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Abstract 

 
In this paper we describe an architecture of an artificial agent that is able to autonomously generate and rank its own 
goals or intentions based on its motivations. We present an experiment conducted in a simulated environment with such 
an agent. 

 
1   Introduction 
 
Considered by many authors as the principal motiva-
tional system, emotion is one of the sub-systems that 
compose personality (Izard, 1991), a characteristic that 
agents may exhibit (Etzioni & Weld, 1995). Another 
important sub-system is the drive system (also an im-
portant kind of the motivational system). Psychological 
and neuroscience research over the past decades sug-
gests that emotions play a critical role in decision-
making, action and performance, by influencing a vari-
ety of cognitive processes (e.g., attention, perception, 
planning, etc.). Actually, on the one hand, recent re-
search in neuroscience (Damásio, 1994) supports the 
importance of emotions on reasoning and decision-
making. On the other hand, there are a few theories in 
psychology relating motivations (including drives and 
emotions) to action (Izard, 1991). For instance, in the 
specific case of emotions, within the context of the 
belief-desire theories of action (the dominant class of 
theories in today’s motivation psychology) there have 
been proposals (Reisenzein, 1996) such as that emo-
tions are action goals, that emotions are or include ac-
tion tendencies, that emotions are or include goal-
desires, and that emotions are mental states that gener-
ate goal-desires. 

Another important characteristic that agents should 
also exhibit is autonomy (Etzioni & Weld, 1995). In 
order to be autonomous, agents should be able to gen-
erate their own goals and state preferences between 
them. 

In this paper we describe an artificial agent that is 
able to autonomously generate and rank its own goals 
or intentions based on its motivations. 

The next section presents an overview of the agent’s 
architecture, giving special attention to the deliberative 
reasoning/decision-making module in which the gen-
eration and ranking of goals are included. Finally, a 
qualitative experiment is described, discussed and 
some conclusions are achieved. 
 

2   Agent’s Architecture 
 
The architecture that we adopted for an agent (Figure 
1) is based on the belief, desire, and intention (BDI) 
approach (Rao & Georgeff, 1995). Besides, the agent is 
of motivational kind, exhibiting a module of emotions, 
drives and other motivations. These play a central role 
in reasoning and decision-making since they may be 
thought as action goals (Reisenzein, 1996). The next 
subsections describe in more detail the main modules 
of the architecture. The information of the environment 
is provided to these modules by the sensors, and the 
effectors execute the actions selected. 
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Figure 1. Architecture of an agent. 

 
2.1   Memory 
 
The memory of an agent stores information about the 
world. This information includes the configuration of 
the surrounding world such as the position of the enti-
ties (objects and other animated agents) that inhabit it, 
the description of these entities themselves, descrip-
tions of the sequences of actions (plans) executed by 
those entities and resulting from their interaction, and, 
in generally, beliefs about the world. This information 
is stored in several memory components. Thus, there is 
a metric (grid-based) map (Thrun, 2002) to spatially 
model the surrounding physical environment of the 
agent. Descriptions of entities (physical structure and 
function) and plans are stored both in the episodic 
memory and in the semantic memory (Aitkenhead & 
Slack, 1987). We will now describe in more detail each 
one of these distinct components. 



 
2.1.1.   Metric Map 
 
In our approach, a (grid-based) metric map of the 
world is a three-dimensional grid in which a cell con-
tains the information of the set of entities that may al-
ternatively occupy the cell and the probability of this 
occupancy. Thus, each cell <x,y> of the metric map of 
an agent i is set to a set of pairs i

yx,φ ={< ip1 , iE1 >, 

< ip2 , iE2 >, ..., < i
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identifier of the jth entity that may occupy the cell 
<x,y> of the metric map of agent i with probability i
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of the cell being empty. Cells that are completely un-
known, i.e., for which there are not yet no assump-
tions/expectations about their occupancy, are set with 
an empty set of pairs i

yx,φ ={}. Note also that each en-
tity may occupy more than a single cell, i.e., there 
might be several adjacent cells with the same i

jE . 
 
2.1.2.   Memory for Entities 
 
The set of descriptions of entities perceived from the 
environment are stored in the episodic memory of enti-
ties. Each one of these descriptions is of the form 
<ID,PS,F>, where ID is a number that uniquely identi-
fies the entity in the environment, PS is the physical 
structure, and F is the function of the entity. The sen-
sors may provide incomplete information about an en-
tity (for instance, only part of the physical structure 
may be seen or the function of the entity may be unde-
termined). In this case the missing information is filled 
in by making use of the conditional probabilistic 
Bayes’s rule (Shafer & Pearl, 1990), i.e., the missing 
information is estimated taking into account the avail-
able information and descriptions of other entities pre-
viously perceived and already stored in the episodic 
memory of entities. This means some of the descrip-
tions of entities stored in memory are uncertain or not 
completely known (e.g.: element 4 of Figure 2). 

