always decomposed in the same way 
in past plans, i.e., into the same subtasks, which means 
STi occurred always when T occurred, otherwise STi 
won’t be subtask of T. Thus, in this situation, the nu-
merator and denominator of the above equation are 
equal and therefore P(STi/T)=1.0. However, when STi 
is a head of an alternative decomposition, it means 



there were more than one way to decompose T in past 
plans, one of them being the decomposition headed by 
STi. Thus, counting the number of times the decompo-
sition headed by STi was taken to decompose T, i.e., the 
number of times STi instantiated T, )( TSTS ir ∩ , in all 
past plans and dividing this number by the number of 
times T was decomposed, i.e., )(TSr , yields the value 
for P(STi/T) for this situation. 

After the abstract HTN is built, the conditional ef-
fects (and respective probabilities) and the EU are 
computed for the primitive tasks. 
 
3.2   Motivation and Emotion-based Com-
putation of the EU 

 
As said above, a task T is both conditional and prob-
abilistic (e.g.: (Blythe, 1999)). Thus, the execution of a 
goal task under a given condition may be seen accord-
ing to Utility Theory as a lottery (Russel & Norvig, 
1995): 
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, where ip  is the probability of the condition ci, i
jp  

is the probability of the jth effect, i
jE , of condition ci. 

The EU of T may be then computed as follows: 
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The computation of )( k
jEEU  is performed predicting 

the motivations that could be elicited by achiev-
ing/executing the goal task (Castelfranchi, Conte, Mi-
celi, & Poggi, 1996; Reisenzein, 1996). We confined 
the set of motivations to surprise, curiosity and hun-
ger1. As said above, two methods may be used for pre-
dicting the intensities of those motivations: based on 
the non-procedural component of the effects, or based 
on the procedural component. 

If we take into account the procedural component of 
the effects, the intensities of surprise, curiosity and 
hunger felt by the agent when the effect takes place are 
estimated based on the information available in the 
effect about the changes produced in the world. 

Surprise is given by (Macedo & Cardoso, 2001a): 

)(1
))(,(),(

k

kk
ObjP

MemAgtObjNESSUNEXPECTEDObjAgtSURPRISE
−=

==

 
, where Objk is the direct object of task T when k

jE  
takes place, i.e., the entity that is visited (for the case of 
exploratory behaviour). 

 
Curiosity is computed as follows (Macedo & Car-

doso, 2001b): 
))(,(),( MemAgtObjDIFFERENCEObjAgtCURIOSITY kk =  

                                                 
1 The agents that make use of the planning approach de-
scribed in this paper have been used to explore unknown 
environments, and to create things. Among motivations, sur-
prise, curiosity and hunger have been closely related with this 
exploratory and creative behaviour (Berlyne, 1950; Boden, 
1995; Izard, 1991). 

 
The measure of difference relies heavily on error 

correcting code theory (Hamming, 1950): the function 
computes the distance between two objects represented 
by graphs, counting the minimal number of changes 
(insertions and deletions of nodes and edges) required 
to transform one graph into another. 

The drive hunger is defined as the need of a source 
of energy. Given the capacity C of the storage of that 
source, and L the amount of energy left (L ≤ C), the 
hunger elicited in an agent is computed as follows: 

HUNGER(Agt)=C-L 
 
The following function is used to compute )( k

jEEU : 

∑

∑

×+×+×
=

=
×+×+×

=

=

i
i

k
j

k
j

k
j

i
i

k
jhunger

k
jcuriosity

k
jsurprise

k
j

EHUNGERECURIOSITYESURPRISE

EUEUEU

EEU

α

ααα

α

ααα

)()()(

)()()(

)(

221

221

, where, α2 = -1 and αi (i≠2) may be defined as fol-
lows: 
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, where D is the amount of energy necessary to go 

from the end location of goal task T to the closer place 
where energy could be recharged, and C is the maxi-
mum amount of energy that could be stored by the 
agent. 

If we take into account the non-procedural compo-
nent of the effects, we avoid the computations of the 
intensities of the motivations. In fact, doing so, we are 
taking into account the intensities of the emotions, 
drives and other motivations in previous occurrences of 
the tasks and respective effects. This emo-
tional/motivational information collected from previ-
ous occurrences of a task is a kind of Damásio’s so-
matic marker. For this reason, tasks are called somati-
cly-marked tasks. When a task is about to occur again, 
the planning agent may compute its EU based on this 
data. In fact, this seems to be faster than the alternative 
approach of estimating the emotions that a task may 
elicit based on the values of the variables of the state of 
the world such as the time duration, fuel consumed, 
etc. Anyway, the same formula (present above) is used 
to compute )( k

jEEU . 
 
