3rd Symposium on Languages, Applications and Technologies (SLATE 2014), June 2014
DOI
Cited by
Year 2019 : 1 citations
Freitas, L. A. D. and Vieira, R. (2019). Ontology-based feature-level sentiment analysis in portuguese reviews. International Journal of Business Information Systems, 32(1).
Year 2016 : 2 citations
Avanço, L. V., Brum, H. B., and Nunes, M. G. V. (2016). Improving opinion classifiers by combining different methods and resources. In XIII Encontro Nacional de Inteligncia Artificial e Computacional, pages 25–36.
Vieira, R., do Amaral, D., Collovini, S., Fonseca, E., Freitas, A., Freitas, L., Granada, R., Hilgert, L., Lopes, L., Schmidt, D., Severo, B., Souza, M., and Trojahn, C. (2016). Language resources for information extraction and semantic computing - NLP at PUCRS. In Proceedings Corpora and Tools for Processing Corpora at PROPOR 2016, pages 17–25.
Year 2015 : 3 citations
Freitas, L. and Vieira, R. (2015). Exploring resources for sentiment analysis in portuguese language. In Proceedings of 2015 Brazilian Conference on Intelligent Systems, BRACIS, pages 152–156, Natal, RN, Brasil.
Paula Carvalho e Mário J. Silva. Sentilex-PT: principais características e potencialidades. In Simões, A., Barreiro, A., Santos, D., Sousa-Silva, R., and Tagnin, S. E. O., editors, Linguística, Informática e Tradução: Mundos que se Cruzam, volume 7(1) of OSLa: Oslo Studies in Language, pages 425–438. University of Oslo.
Larissa A. de Freitas (2015). Feature-Level Sentiment Analysis Applied to Brazilian Portuguese Reviews. PhD thesis, Pontifícia Universidade Católica do Rio Grande do Sul.