The physical structure of an entity may be described 
analogically or propositionally (Aitkenhead & Slack, 
1987). The analogical representation reflects directly 
the real physical structure while the propositional rep-
resentation is a higher level description (using proposi-
tions) of that real structure. 

The analogical description of the physical structure 
of an entity comprises a three-dimensional matrix and 
the coordinates of the gravity centre relatively to the 
entity and to the environment spaces. Notice that the 
three-dimensional matrix of the entity is a submatrix of 
the matrix that represents the metric map. 

The propositional description of the physical struc-
ture of an entity relies on the representation through 

semantic features or attributes much like in semantic 
networks or schemas (Aitkenhead & Slack, 1987). En-
tities are described by a set of attribute-value pairs that 
can be graph-based represented. 

The function is simply a description of the role or 
category of the entity in the environment. For instance, 
a house, a car, a tree, etc. Like the description of the 
physical structure, this may be probabilistic because of 
the incompleteness of perception. This means, this is a 
set F = {<functioni,probi>: i=1,2, …, n, where n is the 
number of possible functions and P(“function” = func-
tioni) = probi}. 
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Figure 2. Example of the episodic memory of entities. 
Although the matrix of the analogical description is of 
three-dimensional kind, for the sake of simplicity, it is 
represented here as a two-dimensional matrix corre-

sponding to the upper view of the entity. 
 

Concrete entities (i.e., entities represented in the epi-
sodic memory) with similar features may be general-
ized or abstracted into a single one, an abstract entity, 
which is stored in the semantic memory for entities. 
 
2.1.3.   Memory for Plans 
 
Like entities, we may distinguish two main kinds of 
plans: concrete plans, i.e., cases of plans (Kolodner, 
1993), and abstract plans. 

We represent plans as a hierarchy of tasks (a variant 
of HTNs) (e.g., (Erol, Hendler, & Nau, 1994)) (see 
Figure 3). Formally, a plan is a tuple AP = <T, L>, 
where T is the set of tasks and L is the set of links. This 
structure has the form of a planning tree, i.e., it is a 
kind of AND/OR tree that expresses all the possible 
ways to decompose an initial task network. Like in 
regular HTNs, this hierarchical structure of a plan 
comprises primitive tasks or actions (non-
decomposable tasks) and non-primitive tasks (decom-



posable or compound tasks). Primitive tasks corre-
spond to the leaves of the tree and are directly executa-
ble by the agent, while compound tasks denote desired 
changes that involve several subtasks to accomplish it. 
Tasks that are the roots of HTN plans are called goal 
tasks. For instance, the leaf node PTRANS of Figure 3 
is a primitive task, while visitEntity is a compound task 
(and also a goal task). 

m o v e T o (1 ) a n a lyze (1 )

v is itE n tity (1 )

P T R A N S (1 ) A T T E N D (1 )
 

Figure 3. A simple example of plan. Primitive tasks are 
represented by thick ellipses while non-primitive tasks 

are represented by thin ellipses. 
 

A task T is both conditional and probabilistic (e.g.: 
(Blythe, 1999)). This means each task has a set of con-
ditions C={ c1, c2, ..., cm} and for each one of these 
mutually exclusive and exhaustive conditions, ci, there 
is a set of alternative effects εi={< ip1 , iE1 >, < ip2 , iE2 >, 
..., < i

ni
p , i

ni
E >}, where i

jE  is the jth effect triggered with 
probability i

jp  ∈ [0,1] by condition ci (i.e., 

i
ji

i
j pcEP =)|( ), and such that ∑

=

=
in

j

i
jp

1

1 . Figure 4 pre-

sents the structure of a task. The probabilities of condi-
tions are represented in that structure although we as-
sume that conditions are independent of tasks. Thus, 
P(ci|T)=P(ci). The main reason for this is to emphasize 
that the Expected Utility (EU) of a task, in addition to 
the probability of effects, depends on the probability of 
conditions too. In addition to conditions and effects, a 
task has other information components. 