3.3   Propagation of the Properties Upward 
 
After the primitive tasks have the conditional effects 
and respective probabilities, the probability and EU 
computed, these properties are propagated bottom-up 
(from primitive to non-primitive tasks), from the sub-



tasks to the task of a decomposition and from the sub-
tasks (heads of alternative decompositions) to the ab-
stract task of an abstract decomposition). Notice how-
ever that the goal of this propagation is twofold: to 
complete the non-primitive tasks so that they can be 
ranked according to their EU when they are heads of 
alternative decompositions, and to know the overall EU 
of the abstract plan which is given by the EU of the 
main task of the plan. 
 
4   Plan Execution and Replanning 
 
Finding the optimal plan consists simply of traversing 
the abstract plan, selecting the most EU subtask of an 
abstract task. Backtracking occurs when an alternative 
decomposition fails execution. In this case, the next 
alternative decomposition that follows the previous in 
the EU ranking is selected for execution. 
 
5   Related Work 
 
Our work is closely related to HTN planning. This 
methology has been extensively used in planning sys-
tems such as UMCP (Erol et al., 1994), SHOP and 
SHOP2 (Nau et al., 2001). Unlike these planners, the 
planner presented in this paper don’t use methods as 
part of the domain theory for task decomposition, but 
instead methods that are implicitly included in cases 
that describe previous planning problem solving ex-
periences. SiN (Muñoz-Avila et al., 2001) also uses a 
case-based HTN planning algorithm, in which cases 
are instances of methods. 

Among decision-theoretic planners, DRIPS 
(Haddawy & Doan, 1994) is probably the most closely 
related to the planner presented here. Actually, DRIPS 
shares a similar representation approach for abstract 
plans (an abstraction/decomposition hierarchy) and for 
actions. Besides, it also returns the optimal plan ac-
cording to a given utility function. However, in con-
trast to DRIPS, in our planner the variant of a HTN that 
represents abstract plans is automatically built from 
cases and not given as input for the planning problem. 
Besides, it includes temporal, utility ranking and adap-
tation links in addition to decomposition links. Another 
major difference is that, in our planner, the EU of tasks 
and of alternative plans are computed when the abstract 
plan is built, while in DRIPS this occurs when the op-
timal plan is searched. Besides, in our planner, there is 
the possibility of computing the EU of tasks based on 
the non-procedural component of their effects, which 
avoids some additional computations at the cost of be-
ing less accurate. Moreover, finding the optimal plan in 
our planner consists simply of traversing the HTN with 
backtracking (or replanning) points located at the sub-
tasks of an abstract task. In our planner the propagation 
of properties upward in the hierarchy is closely related 
with the approach taken in DRIPS for abstracting ac-
tions (Haddawy & Doan, 1994). A propagation of 
properties in the planning tree, bottom-up and left-to-
right, is also used in GraphHTN (Lotem & Nau, 2000) 
in order to improve the search algorithm. 

Another important work that addressed planning in 
agents inhabiting dynamic, uncertain environments is 
that of (Wilkins, Myers, & Wesley, 1994). 

The relationship between emotions and plans has 
been considered previously by several authors (e.g.: 
(Bates, 1994; Gratch, 1999; Oatley & Johnson-Laird, 
1987; Simon, 1967; Sloman, 1987)). Our main addi-
tional contribution to this works is considering somati-
cly-marked tasks (Damásio, 1994). 
 
6   Conclusions and Future Work 
 
We have presented an approach for decision-theoretic, 
HTN planning. In this approach emotions and motiva-
tions play a central role in that the EU of the tasks is 
based on the intensity of the emotions and other moti-
vations they elicit. Two approaches have been pro-
posed to compute the EU of tasks based on motiva-
tions: based on the procedural or non-procedural (fac-
tual) component of the effects of the tasks. The latter 
approach seems to be faster and is deeply related with 
Damásio’s somatic-marker hypothesis. However, addi-
tional experiments are required to assess these ideas. In 
the future, we plan to perform such experiments. 
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