Hotel booking demand datasets
Authors
Abstract
This data article describes two datasets with hotel demand data. One of the hotels (H1) is a resort hotel and the other is a city hotel (H2). Both datasets share the same structure, with 31 variables describing the 40,060 observations of H1 and 79,330 observations of H2. Each observation represents a hotel booking. Both datasets comprehend bookings due to arrive between the 1st of July of 2015 and the 31st of August 2017, including bookings that effectively arrived and bookings that were canceled. Since this is hotel real data, all data elements pertaining hotel or costumer identification were deleted. Due to the scarcity of real business data for scientific and educational purposes, these datasets can have an important role for research and education in revenue management, machine learning, or data mining, as well as in other fields
Keywords
Feature Engineering, Data quality, Feature Selection
Subject
Machine Learning Data set, Revenue Management
Journal
Data in Brief, Vol. 22, pp. 41-49, Elsevier , February 2019
DOI
Cited by
No citations found