Each effect comprises itself a few components of 
several kinds such as temporal, emotional etc. These 
components may be of two kinds: non-procedural (fac-
tual) and procedural. The non-procedural component 
refers to the data collected from previous occurrences 
of the effect (contains the duration of the task, the emo-
tions and respective intensities felt by the agent, the 
fuel consumed, etc., in previous executions of the task 
as stored in cases of plans). The procedural component 
refers to the process through which the temporal, emo-
tional and other kinds of data may be computed (con-
tains descriptions or rules of how to compute the com-
ponents). 
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Figure 4. Schematic representation of a task in an ab-

stract plan. 
 

2.2   Motivations 
 
This module receives information from the current 
state of the environment and outputs the intensities of 
motivations (emotions, drives and other motivations). 
In this paper, this module is confined to the motiva-
tions that are related with variables that directly influ-
ence the main activities that the agent exhibits (explo-
ration and creativity1): surprise (elicited by unexpect-
edness), curiosity (elicited by novelty). In addition, we 
also consider the influence of the drive “hunger” that 
reflects the need of a power source. Nonetheless, other 
emotions, drives and other motivations may be in-
cluded in this module but not considered for the pur-
pose of this paper. 

The agent is almost continuously presented with an 
input proposition (Ortony & Partridge, 1987), which 
corresponds to some sensorial information of an entity 
(for instance, “a house with squared windows”). In 
response to this external stimulus, the surprise and cu-
riosity unit outputs the intensity of these motivations, 
respectively. 

In what concerns to surprise, we have developed a 
computational model (Macedo & Cardoso, 2001a) with 
the collaboration of the psychologists of the University 
of Bielefeld, Germany (Meyer, Reisenzein, & Schütz-
wohl, 1997), and also based on the ideas of Ortony and 
Partridge (Ortony & Partridge, 1987). The idea behind 
this model is that surprise consists of the appraisal of 
unexpectedness. Actually, there is experimental evi-
dence supporting that the intensity of felt surprise in-
creases monotonically, and is closely correlated with 
the degree of unexpectedness (see (Macedo & Cardoso, 
2001a) for more details). This means that unexpected-
ness is the proximate cognitive appraisal cause of the 
surprise experience. Considering this evidence, we 
have already proposed (Macedo & Cardoso, 2001a) 
that the surprise felt by an agent Agt elicited by an ob-
ject Objk is given by the degree of unexpectedness of 
Objk, considering the set of objects present in the 
memory of the agent Agt, which is given by the im-
probability of Objk (see(Macedo & Cardoso, 2001a) for 
more details): 

)(1))(,(
),(

kk

k
ObjPMemAgtObjNESSUNEXPECTED

ObjAgtSURPRISE
−=

=  

We define curiosity (following McDougall 
(McDougall, 1908), Berlyne (Berlyne, 1950) and 
Shand (Shand, 1914)) as the desire to know or learn an 
object that arouses interest by being novel, which 
means that novel objects stimulate actions intended to 
acquire knowledge about those objects. Thus, if we 
accept the above definition, the curiosity induced in an 
agent Agt by an object Objk depends on the novelty or 
difference of Objk relatively to the set of objects pre-
sent in the memory of Agt: 

))(,(),( MemAgtObjDIFFERENCEObjAgtCURIOSITY kk =  

                                                 
1 The agents that we have implemented have been used to 
explore unknown environments (Macedo & Cardoso, 2001b), 
and to create things (Macedo & Cardoso, 2001c). 



The measure of difference relies heavily on error 
correcting code theory (Hamming, 1950): the function 
computes the distance between two objects represented 
by graphs, counting the minimal number of changes 
(insertions and deletions of nodes and edges) required 
to transform one graph into another. 

The drive hunger is defined as the need of a source 
of energy. Given the capacity C of the storage of that 
source in an agent, and L the amount of energy left (L ≤ 
C), the hunger elicited in an agent is computed as fol-
lows: 

HUNGER(Agt)=C-L 
 
2.3   Goals/Intentions and Desires 
 
Desires are states of the environment the agent would 
like to happen, i.e., they correspond to those states of 
the environment the agent prefers. This preference is 
implicitly represented in a mathematical function that 
evaluates states of the environment in terms of the 
positive and negative feelings they elicit in the agent. 
This function obeys to the Maximum Expected Utility 
(MEU) principle (Russel & Norvig, 1995). The agent 
prefers always those states that make it feel more posi-
tive feelings (more positive emotions and the satisfac-
tion of drives). Goals or intentions may be understood 
as something that an agent wants or has to do. These 
might be automatically generated by the agent or given 
by other agents. 
 
2.4   Deliberative Reasoning/Decision-
making 
 
The reasoning and decision-making module receives 
information from the internal/external world and out-
puts an action that has been selected for execution. 
Roughly speaking, the agent starts by computing the 
current world state. This is performed taking into ac-
count the information provided by the sensors (which 
may be incomplete) and generating expectations or 
assumptions for the missing information. Assumptions 
and expectations for the current agent’s position are 
also generated. The agent has a queue of goal 
tasks/intentions ranked by their priority (i.e., EU). The 
first of the ranking is the goal/intention that is under 
achievement. Once one goal is achieved, it is removed 
from the queue and the way it was achieved could be 
learned for future reuse by simply storing its plan in 
memory as a case. However, external events or objects, 
for instance, may give rise to new goals/intentions. 
This is the next step of the reasoning/decision-making 
process: the generation of new intentions/goals, com-
putation of their EU and insertion of them in the queue 
of goals/intentions according to their priority (i.e., their 
EU). Though, if the queue was empty before this step 
and no new goals are generated in this step, the queue 
remains empty. In this case there is nothing to reason-
ing or deciding about and consequently no action is 
returned. However, the most likely is that the queue is 
not empty either before or after the step of generating 

new goals. If the first goal of the queue is still the same 
then proceed with its execution and possibly replan-
ning if necessary. However, the addition of new goals 
may have caused changes in the ranking of the goals in 
the queue because a new goal may be more EU than 
some old goals. Thus, the first goal may now be differ-
ent from the previous first goal. In this case the old first 
goal is considered suspended. This suspension could 
happen even though the goal was already under 
achievement (there was already a plan built for it and 
this plan was already being executed). Thus, a plan is 
required for this new first goal in queue, which will be 
from now on the current goal until its achievement or 
suspension. That plan could be built or retrieved from 
memory (if there is one – remember that this current 
goal may be previously suspended or even previously 
achieved in the past). 

The generation of plans is performed much like in 
HTN approaches (see (Erol et al., 1994)). We will now 
describe in more detail the step related with the genera-
tion and ranking of agent’s goals. 
 
2.4.1.   Generation and Ranking of Goals/Intentions 
 
The motivational system plays an important role in the 
generation and ranking of goals/intentions. Actually, 
according to psychologists, motivations are the source 
of goals in several manners: these goals may be in-
cluded in emotions (e.g., when an agent feels anger 
about something, a possible triggered goal might be 
fisting the entity that is on the origin of the anger), or 
emotions may be themselves the goals (e.g., an agent 
looks for states of the world that elicit certain positive 
emotions such as happiness or surprise). Therefore, an 
agent selects actions or sequences of actions that lead 
to those states of the world. For instance, an agent es-
tablishes the goal of visiting an object that seems be-
forehand interesting (novel, surprising) because visit-
ing it will probably make it feel happy. The algorithm 
for the generation and ranking of goals/intentions is as 
follows (see Figure 5). First, the set of different goal 
tasks present in the memory of plans are retrieved and, 
for each kind, a set of new goals (newGoals) is gener-
ated using the function adaptGoal(). This function 
takes as input a goal task retrieved from a plan in the 
memory of plans, the memory and the perception of the 
agent, and generates similar goals resulting from the 
adaptation of the past goal to situations of the present 
state of the world. The adaptation strategies used are 
mainly substitutions (Kolodner, 1993). Thus, for in-
stance, suppose the goal task visitEntity(e7) is present 
in the memory of the agent. Suppose also that the agent 
has just perceived three entities present in the environ-
ment, e1, e2 and e3. The entity to which visitEntity is 
applied (e7) may be substituted by e1, e2 or e3, result-
ing three new goals: visitEntity(e1), visitEntity(e2), 
visitEntity(e3). Then, the EU of each goal task is com-
puted. As said above, a task T is both conditional and 
probabilistic (e.g.: (Blythe, 1999)). Thus, the execution 
of a goal task under a given condition may be seen 
according to Utility Theory as a lottery (Russel & Nor-
vig, 1995): 
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the emotions that could be elicited by achiev-
ing/executing the goal task. This means, the emotions, 
drives and other motivations felt by the agent when the 
effect takes place are predicted or estimated based on 
the procedural or non-procedural components of the 
effect. 
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, where D is the amount of energy necessary to go 
from the end location of goal task T to the closer place 
where energy could be recharged, and C is the maxi-
mum amount of energy that could be stored by the 
agent. 

In the case of exploratory and creativity behaviour, 
the surprise and curiosity of an effect of a task are elic-
ited by the objects that the agent perceives. 
 
Algorithm generateRankGoals(newRankedGoals) 
Output: newRankedGoals – the set of ranked goals 
 
newGoals ← ∅ 
setPastGoals ← {x: x is a goal task belonging to some plan in mem-
ory} 
for each goal in setPastGoals do 
 adaptationGoal←adaptGoal(goal,agtMemy,agtPercepts) 
 newGoals ← newGoals ∪ adaptationGoals  
end for each 
for each goal in newGoals do 

∑ ××=
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,
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end for each 
insert(goal,newRankedGoals) 
return newRankedGoals 
end 
 
Figure 5. Algorithm for the generation and ranking of 

goals. 
 
 
 

3   Qualitative Experiment 
 
We have conducted an experiment in order to evaluate 
the reasoning/decision-making process of an agent with 
the architecture described above. Special attention was 
given to the algorithm of the autonomous generation 
and ranking of goals based on motivations. To do so, 
we ran an agent in a simulated environment populated 
with several buildings (their functions were for in-
stance, house, church, hotel, etc.; for the sake of sim-
plicity, their descriptions were related with the shapes 
of their structure: rectangular, squared, etc.). Figure 6 
presents the simulated environment and the path taken 
by the agent to explore it. The agent started at location 
0, with an empty memory of entities, but with a single 
case of a past plan for visiting entities. At this location 
its visual field included objects E1 and E2, located re-
spectively at locations 1 and 2. Then the agent gener-
ated goals for visiting them by adapting the goal vis-
itEntity of the previous plan stored in memory. The 
resulting goals are: visitEntity(E1) and visitEntity(E2). 
E1 and E2 are entirely new for the agent (remember 
that the agent started with an empty memory of enti-
ties). Therefore, the surprise and curiosity that they 
may elicit when visited is maximum (i.e., 1.0). How-
ever, E1 is closer, so the hunger that may be felt when 
the agent is at location 1 is lower than in location 2. 
Hence, the agent ranks the goals as follows: visitEn-
tity(E1) followed by visitEntity(E2). A plan is gener-
ated for the first goal. After its execution, the agent is 
at location 1 with a complete description of E1 stored 
in memory as a case (case 1 of the episodic memory of 
Figure 2) and an incomplete description of E2 (because 
it has not been visited yet and therefore it is not com-
pletely known – at least the function is still undeter-
mined). In addition, the goal visitEntity(E1) is deleted 
from the queue of goals. At location 1, the agent per-
ceives E2 and E3 (E1 is also perceived, but it has just 
been visited). The agent generates the goal visitEn-
tity(E3) for visiting E3. Notice that visitEntity(E2) is 
still in the queue of goals. E3 is similar to the previ-
ously visited E1 and therefore it predicts feeling a low 
intensity of surprise and curiosity when visiting it. Be-
sides, hunger is expected to be higher in location 3 than 
in 2. So, the goals are ranked as follows: visitEn-
tity(E2) followed by visitEntity(E3). Once again, a plan 
is generated for visitEntity(E2) and then executed. The 
result is the completion of the description of E2 (case 2 
of the episodic memory of Figure 2). At location 2, the 
agent perceives E4, in addition to E3. E4 is similar to 
both E1 and E2. However, its EU is lower than that of 
E3 mainly because the agent expects a higher hunger in 
location 4 than in 3. Thus, E3 is visited. At this time, 
the agent has the episodic memory of Figure 2. An 
interesting behaviour is observed later when the agent 
has to select between visiting E11 and E12, which are 
exactly equal to E1 and E2, respectively, and at similar 
distances. Therefore, it might be expected that the 
agent would visit E11. However, this time the agent 
ranks the goals as follows: visitEntity(E12) and visitEn-
tity(E11). This is because the agent has now more cases 



describing entities similar to E11 than to E12. There-
fore, E12 is expected to elicit more surprise than E11, 
and hence the EU of visiting E12 is higher than that of 
visiting E11. 

In order to take conclusions about the quality of this 
behaviour, we asked a few humans to describe the path 
they would follow in such environment. We verified 
that there is much similarity with the path followed by 
the agent. 
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Figure 6. Experiment in a simulated environment. 

Dashed circles represent the visual field of the agent in 
different locations. 

 
4   Conclusions 
 
We have presented a motivation-based approach for the 
autonomous generation and ranking of goals. This ap-
proach is in the core of the reasoning process of agents. 
The experiment conducted allows us to conclude that 
the behaviour of an agent whose reasoning process 
includes this approach is similar to that of humans in 
the simulated environment considered. 
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